亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

分析性游戲以研究為目的探索一個問題或一個領域。為了研究分析性游戲設計、執行和使用的改進,大量的研究正在進行。此外,許多領域的技術快速發展,如人工智能和虛擬現實,使得說明這些新能力的優勢和限制變得更加引人注目。在游戲設計中,數字手段的使用往往被視為一個單純的技術因素,與平臺選擇、主持人支持和數據記錄過程有關。在這項工作中,我們建議轉變視角,從以技術為導向的設計選擇標準轉向對設計選擇的更廣泛評估。事實上,技術的引入(即自動化和自主化)不會導致任務的替代,而是會內在地改變游戲環境。這項工作引入了一個框架,為分析性游戲的不同設計階段中需要考慮的方面提供了結構化的指導,包括采用自動化和自主性的潛在影響。提出的方法是基于以前在基于模擬的嚴肅游戲、模型驅動工程和人因工程領域的研究。該框架被應用于一個知識獲取分析游戲作為案例研究。

關鍵詞:嚴肅游戲,分析性游戲,知識獲取,設計框架,模型驅動工程,人因工程

1 引言

嚴肅游戲的第一個定義出現在[1]中,指的是用于改善教育的游戲。隨著時間的推移,其他幾個定義也被提出來了[2],這些定義將其確定為主要目的不是娛樂的游戲。盡管嚴肅游戲領域的大多數研究都集中在學習游戲上[3],但它們也可以為其他目的服務。例如,在嚴肅游戲的游戲性/目的/范圍(G/P/S)分類法[4]中,目的維度允許根據游戲的功能進行分類,即信息廣播、培訓或數據交換。數據交換游戲的具體目的是 "從[...]玩家那里收集信息"[4]。一些作者泛指以收集數據為目的而設計的游戲[4],而另一些作者則根據收集這些數據的具體目的(例如,為了實驗、研究或操作目的)來區分游戲[5]。按照[6],我們將使用分析性游戲這一術語來表示具有實驗或研究目的的游戲。因此,分析性游戲可以被納入數據交換嚴肅游戲的范疇。像其他嚴肅游戲一樣,分析性游戲使用模擬作為一種手段,使玩家沉浸在模擬環境中[7],在不同的抽象層次上模仿參考系統。參與者有一個特定的角色,需要評估情況,發現未知的東西,并運用他們的知識和技能來解決情況所帶來的問題。分析性游戲的主要目的是研究參與游戲的過程(如認知、行為和身體)。分析性游戲的一個具體類別是知識獲取分析性游戲(K2AGs)[8],它支持知識工程和知識獲取(KA)的決策支持和認知系統設計。知識獲取技術的目的是收集、構建和組織專家知識。這些技術有幾個缺點,如時間效率低下,有偏見和無法獲得隱性知識(例如,[9])。為了克服這些限制,知識工程領域正在探索使用游戲(例如,[10])。具體來說,K2AGs研究決策,重點是信息處理策略、不確定推理和決策周期(即情境評估、情境意識和決策[11])。游戲設計在游戲科學研究中得到了廣泛的討論,但大多數工作都集中在游戲工件本身的設計上[12]。最近,研究認識到需要考慮不同層次的設計,即游戲工件的設計和與它試圖告知或支持的社會技術系統問題有關的游戲設計[12]。為了給分析性游戲的設計者和使用者提供一個結構化的指導,在本文中,我們提出了一個設計框架,它建立在[13]在基于模擬的嚴肅游戲的背景下提出的方法之上,并且補充了K2AG設計形式化的工作,它側重于游戲工件[14]。具體來說,建議的解決方案旨在更好地將技術和非技術的游戲設計決策正規化,包括超越單純的游戲平臺的方面。事實上,我們建議明確說明與自動化和自主性(A&A)有關的方面。自動化是指 "通過[......]自動手段操作或控制一個過程的技術、方法或系統,如通過電子設備,將人類的干預減少到最低限度"[15],而自主性是指機器(硬件和軟件)在重要的不確定條件下長時間獨立執行而不需要外部干預的能力[16]。A&A代表的能力可能會提供有趣的機會,并可能大大支持分析性游戲。例如,玩家在空間(即分布式游戲)和時間上不在同一地點的分析性游戲,具有非常復雜的裁決需求的游戲或非游戲角色(如部隊或對手)可能有用的游戲。在過去的幾十年里,自動化和后來的自主性的好處已經被探索和明確討論(即[17])。然而,如果在設計階段沒有正確解決人與系統整合的因素,它們在游戲中的使用可能會對收集的數據的質量產生負面影響。事實上,它也被證明了它們的引入意味著性能、工作量和情景意識之間的權衡(即,[18])。在分析性游戲中引入A&A將從本質上改變游戲環境。這可能會影響人類(如玩家和主持人)與這種環境的互動方式以及分析中的決策過程。為了建立對該問題的共同理解,并為分析性游戲的初步設計選擇中需要考慮的方面提供初步指導,在整個框架中包括了自動化和自主性采用的評估方法。了解這些方面將有力地促進所采用的嚴肅游戲的科學嚴謹性,通過促進負責任地和適當地使用現有技術來進一步開發分析游戲的能力。事實上,這將有助于做出明智的設計決策。建議的框架建立在數十年來在人的因素和認知工程領域進行的研究之上。我們希望這項工作不僅可以作為設計的指南,也可以作為嚴肅游戲社區進一步研究的指南,同時也可以作為通往其他科學領域的橋梁。

本文的其余部分組織如下。第2節提供了嚴肅游戲在工程實踐中的使用和游戲設計形式化的一些背景;第3節討論了A&A和嚴肅游戲;第4節提出了擬議的設計周期,并總結了與分析性游戲相關的人因和認知工程的研究;第5節展示了設計框架在K2AGs中的應用案例;第6節報告了結論

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

摘要

在未來部隊結構的發展和評估過程中,兵棋推演是深入了解其優勢和劣勢的一項關鍵活動。十多年來,挪威國防研究機構(FFI)在不同程度的計算機支持下,開發支持挪威軍隊進行能力規劃的兵棋。在此期間,這些已經從可被描述為計算機輔助的兵棋發展為更逼真的仿真支持的兵棋。此外,為了更密切地了解部隊結構的威懾效果(這在實際游戲中可能無法觀察到),我們的重點也轉向了更恰當地復制規劃過程--特別是監測對方部隊的規劃過程。例如,研究特定的結構元素在多大程度上阻止了對方部隊采取某些行動,這一點很重要。在這篇文章中,我們描述了我們開發的仿真支持的兵棋推演方法,其中包括一個準備階段;一個執行階段,含有一個聯合行動規劃過程;以及一個分析階段。此外,我們還討論了我們能夠從兵棋推演中提取什么類型的數據和結果,并提出了一套我們發現的關于如何成功進行仿真支持兵棋的最佳實踐。

關鍵詞:兵棋推演;建模與仿真;實驗;國防結構;能力分析;國防規劃

1 引言

在發展和評估未來的部隊結構時,兵棋推演是深入了解和更好地理解部隊結構的優勢和劣勢的關鍵活動。今天,基于計算機的仿真系統使我們能夠創造出高度復制真實世界物理特性的合成環境。此外,人工智能(AI)和行為模型的進步給我們提供了更真實的計算機生成部隊(CGF),可以高度逼真地執行戰斗演習和低級戰術。兵棋可以從這些進展中受益。然而,在指揮系統的較高層次上,人工智能還不能與人類決策者相提并論,在兵棋中規劃和實施仿真行動需要人類官員的參與。

十多年來,挪威國防研究機構(FFI)一直支持挪威軍隊在不同程度的計算機支持下開發能力規劃的兵棋。在此期間,這些已經從可被描述為計算機輔助的兵棋發展為更逼真的仿真支持的兵棋。此外,為了更密切地了解部隊結構的威懾效果(這在實際游戲中可能無法觀察到),我們的重點也轉向了更恰當地復制規劃過程,特別是監測對方部隊的規劃過程。例如,研究特定的結構要素在多大程度上阻止了對方部隊采取某些行動--或者換句話說,正在推演的概念有怎樣的戰爭預防或維護和平效果,這一點很重要。

能力規劃過程和高調的兵棋總是會涉及或吸引利益者--例如高級軍官、政治家、官僚和國防工業領導人--的利益沖突。一般來說,參與的利益者有可能想把兵棋框定在一個有利于他們利益的背景下(Evensen等人,2019)。重要的是要意識到這個問題,而且關鍵是要避免兵棋成為利益者利益的戰場。本文所描述的方法和最佳實踐試圖通過使用基于計算機裁決的仿真,以及通過提高對元游戲的認識,或對兵棋所有階段的沖突,從準備到執行,再到分析和報告,來減少這個問題。

本文的組織結構如下。首先,我們簡要地描述了這項工作的背景。接下來,我們描述了我們開發的仿真支持的兵棋推演方法,其中包括準備階段;執行階段,包括聯合行動規劃過程;以及分析階段。之后,我們討論了我們能夠從兵棋推演中提取的數據和結果類型。最后,我們提出了一套我們發現的關于如何成功進行仿真支持的兵棋推演的最佳實踐。

2 背景

雖然各種形式的兵棋推演已經在FFI進行了數十年,但當FFI的研究人員開始合作研究單個仿真支持的系統評估方案時,首次出現了實施仿真支持的部隊結構評估的想法(Martinussen等人,2008)。

2010年,FFI首次將使用半自動部隊(SAF)的互動式旅級仿真系統作為兵棋推演的基礎。在 "未來陸軍 "項目中,通過一系列計算機輔助的兵棋推演,對五種基本不同的陸軍結構的性能進行了評估(霍夫等人,2012;霍夫等人,2013)。其目的是根據這些結構的相對性能進行排名。此外,兵棋推演揭示了被評估結構中固有的一些優勢和劣勢。雖然我們使用的仿真工具相當簡單,但它對于跟蹤部隊的運動和計算決斗和間接火力攻擊的結果很有用。

在此之后,FFI支持挪威陸軍進行了幾次仿真支持的能力規劃系列兵棋推演。這些兵棋推演是雙面的(藍方/友方和紅方/敵方),封閉的(可用信息有限),在戰術和戰役層面進行。

玩家總數在10到100人之間,兵棋推演的時間從一天到兩周不等。圖1顯示的是2014年FFI的一次仿真支持的兵棋推演會議的照片。

圖1 2014年FFI的仿真支持的兵棋推演會議。

自2010年以來,我們的兵棋推演逐漸從計算機輔助的兵棋推演(使用非常簡單的仿真模型),向使用更詳細和更真實的仿真模型的兵棋推演演變。此外,為了更密切地了解部隊結構的威懾效果(這在實際游戲中可能無法觀察到),我們的重點也轉向了更恰當地復制規劃過程,特別是監測紅方部隊的規劃過程。圖2說明了我們兵棋推演的演變過程。

圖2 我們的兵棋推演的演變過程。

使用基于計算機的仿真來支持兵棋推演的價值首先在于有一個系統來自動跟蹤部隊,計算其傳感器的探測情況,并評估決斗情況和間接火力攻擊的結果。此外,基于計算機的仿真非常適用于通過在地面實況上添加過濾器來真實地表現不確定性和戰爭迷霧。

3 仿真支持的兵棋推演方法

戰術仿真是開發、測試和分析新的部隊結構的一個重要工具。通過兵棋推演,可以深入了解一個部隊結構對特定場景的適合程度,并揭示該結構的優勢和劣勢。然而,擁有一個好的執行計劃對于成功地進行兵棋推演實驗和從活動中獲得有用的數據是至關重要的。在本節中,我們將介紹我們的仿真支持的兵棋推演方法,該方法是通過我們在過去10年中對兵棋推演實驗的規劃、執行和分析的經驗發展而來的。我們還將討論兵棋推演的背景,以及規劃和組織兵棋推演活動的過程,這可以被視為一種元游戲。

一般來說,有幾本關于兵棋推演的書和指南可以參考(Perla,1990;Appleget等人,2020;Burns,2015;英國國防部[UK MoD],2017)。本節描述的方法是專門為支持未來部隊結構發展的分析性兵棋推演而定制的。通常情況下,我們使用這種方法來評估和比較不同部隊結構備選方案的性能,這些方案可能在物資和裝備的構成、戰術組織或作戰概念方面有所不同。

我們的兵棋推演實驗方法包括三個主要階段:

1.準備階段

2.規劃和執行階段

3.分析階段

這些階段將在下文中詳細描述。圖3說明了它們之間的關系,其中規劃過程和兵棋推演的執行階段構成了實驗的核心。

圖3 兵棋推演實驗的方法說明。

3.1 兵棋的背景

小國在發展兵力結構以威懾擁有更多兵力要素的敵人時面臨著兩難境地。敵人可能會觀察到防御結構中的變化,并可能在運用軍事力量時從集合中選擇其他更合適的元素。例如,如果小國的部隊結構是專業化的,為了對付預期的敵人行動方案(COA),敵人可能會從庫中選擇完全不同的東西,敵人的COA可能會發生巨大變化。

對所有國家來說,發展部隊結構是一個緩慢而公開的過程。從現有的、龐大的部隊要素庫中選擇部隊并創造新的行動方案是一個快速和隱蔽的過程。對于一個小國來說,在這種情況下實現威懾似乎是一項不可能完成的任務,但我們已經在幾個案例中觀察到,對部隊結構的低成本改變是如何對敵人的COA選擇產生巨大影響的(Daltveit等人,2016;Daltveit等人,2017;Haande等人,2017)。1988年為圣戰者引入手持防空導彈后,蘇聯在阿富汗的戰術發生了變化(Grau, 1996),這就是我們在兵棋推演中看到的紅方(對手)小組規劃過程中產生影響的一個很好示例。據觀察,存在感和姿態也有威懾作用。此外,社會、景觀和氣候也影響了紅方的規劃過程。這一切都歸結于敵方在規劃和制定作戰行動期間的風險評估。

為了研究部隊結構變化的威懾作用,有必要讓分析人員在兵棋推演前觀察紅方的規劃過程,而不僅僅是在仿真戰斗中。阻止敵人進攻是任何部隊結構發展的意圖,而觀察威懾效果的唯一方法是在敵人的規劃期間。

在決策理論中,風險是一個必須考慮的因素,以便能夠做出理性的選擇。馮-諾伊曼-摩根斯坦(vNM)決策理論的基礎是行為者通過考慮給定概率和結果的彩票來評估選擇(von Neumann & Morgenstern, 1944)。風險因素也需要存在于規劃過程中。如果一方的規劃過程被參與兵棋推演的其他任何一方知道,那么一部分風險因素就會消失。這將使規劃過程減少到只是評估一個已知的敵人COA,而不是評估一系列可能的COA及其概率。因此,重要的是,場景定義不能限制敵人的規劃過程,所有的規劃過程都要受到監控--特別是敵人的規劃過程。

3.1.1 元游戲

盡管兵棋推演在最終開始時有規則,但在選擇兵棋的類型和周圍環境的過程中,并沒有明確的規則。因此,策劃和組織一場兵棋推演活動的過程可以被看作是一種元游戲--一種可以在對抗分析的規則中進行分析的游戲(Curry & Young, 2018)。例如,聯合層面的兵棋推演將包括傳統上的資金競爭對手的參與者。來自空軍、海軍和陸軍的參與者,在涉及到應該如何制定場景、應該對未來技術做出什么樣的假設、應該如何評估戰斗效果等方面,可能有不同的利益。每個領域內的分支也是如此。因此,存在著一種危險,即元游戲對部隊結構分析結果的影響可能比實際兵棋推演的影響更大。元游戲并不局限于兵棋的執行。分析和事后的報告也會受到與準備期間相同類型的沖突影響。在圖4中,存在于核心方法論之外的元游戲層就說明了這一點。

圖4 圍繞兵棋推演實驗方法的元游戲圖解。

能力規劃過程總是會涉及或吸引利益沖突的利益者,國防規劃和兵棋推演包含許多利益者爭奪地盤的例子(Evensen等人,2019;Perla,1990)。這在兵棋推演的準備階段尤其明顯。應對這種情況的一個可能的方法是,適當地將擁有發明改變部隊結構的權力角色與擁有評估和接受改變的權力角色分開。當這些角色沒有被分開時,利益者會試圖影響什么是兵棋的目標,以及使用什么類型或風格的兵棋。在最壞的情況下,我們可能會有有限數量的利益者提出新的部隊結構,然后讓同樣的利益者通過基于場景的討論來驗證他們自己的想法是否良好。如果被評估的是利益者所珍視的想法,這就特別容易出問題。

聯合需求監督委員會(JROC)是一個很好的例子,該機構以健全的決策結構處理地盤戰(參謀長聯席會議主席[CJCS],2018)。美國軍方將思想的發明者與審查其有用性的權力進行分開,這完全符合孟德斯鳩的分權原則。在挪威進行國防規劃和兵棋推演的方式,在許多情況下,人們會發現行為者既產生了對未來部隊結構的想法,又通過參與基于場景的討論來評估相同的結構。基于場景的討論如果不包括專門的紅方小組,就不是兵棋推演。引入 "紅方小組 "成員,以及對方的自由和無阻礙的規劃,消除了一些濫用權力的可能性。沒有對提議的部隊結構進行適當兵棋推演的一個特殊結果是,建議采用次優化的部隊結構來打擊固定的假設敵方作戰行動。由于沒有對這種部隊結構進行適當的推演,結構改革的支持者成功地擊敗了他們喜歡的敵人COA,但卻沒有挑戰他們自己的想法。

3.2 準備階段

準備階段包括在兵棋推演執行階段開始前需要做的一切。最重要的準備工作是:

  • 建立對兵棋推演實驗目標的共同理解。

  • 確定總體方案,包括外部條件、假設和限制。

  • 選擇一個或多個仿真系統,并對仿真模型進行校準。

  • 確定藍方(友軍)和紅方(敵軍)的作戰順序(OOB)。

3.3 規劃和執行階段

規劃和執行階段包括兩個獨立的活動:(1)雙方的聯合行動規劃過程,以及(2)仿真支持的兵棋推演。

3.3.1 聯合行動規劃過程

在這項活動中,由軍事主題專家(SME)和軍官組成的藍方和紅方小組,根據總體方案和受控的情報信息流,分別制定他們的初步行動計劃。根據偏好,這些計劃不是整體方案的一部分,雙方都可以自由制定自己的計劃。這也意味著,對立雙方制定的計劃對另一方來說仍然是未知的。

原則上,聯合行動規劃過程可以按照與現實中基本相同的方式進行,不做任何簡化。這是一項應該與仿真支持的兵棋推演一樣優先考慮的活動,在人員配置方面也是如此。

在規劃過程中,參與者必須討論不同的選擇,并根據所感知的對方部隊結構的優勢和劣勢來制定一個COA。觀察雙方的規劃過程并揭示決定COA的根本原因,可以提供有關部隊結構的寶貴信息,而這些信息在執行兵棋推演本身時可能無法觀察到威懾效果。

3.3.2 仿真支持的兵棋

兵棋推演本身是作為仿真支持的兩方(藍方和紅方)兵棋推演進行的,其中行動是在一個具有SAF的建設性仿真系統中仿真的。在博弈論中,這種類型的兵棋推演可以被歸類為非合作性的、不對稱的、不完全信息的連續博弈。

兵棋的參與者是兩組對立的玩家和一個公斷人或裁決人的小組。重要的是要記住,一個兵棋的好壞取決于它的玩家。玩家是軍事主題專家和軍官。要想有一個平衡的兵棋,關鍵是不要忽視紅色單元。如果做得好,這種類型的兵棋,由適應性強且思維不受限制的對手主導,往往會變得高度動態、對抗性和競爭性。

對于分析性兵棋推演來說,現實的仿真對于加強結果的有效性和可信度非常重要。軍事行動,尤其是陸軍行動,本質上是復雜的,對這種行動的仿真,要有足夠的真實性,是非常具有挑戰性的(Evensen & Bentsen, 2016)。此外,仿真系統可能包含錯誤,人類操作員可能會犯一些在現實生活中不會犯的錯誤。因此,重要的是要有經驗豐富的裁判員來監控仿真,并在必要時對結果進行適當的人工調整。

在某種程度上,在仿真支持的兵棋中,元游戲也會發揮作用。曾經有這樣的例子,利益者將有能力的官員從兵棋推演中撤出,只是用不太熟練的人員取代他們,很可能是為了降低利益者不希望成功的兵棋可信度。其他的例子是公斷人與參觀兵棋的更高等級利益者的干預作斗爭。歷史上有很多類似的例子(Perla,1990),挪威也不例外(Evensen等人,2019)。這里所描述的清晰的方法,意在抵制以往兵棋推演實驗的一些缺陷。

3.4 分析階段

除了從仿真支持的兵棋本身的執行中收集的觀察和數據外,分析還基于規劃過程中的觀察和數據。

在規劃過程中,密切監測和記錄討論情況是很重要的。由于國防軍的主要目的--至少在挪威是這樣--是為了防止戰爭,因此在規劃過程中的考慮可能是整個兵棋中最重要的結果。只有當敵人在兵棋開始前考慮到這些因素時,才能觀察到部隊結構和態勢的預防特性。在規劃階段,通常會考慮幾個備選的作戰行動和機動性。其中許多被放棄,有些被保留,原因各異,必須記錄下來。為什么紅方決定某個行動方案不可行,可能是由于某些結構要素或來自藍方的預期策略。如果紅方由于藍方的OOB要素而不得不放棄一個計劃,那么這些要素已經證明了對藍方的價值--即使這些要素在接下來的仿真行動中最終沒有對紅方部隊造成任何直接傷害。

在仿真支持的兵棋中可能會記錄大量的數據。很容易把各種結構元素的損失交換率等數據看得很重。在實際的兵棋推演中,也許更應該注意的是雙方指揮官的決定。如果其中一方出現了機會,這是為什么?該方是如何利用這樣的機會的?是否有什么方法可以讓他們考慮利用這個機會,但不知為何卻無法利用或執行?如果有,為什么?為了收集這樣的信息,指揮官們公開討論他們的選擇是很重要的。重要的不僅僅是告知積極選擇的原因;往往可能同樣重要的是為什么沒有做出其他選擇。

確定部隊結構的主要優勢和劣勢及其利用是分析階段的一個重要部分。考察雙方在規劃階段和推演階段的考慮,是做到這一點的最好方法。這不是一門精確的科學,因為這種數據具有定性的性質。通過觀察參與者的考慮和決策,比單純看哪些武器系統摧毀了哪些敵人的系統,可以更好地確定使用某種COA的關鍵因素,或者是允許敵人有更好選擇的缺失能力。分析階段的結果是對測試的部隊結構進行評估。

分析階段也可能會在商定的兵棋推演方法范圍之外發生爭吵。甚至在事件發生后的報告撰寫中也可能受到影響,當角色沒有被很好地分開,利益者被允許過度地影響這個過程時。

4 兵棋的輸出數據和結果

一般來說,我們努力從兵棋推演環節中獲取盡可能多的數據。根據用于支持兵棋推演的仿真系統,可以記錄各種輸出數據。例如,通常可以記錄各個單位移動了多遠,他們使用了多少彈藥和燃料,以及其他后勤數據。通常,殺傷力矩陣--基本上是顯示一方的哪些單位殺死了另一方的哪些單位的矩陣--也會被記錄。其他許多定量數據也可以被記錄下來。除此以外,還有定性的數據。如前所述,這包括對規劃過程的觀察,以及與參與規劃過程的參與者的討論。此外,它還包括對兵棋推演期間所做決策的觀察,以及在兵棋推演期間或之后與玩家的討論。

人們往往傾向于把大量的注意力放在定量數據上,如殺傷力矩陣,而對定性數據的關注可能較少。定量數據更容易分析,而且通常被認為比定性數據(如隊員的決策和考慮)更客觀。但重要的是要記住,定量數據取決于雙方玩家的決策,以及對模型的輸入數據。玩家認為各種單位應該如何運用,對殺傷力矩陣有相當大的影響。因此,盡管這些數據是定量的,但它們并不比定性數據更客觀。

諸如殺傷力矩陣這樣的數據也忽略了重要的信息。雖然人們可以看到哪些部隊殺死了哪些敵方部隊,但卻失去了原因;其他部隊雖然沒有直接摧毀敵方部隊,但卻可能在為其他部隊創造有效條件方面起到了關鍵作用。雖然某些部隊可能只消滅了很少的敵人,但他們在戰場上的存在可能對阻止敵人進行某些行動至關重要。例如,雖然近距離防空可能不直接負責消滅敵人的直升機,但它可能阻止了敵人像其他情況下那樣積極地使用直升機。因此,在分析一個兵棋時,對于只看殺傷力矩陣這樣的量化數據應該謹慎。必須考慮到整體情況。

理想情況下,在比較不同的部隊結構時,應該對每個部隊結構進行幾次推演,并允許敵人在每次戰役中改變其行為。自己的部隊應該找到在特定情況下使用其結構的 "最佳 "方式,而敵人應該找到反擊這一策略的 "最佳 "方式。只有這樣,人們才能真正比較不同部隊結構的兵棋推演結果,并得出哪種部隊結構最適合給定場景的結論。然后,當然,確實有廣泛的潛在場景需要考慮。因此,雖然這也許是應該進行兵力結構比較的方式,但在這方面,時間和資源通常對大量的兵棋推演是不夠的。

所有模型都有局限性。它們可能是為某一特定目的而設計的,并適合于此,但不太適合于其他事情。在考慮哪些問題可以通過兵棋推演來回答,哪些問題應該用其他工具來調查時,必須記住這一點。從兵棋推演中到底可以推導出什么,將取決于所使用的模型--但一般來說,應該把重點放在實驗所要回答的那些問題上。如果在實驗中出現了其他的結果,就應該對其有效性進行檢查,而且這些結果往往需要在專門為調查這些新出現的問題而設計的實驗中進行評估。

兵棋推演是比較兩個(或更多)部隊結構在特定情況下的表現的一個重要工具。然而,兵棋推演并不能對任何給定的部隊結構的有效性給出任何精確的衡量,但適合于確定主要的優勢和劣勢。與具體單位有關的參數的效果,如它們的火力和裝甲,應在單獨的研究中進一步考察。這些因素雖然很重要,但它們的層次太細,無法通過我們這里討論的兵棋類型來研究它們對結果的影響。彼得-佩拉強調,"兵棋只是研究和學習國防問題所需的工具之一"(佩拉,1990,第11頁)。其他工具應被用來補充兵棋和研究這些因素的重要性。

兵棋推演通常是實質性的活動,涉及大量的人,并需要大量的時間。因此,我們通常被限制在有限的數量上--通常對于我們所分析的每個部隊結構只有一個。重要的是要記住,一個單一的兵棋推演的結果只是:特定情況下的一個可能的結果。雙方玩家可以采取不同的做法,事件的發展也可能不同。細微的變化可能會影響到對整體結果至關重要事件的結果。

5 仿真支持兵棋的最佳實踐

在本節中,我們將列出我們發現的進行仿真支持的分析性兵棋的最佳做法,以評估部隊結構。我們發現的一些最佳實踐與處理元游戲的需要有關,或者與兵棋的沖突有關。這些最佳實踐的用處可能僅限于其他尚未將發明權與測試部隊結構的權力分開的小國。其他的最佳實踐來自于提供仿真支持和取代基于場景的討論以發展防御結構的需要。

5.1 確定明確的目標

在準備階段,必須盡早明確兵棋推演實驗的目的,這將是實驗設計的基礎。

5.2 使用為兵棋推演定制的仿真系統

擁有一個帶有SAF的交互式仿真系統,對玩家來說易于操作,并且需要相對較少的操作人員,這就減少了進行仿真支持的兵棋推演所需的資源,從而也降低了門檻。

5.3 組建一個好的紅方小組

一個好的紅方小組是發現自己的部隊結構、計劃和程序中弱點的關鍵。紅色小組的成員也應該對預期對手的理論有很好的了解。我們觀察到,一個好的紅色小組能迅速地阻止我們自己的規劃人員對可能的敵人行動進行集體思考的傾向。

5.4 允許對方部隊適應

自己部隊結構的變化也必須允許對方部隊結構的變化。部隊結構的改變是一個緩慢的過程,肯定會被預期的對手觀察到。

5.5 復制規劃過程

盡可能地復制現實生活中的規劃過程。

5.6 觀察規劃過程

觀察規劃過程,以便更全面地了解部隊結構的優勢和劣勢。為了記錄藍軍部隊結構的威懾效果,觀察對方部隊的規劃過程尤為重要。據觀察,自己的部隊結構中的幾個要素對對方部隊的行動有威懾作用,存在和姿態也是如此。此外,我們還觀察到,社會、地形和氣候也會影響對方部隊的規劃。

5.7 提供空間和時間

在部隊相互靠近的情況下開始一場兵棋推演,可能會使它變成一場簡單的消耗戰。發展良好的兵棋推演,在提供了空間和時間的情況下,就像武術比賽中的對手互相周旋,評估對方的弱點,并尋找攻擊的機會。評估避免遭遇的能力可能與評估戰斗的能力一樣重要。

5.8 允許不確定性

建立對正在發生的事情的了解需要時間,是領導軍事行動的一個自然組成部分。只有當不確定性得到適當體現時,部隊結構中某些要素的真正價值才會顯現。例如,存在的力量的影響可能是巨大的。當戰術形勢不是所有人都能看到的,而且戰斗的結果被認為是非決定性的,以至于現實是隨機的,那么不確定性就得到了最好的體現

5.9 演習 VS. 實驗

讓參與者為兵棋推演的目的做好準備。當使用指揮和參謀訓練器作為支持兵棋推演的仿真系統時,一些參與者傾向于按照程序行事,就好像這是一場演習。如果兵棋推演的目的是探索新的部隊結構要素、作戰行動或戰術、技術和程序(TTPs),則需要鼓勵參與者在執行任務時發揮創造性。

5.10 讓不參與兵棋推演的高級官員遠離戰場

讓與兵棋推演無關的人員遠離它,特別是高級軍官,是很重要的。在人在回路(HITL)仿真中,人類玩家是整個仿真的一部分,來訪的高級軍官(或其他人)將對人類玩家的互動方式和他們如何進行規劃產生影響。限制來訪人員也減少了外部影響結果的機會(Hoppe, 2017)。

6 摘要和結論

十多年來,FFI支持挪威陸軍為能力規劃開發仿真支持的兵棋。本文介紹了我們進行仿真支持的兵棋推演的方法,并提供了一套進行仿真支持的兵棋推演的最佳實踐。該方法和最佳實踐特別針對分析性兵棋以支持能力規劃。

該方法由準備階段、規劃和執行階段以及分析階段組成。在過去的10年中,該方法通過使用更詳細和更現實的仿真模型,以及在仿真行動前復制和監測規劃過程,以更深入地了解測試的部隊結構的威懾效果,而逐漸發展起來。

我們進行仿真支持的兵棋推演的最佳做法包括:為兵棋推演實驗確定一個明確的目標,使用一個便于玩家操作的仿真系統,擁有一個良好的紅方小組,不受太多限制,提供空間和時間,使戰爭不會立即開始,并提供一個不確定性和信息收集的現實表現。最后,為了更全面地了解一個部隊結構的優勢和劣勢,分析小組必須同時觀察規劃過程和兵棋推演本身。

將擁有發明部隊結構變化的權力角色和擁有測試、評估和接受這種變化的權力角色正式分開,將解決我們在國防規劃中看到的許多問題。我們已經發現,組織兵棋推演活動的過程可以被看作是一個元游戲。當用建模、仿真和分析來支持兵棋推演時,元游戲被看作是發生在各個層面的東西,其中一些我們可能沒有任何影響力。希望這篇文章能有助于提高對這些挑戰的認識,并能對我們能影響的那部分元游戲提供一些調整。

付費5元查看完整內容

摘要

一系列因素(射程空間減少、空域限制、武器系統可用性、缺乏目標模擬能力、敵對能力監測)正在推動北約向分布式合成訓練過渡。為了幫助實現這一轉變,北約科技組織(STO)成立了MSG-165任務組,負責為聯合和聯盟空中行動通過分布式仿真(MTDS)執行任務訓練。

MTDS能力的發展并不局限于MSG-165的工作;事實上,它是北約的智能防御計劃之一,由美國贊助,因此在各個層面都有很好的知名度,但仍然未能取得必要的進展。雖然仍有一些挑戰,但該小組迄今為止所開展的工作已經為北約現有的其他合成訓練問題提供了解決方案。這些都體現在文件中,包括:

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 建立MTDS能力驗證演習,稱為 "斯巴達勇士20-9"(SW 20-9)。SW20-9是對以前“斯巴達勇士”方案的修改,是一個由美國空軍-非洲作戰中心(UAWC)協調的多邊參與機會,通過北約機密級別的聯合戰斗實驗室(CFBL)網絡為聯盟伙伴提供持續的連接,進行日常的、以聯盟為中心的、由單位領導的訓練。

  • 制定MSG-165關于如何利用MTDS來支持北約空中作戰訓練的設想。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

本文將強調在建立一個共同的北約聯合MTDS環境方面所取得的成就。

關于作者

Arjan Lemmers是英國皇家海軍陸戰隊的高級項目經理。他是北約MSG-165任務組MTDS的聯合主席,在國際分布式任務訓練計劃方面有長期經驗。Arjan也是機載嵌入式訓練系統和LVC互操作性方面的專家。Arjan領導著這個領域的幾個研發項目,并且是幾個國際社區中這些主題的主要參與者。

Clark Swindell是美國空軍作戰中心(UAWC)的建模和仿真主管。他在通過聯合模擬提供分布式訓練方面有豐富的經驗,是NMSG-165的美國國家負責人。克拉克的經驗主要集中在大規模演習,使用聯合模擬,如JLVC,JLCCTC和BLCSE,這些都是使用分布式仿真和玩家的位置,以及整合LVC互操作性和合成環境。

Richard Hemmings是亨廷頓-英格爾斯工業公司(HII)的承包商,是美國空軍作戰中心(UAWC)的LVC集成和開發負責人。最初,他在UAWC作為操作主題專家(SME)和多國LVC演習的項目官員工作,后來他被調到 "未來計劃 "工作,負責整合和開發。作為專家加入北約MSG-165任務組,理查德幫助領導UAWC的工作,主持驗證演習。

1 引言

北約和各國都需要進行聯合的集體訓練,以確保任務準備就緒。一系列的因素(射程空間的減少、空域的限制、武器系統的可用性、目標模擬能力的缺乏、敵對能力的監測)促使北約向分布式合成訓練過渡。為了幫助實現這一轉變,北約科技組織(STO)成立了MSG-165任務組,負責為聯合和聯盟空中行動通過分布式仿真(MTDS)執行任務訓練的增量實施。

本文將強調在建立一個共同的北約聯合MTDS環境方面取得的成就。它首先解釋了北約MTDS能力的背景,以及之前為實現這一能力所做的努力。然后,它提出了訓練目標,并描述了實現這一即將到來的重要訓練能力的步驟。隨后是MTDS原則的定義,為多個利益相關者的觀點提供要求和標準。這促成了MTDS參考架構,它提供了一個符合上述架構原則的通用和可重復使用的描述。在下一部分中,考慮了為聯盟集體訓練部署MTDS跨域安全解決方案時應考慮的安全問題。本文最后對斯巴達勇士20-9演習進行了展望,該演習被用作北約MTDS能力的驗證演習。

2 北約MTDS研究的背景

合成能力已經成為滿足北約軍事力量作戰訓練需求的一個重要工具。新的系統和平臺正變得越來越復雜,需要更多的準備時間來使用。技術能力的提高和成本的降低,再加上環境限制的增加和對實戰活動的敵對(電子)監控能力的提高,使得合成訓練的使用更具吸引力。因此,通過分布式仿真任務訓練(MTDS)實現的集體訓練(CT)對北約和成員國的準備工作變得越來越重要。許多成員國正朝著更多地使用先進的模擬進行任務訓練和采用國家MTDS能力的方向發展,但北約目前還沒有一個集體的MTDS能力來利用這些發展進行聯盟CT。

過去,北約在這一領域采取了一些舉措,從2000年開始進行了關于MTDS的SAS-013研究(NATO RTO SAS-013, 2004)。這項研究確定了參與國的空勤人員任務訓練的做法和局限性,并確定了先進的分布式仿真是否能加強北約飛行員和空勤人員的訓練。它提出了未來的方向,將促進北約空勤人員培訓和任務演練的分布式仿真能力的發展。這在2004年的培訓示范演習First WAVE中得到了推進,即 "虛擬環境中的第一個作戰人員聯盟"(NATO RTO SAS-034,(2007)。第一次波浪演習沒有遇到不可克服的技術障礙,并證實MTDS可以提供一個重要的新能力來滿足北約的任務培訓需求。MTDS工作組建議,北約和聯合國應認可MTDS的潛力,并共同努力將MTDS推進到作戰能力。第一波倡議的后續是北約SMART(2007年)、北約現場、虛擬、建設性(LVC)(2010年)項目,以及2011-2012年北約工業咨詢小組(NIAG)關于空中聯合任務訓練的分布式仿真研究小組(NIAG SG 162,2012)。這些研究為北約MTDS行動概念(CONOPS)的發展提供了越來越清晰的思路。然而,沒有一項研究提供了持久的MTDS能力,目的是支持作戰人員為未來行動實現任務準備。鑒于演習預算的減少,可用于實戰演習的資產的減少,以及現實模擬復雜威脅環境的難度的增加,北約缺少一種具有成本效益的手段來提高未來聯合作戰的集體行動準備能力。

北約建模與仿真小組(NMSG)的任務是 "開發和利用建模與仿真(M&S),使聯盟及其合作伙伴受益"。上述考慮是NMSG在2013年啟動MSG-128任務組 "通過分布式作戰逐步實施北約任務訓練"(NATO STO MSG-128, 2018)的動機。MSG-128研究已經驗證了連接異構作戰訓練模擬器的技術可行性,以便為多國空中任務演習提供真正的訓練價值。它已經起草了MTDS參考架構,為多國訓練演習提供了一個初步的基線,即使在促進MTDS演習就業方面仍有許多差距。多國MTDS演習的成熟將是一個漫長的過程。MSG-128小組建議,為達到這一成熟度,有以下幾個努力的軸心(Lemmers和Faye等人,2017):

  1. 在小型/中型演習的操作成熟度方面取得進展,為上述確定的差距提供技術解決方案。

  2. 繼續在作戰演習環境中驗證這些解決方案,并將這些解決方案整合到MTDS最佳實踐文件中。

  3. 將MTDS演習的可擴展性擴展到大型和聯合演習,包括空軍、海軍和陸軍之間的空域互操作性,以及包括聯合情報、監視和偵察(JISR)。這一行動將是LVC發展和MTDS在多國聯盟演習中使用的一個助推器。

MSG-128在2018年被后續任務組MSG-165 "通過分布式仿真為聯合和聯盟空中行動逐步實施任務訓練 "所接替,該任務組將持續到2021年初。其目標是為北約持久的MTDS環境建立基本要素,并通過初步的操作測試和評估來驗證這些要素。MTDS能力的發展并不局限于MSG-165的工作;事實上,它是北約的智能防御計劃之一,由美國贊助,因此在各個層面都有很好的可見度,但可悲的是仍然未能取得必要的進展。雖然仍有一些挑戰,但該小組迄今為止所開展的工作已經為北約現有的其他合成訓練問題提供了解決方案。這些都體現在文件中,包括

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 建立空中MTDS能力驗證演習,稱為 "斯巴達勇士20-9"(SW 20-9)。SW20-9是由美國空軍非洲作戰中心(UAWC)協調的一個多邊參與機會,為聯盟伙伴提供北約機密級別的聯合戰斗實驗室(CFBL)網絡的持續連接,以進行日常的、以聯盟為重點的、單位領導的訓練。

  • 制定MSG-165關于如何利用MTDS來支持北約空中作戰訓練的設想。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

3 共同的空中訓練目標

為了提供最大的價值和效率,北約MTDS必須關注現有訓練安排中沒有涉及的領域。因此,它不尋求復制通過現有國家或北約活動提供的訓練,而是提供額外的聯盟合成訓練能力。北約有能力提供作戰航空部門指揮能力的合成集體訓練(CT)。然而,它還沒有能力對空中指揮部(ACC)以下的戰術能力進行綜合訓練。在合成提供 "從輪子到輪子 "的空中活動方面的這一差距,是北約MTDS提供訓練的主要重點。然而,為了實現端到端的合成訓練,任何未來的系統都應該能夠連接到現有的北約合成訓練能力,特別是支持(NATO STO MSG-165, 2019):

  • 合成傳播和執行空軍司令部(ACC)訓練衍生的空中任務指令(ATO)、空域控制指令(ACO)和特別指令(SPINS)。

  • ACC執行階段的訓練,將合成訓練的任務與ACC戰術人員聯系起來,支持其動態訓練。

空中訓練的要求可以分成三個日益復雜和具有挑戰性的層次,如圖1所示,并在下文中描述:

  • 第1級:個人能力,涵蓋人員的個人訓練和貨幣,安全地發揮作用。

  • 第2級:戰術團隊訓練,訓練分隊的 "基石",為個人和隊員的作戰戰術和程序做準備。

  • 第3級:戰術集體訓練,為復雜的空中行動提供訓練,需要多種空中能力和單位來完成一個行動任務。

在這三個級別中,1級和2級培訓將仍然是國家的責任。然而,3級戰術集體訓練是北約MTDS的關鍵多國要求;這源于許多國家難以實現這一級別的現實訓練所需的密度和能力范圍。盡管如此,在北約MTDS剩余能力允許的情況下,作為次要的優先事項,MTDS將用于2級訓練,作為提高這種訓練的真實性和復雜性的一種手段。

圖1:空中訓練的級別

為確保任何未來的MTDS能力能夠滿足必要的作戰訓練和演練要求,必須確定MTDS將提供的作戰訓練類型。因此,通過與MSG-165行動小組代表協商,制定了北約聯盟反恐目標(CCTO)(NATO STO MSG-165,2019)。這項工作提供了50個CCTVO。這些CCTVO被分組,以提供MTDS解決方案必須能夠支持的廣泛任務集,并幫助未來的培訓設計。以下任務集被確定。攻擊、進攻性反空、防御性反空、空中C2、空中機動性、空中情報監視和偵察、戰斗支援、空地一體化和空海一體化。

在第1級和第2級活動中的個人和構件訓練中,重點是確保機組人員能夠在駕駛艙內采取必要的行動來有效地打擊他們的平臺。然而,在第三級培訓中,雖然正確的機組人員行動仍然很重要,但概念上的重點卻發生了微妙的變化。第三級培訓必須提供培訓機會,以確保在通常大型和復雜的編隊中,控制人員和機組人員之間發生正確、及時的C2互動,如圖2所示。

圖2:將在CT環境中復制的操作互動

與1級和2級培訓相比,3級培訓的重點發生了微妙的變化,允許更加關注合成培訓的交付。因此,雖然大型實戰演習仍然是實現訓練真實性、建立信心和戰略信息的重要手段,但北約空中訓練的更大比例可以在合成環境中常規實施。這一假設已經在MSG-165行動小組中進行了討論和測試,主要的結論是,對于3級多國訓練,對于任務集,超過50%的訓練可以以合成方式進行。

4 參考架構

北約MTDS能力旨在將國家或北約的模擬資產整合到一個分布式的合成集體訓練環境中,這些資產通過一個共同的模擬基礎設施連接。仿真資產一般通過網關或門戶連接到該基礎設施。合成訓練環境的一致性也是參與集體合成訓練和演習的模擬資產的互操作性的關鍵。含有合成環境數據的數據庫的制作可能是整個M&S成本的重要組成部分,這意味著應該促進重復使用。仿真資產提供者通常使用相同的高級流程來生成他們的環境數據產品,但詳細的數據生成流程因生產商或集成商的不同而略有不同。這些差異使數據重用變得復雜,并危及目標應用的最終互操作性。

為了實現MTDS的合成集體訓練環境,能夠快速響應新的訓練需求,需要為訓練環境的開發和工程制定共同的流程和技術協議。由于技術協議通常是在每次演習中制定的,因此仍然缺少一個具有相關工程流程和技術協議的共同認可的模擬基礎設施。這就是MTDS參考架構(RA)發揮作用的地方(van den Berg, Huiskamp, et al., 2019)。該參考架構以構件、互操作性標準和模式的形式概述了MTDS的要求,用于實現和執行由分布式仿真支持的合成集體訓練和演習,與應用領域(陸地、空中、海上)無關。MTDS RA的重點是合成集體訓練和演習,因此將包括具有MTDS特定功能和接口的構件和模式。由于RA是在北約范圍內開發的,它也將利用北約的模擬互操作性標準。

用于特定訓練或演習活動(如 "斯巴達勇士 "演習系列)的模擬環境架構被稱為解決方案架構。由于MTDS的RA為合成集體訓練環境提供了一個 "模板解決方案",因此解決方案架構中使用的許多元素的要求原則上應來自RA。但是,可能還需要進行一些改進,以滿足特定事件的要求。這可能包括選擇仿真協議和特定的中間件解決方案(DIS、HLA)、網關組件、跨域解決方案、數據記錄工具,以及代表合成物理環境(SPE)的協議和格式。參考數據交換模型是通過RA提供的,但解決方案架構仍然需要就這些參考數據交換模型中的哪些具體部分將在具體事件中使用達成協議。

通常情況下,各套原則形成一個層次結構,即架構原則將被企業原則所告知、闡述和約束。架構原則定義了使用和部署資源和資產的基本一般規則和準則。它們反映了企業各要素之間的某種程度的共識,并形成了做出未來決策的基礎。在MSG-165中,為MTDS定義了10個主要的架構原則。下面將討論這些原則。

1.支持北約行動的合成集體訓練和任務演練 MTDS工作的主要預期應用是在北約范圍內的合成集體訓練。應為單一服務和聯合行動開發一個共同的技術和程序解決方案。就技術要求而言,任務演練被認為與任務訓練密切相關。

2.啟用(混合的)現場、虛擬和建設性資產 MTDS應(在未來)支持(混合的)現場、虛擬和建設性的模擬玩家。聯合行動和聯合行動的集體訓練需要有許多模擬實體的復雜訓練場景。訓練對象通常會在實戰、虛擬和混合的LVC環境下進行訓練。解決方案應支持LVC的混合集成。

3.提供靈活性和發展能力 許多國家已經使用模擬系統進行訓練。然而,這些現有的系統在技術上往往是非常不同的。MTDS RA應定義一個框架,該框架在技術上是先進的,沒有限制性(例如,可擴展新的模擬資產),并且不會不必要地阻礙訓練(例如,帶寬,穩健性)。應定義門戶或網關,以允許在MTDS中整合遺留系統,并允許MTDS所需的靈活性。

4.使用開放標準 北約提倡使用開放標準,因為它促進了成本效益的互操作性。開放標準可以被所有各方自由使用。對私人方(如供應商)的使用沒有任何限制。

5.遵守北約政策和標準 MTDS應遵守北約關于M&S互操作性和標準的政策和協議。偏離這一原則需要說明理由,包括對合適的北約標準的評估和與替代解決方案的比較。

6.支持在北約保密級別或最高級別使用 MTDS應支持北約行動的合成訓練和任務演練。系統、理論和任務執行的保密方面需要得到保護。應就系統、網絡、場地和能夠接觸上述內容的人員的實施和認證達成協議。

7.在一次演習中支持多個安全域或飛地 應就屬于不同飛地的系統、網絡、場地和人員之間的信息交流的實施和認證達成協議,可能通過使用CDS解決方案。每個國家和北約之間的CDS解決方案的認證將由每個國家承擔。

8.提供有代表性的訓練環境 MTDS應提供一個有代表性的集體訓練環境,以支持演習中所有參與者的公平競爭(或公平戰斗)。仿真系統性能的差異不應導致某些參與者獲得不現實的(不)優勢。

9.解決多個利益相關者的觀點 MTDS使用RA來提供對特定MTDS解決方案設計的通用和可重復使用的描述。RA是以架構構件的形式來描述的,對這些構件的解決方案有要求和適用標準。為了實施MTDS,將涉及不同的利益相關者。這些構件應該為不同利益相關者的觀點提供指導。

10.通過聯網模擬器為北約和國家的集體培訓提供具有成本效益的培訓解決方案,不得對用戶以及各中心及其工作人員施加不可接受的限制,因為這些限制不值得花費時間,也不能被行動上的好處所抵消。

MTDS原則為多個利益相關者的觀點提供了要求和標準。MTDS RA提供了一個符合上述架構原則的通用和可重復使用的描述。它使用了架構積木(ABB)和架構模式(AP)的概念來定義應用和服務的框架,使國家訓練系統能夠被整合到一個分布式的合成集體訓練環境中。圖3提供了該框架中主要ABB的概述。

圖3:MTDS框架的應用和服務

圖3中的應用是面向用戶的能力,與稱為服務的后端能力互動。例如,圖中顯示--在解決方案層面--將有一個或幾個用于場景準備的應用程序;這些軟件組件與后端服務實現(如威脅生成服務)互動,向這些服務提供模擬場景數據。框架應用和服務的一個子集(門戶服務、面向消息的中間件服務、威脅和跟蹤生成服務以及合成自然環境(SNE)服務)在(van den Berg, Huiskamp, et al., 2019)中有更詳細的討論。

5 跨域安全

北約國家有必要在北約MTDS演習中整合和操作其國家或主權機密模擬資產,以實現其共同的空中集體訓練目標。同時,北約國家希望保護這些最敏感或最機密的資產、其基礎數據和信息,防止因加入這種北約MTDS演習而受到(網絡)安全威脅。在不同國家敏感度、信任度或安全分類級別的模擬資產之間實現安全連接和互操作性,對于成功實施北約MTDS能力和演習至關重要。

M&S跨域安全(CDS)服務旨在滿足這一要求,使北約國家能夠通過共同共享的北約MTDS模擬主干,對位于其國家安全領域的模擬資產進行安全互操作。在這種情況下,安全域被定義為在一致的安全政策下運行的模擬資產,并由一個組織、國家和/或安全認證機構(SAA)擁有。安全政策定義了關鍵要素,如安全分類、可釋放性、利益共同體和任何其他對模擬資產中包含和處理的實際軍事系統和理論的數據和信息的特殊處理注意事項。

在這里,M&S CDS被定義為一個由安全強化服務組成的系統,該服務是為減輕在不同安全領域運行的模擬資產之間傳輸模擬數據的特定安全風險而定制的。這樣的M&S CDS可以被看作是一種網關環境的形式。與普遍應用的M&S(網絡)網關不同,M&S CDS提供了廣泛的安全控制,以提供全面的模擬數據過濾和深度防御,具有更高的保障水平。M&S CDS服務是保護整個北約MTDS基礎設施及其組成的模擬資產免受所有形式的安全威脅所需的整個安全措施的一個專門部分。除其他外,這包括:模擬資產和設施的物理和網絡邊界保護裝置,模擬資產或設施與網絡連接的物理安全,模擬資產和監測之間的加密通信保護,人員安全許可和意識培訓。這些常見的安全措施對于MTDS演習的安全執行也應到位。

理論上,可以設想許多通用的應用拓撲結構,其中部署M&S CDS解決方案,以確保在多個安全域之間進行受控和安全的模擬數據交換。然而,在實踐中,這種拓撲結構的實施必須符合具體的使用案例和威脅環境所施加的跨域安全要求和限制。這意味著分布式仿真環境的跨域安全不僅僅是孤立地關注M&S CDS設備(如數據節點、防護裝置或信息交換網關)。只有當每個連接的安全域內的模擬資產和網段滿足某些可信的安全政策、實踐和要求,并且其相關的安全風險被充分理解和接受時,才能保證整個分布式仿真環境的適當安全水平(反之亦然)。因此,在北約MTDS用戶背景和威脅環境下,在為聯盟集體訓練部署M&S CDS解決方案時,應考慮以下安全因素。

1.最重要的是,每個北約國家需要保持對其國家擁有的模擬數據和信息的完全控制,以及在MTDS訓練演習之前、期間和之后如何共享這些數據和信息。這意味著每個國家將始終通過本國擁有的CDS設備將其機密模擬資產與北約MTDS模擬主干連接起來,這些設備受本國的SAA和安全政策的約束。

2.所有將參加北約MTDS演習的北約國家都使用私營軍事網絡北約聯盟戰斗實驗室網絡(CFBLNet)作為共同的網絡基礎設施,以連接他們的機密模擬資產和其他相關的培訓應用,直至北約機密級別。這意味著參與的北約國家有一個共同的協議,在每個國家對這些資產或應用的安全等級執行方面相互信任,在此基礎上,他們可以通過這個網絡連接、共享數據和信息。因此,目前,從這個北約CFBL網絡到較低信任安全域的級聯連接對任何北約國家來說都是非常不可取的,甚至是不可接受的。

3.北約MTDS將部署符合北約STANAG和標準的仿真互操作性中間件服務(如HLA、DIS和TENA),以便在一個統一的分布式仿真環境中對國家仿真資產進行互操作,用于集體任務訓練和演習。目前,這些中間件標準通過一個共同的共享數據空間和模擬信息交換數據模型來交換模擬數據,而這并不提供任何安全措施。這意味著,任何國家只要能進入北約CFBL網絡,并被允許用正確的加密密鑰加入特定的MTDS演習,也可以直接訪問參與模擬資產之間交換的所有模擬數據。因此,這個集體模擬數據集是MTDS演習中所有參與國(即安全領域)的 "共享秘密"。

4.M&S CDS部署拓撲結構過于復雜,將使每個國家安全領域內的機密模擬資產的安全保障和操作復雜化,并可能增加攻擊面、轉換數據流渠道的風險以及與較低信任環境的級聯連接。這意味著過于復雜的部署拓撲結構可能會在整個MTDS演習準備、執行和匯報階段給北約國家帶來額外的成本和準備時間。因此,CDS的部署拓撲結構應該在滿足國家安全和培訓要求的前提下,設計得盡可能的簡單。

圖4描述了在北約MTDS演習中部署M&S CDS的參考拓撲,該拓撲是根據前面提到的安全考慮因素確定的(Roza,等人,2020)。

圖4:北約MTDS CDS部署的參考拓撲結構

該參考拓撲結構反映了這樣一種典型情況:參與北約聯盟級分布式仿真環境的仿真資產由不同的國家擁有,因此屬于受不同SAA管轄的安全領域。為了確保每個國家完全控制其國家擁有的機密模擬數據,以及如何與其他國家共享這些數據,每個國家通常應使用自己的CDS設備。在這里,每個國家的CDS首先將自己的主權機密模擬數據集轉換并映射成可釋放的數據集,然后根據商定的集體模擬信息交換模式將其發布到集體共享的模擬數據集中。這種共享數據受到共同商定的安全措施的集體保護,如數據加密,以確保通過第三方網絡基礎設施進行保密信息交流,并對每個國家的參與模擬設施采取安全措施,以獲得加入北約MTDS聯盟級演習的權限。反之,國家擁有的CDS設備可以保護單個或聯合的國家機密模擬資產免受來自北約CFBL網絡的網絡攻擊,包括因訂閱共享數據空間的數據而導致的未經授權的模擬數據入侵。

6 MTDS驗證演習

從UAWC的演習選項中選擇,"斯巴達勇士 "活動是通過分布式仿真進行的多國、以空中為重點的訓練。這次演習將在北約的CFBL網絡上進行,在四天的時間里使用每個國家的模擬或仿真器通過DIS和HLA進行連接。UAWC模擬/環境生成器將提供整體的合成環境、安全語音、聊天功能和紅色部隊來填充該領域。

為了建立支持大規模演習所需的行動區域,UAWC雇用了其他模擬中心的專家,包括空戰訓練中心(英國皇家空軍瓦丁頓空軍基地)、北約預警系統ASCOT控制員(北約蓋倫基興航空站)和萊昂納多公司(意大利)。此外,計劃中的參與包括法國空軍(FAF)、意大利空軍(ItAF)、北約預警系統、英國皇家空軍(UK)、加拿大皇家空軍(RCAF)、荷蘭皇家空軍(RNLAF)、西班牙空軍(SpAF)、美國空軍(USAF)和美國陸軍(USA)。因此,它還將通過采用嵌入盟軍控制和報告中心(CRC)和北約預警機的美國陸軍防空炮火控制官(ADAFCO)來實現聯合和北約的互操作性訓練。為了繼續提供互操作性的機會,演習還將通過北約預警機E-3、建設性的E-8 JSTARS和皇家空軍RC-135 "鉚釘 "聯合模擬器支持情報監視偵察(ISR)的 "鐵三角"。這種ISR融合能力模擬了關鍵的現實世界ISR整合,以提高跨平臺和機構的決策技能。這項培訓還將在盟軍CRC和聯合戰術空中管制員(JTAC)之間執行美國空軍支援行動中心(ASOC)的連接。最后,為了支持這項工作,將有多架反空和攻擊飛機,包括建設性的和有人駕駛的模擬器,通過故意瞄準(DT)、打擊協調和偵察(SCAR)以及近距離空中支援(CAS)來支持協調打擊。

由于有機會進行驗證演習,目前建立的基礎設施和系統得到了利用。由此產生的系統和網絡提供了探索規定的RA和CDS配置的混合機會。因此,支持演習的數據被記錄下來,用于進一步的參考架構測試和比較,這使得演習規劃者能夠專注于實現MTDS CONEMP(NATO STO MSG-165, 2019)中概述的聯盟集體訓練目標(CCTO)。通過在整個演習責任區(AOR)創造3級訓練機會,集中精力實現盡可能多的CCTVO,演習策劃者能夠將50個CCTVO中的37個作為計劃目標(NATO STO MSG- 165,2019)。

參照上圖2,不同的任務和飛機類型之間的相互作用有助于建立3級訓練的復雜性。為了開始建立所需的部隊互動過程,規劃者希望建立一個能夠支持現有參與者所需復雜性的戰斗空間。隨著四(4)個指揮和控制(C2)元素的使用,結構化的通道被分配給每個C2元素。有了這些通道,就需要控制戰斗機的進攻/防御行動,以及確保空中加油保持所需的CAPs的支持要求。這種最初的集體行動將戰斗機及其加油機與控制它們的C2機構聯系起來,以滿足聯合空中作戰司令部(CAOC)在規劃文件中制定的規定的區域防空計劃(AADP)。這種看似簡單的互動現在發生在四(4)個不同的元素之間,可以想象是在四(4)個不同的地點。對于 "斯巴達勇士 "20-9,意大利空軍(ItAF)的歐洲戰斗機在作為C2機構的北約預警機控制的航道上與作為建設性實體的UAWC控制的加油機之間的互動現在將3個不同的單位聯系在一起,以實現一個相對良性的集體訓練目標,AAR.02--在同一地點進行空對空加油。同樣地,一個集體可以通過綜合空中行動(COMAO)完成一個更復雜的舉措,以實現進攻性反空(OCA)目標OCA.01(護航),OCA.02(戰斗空中掃蕩)和SEAD.01(壓制敵人防空)。為了建立這個集體目標,規劃人員利用C2機構在機會窗口期間將屬于COMAO包的飛機組織到他們的集結點,然后提供空中掩護(護送),假設達到CAOC的規劃文件規定的可接受的風險水平(ALR)。這個目標給C2機構帶來了決策,他們有能力從以前的打擊中辨別出ALR(防空設施是否被充分壓制?)、COMAO包的狀態、護航OCA組的狀態以建立空中控制,然后是打擊發生后的戰斗損傷評估(BDA)信息。這些集體行動現在占了多個地點的多個小組,處理融合的情報(敵方防空狀態),以及打擊前和打擊后的有效信息交流。

對于MTDS事件的規劃者來說,場景的復雜性不應掩蓋手頭任務的復雜性。在這種情況下,規劃文件根據ALR定義了限制,并建立了已知的時間事件來創建這些打擊窗口。這就創造了機會,或缺乏機會,基于提供給決策者的輸入--在這種情況下,接受培訓的C2機構。對于演習策劃者來說,所需的CCTVO成為驅動特定場景的焦點。通過創建這些決策點,在多個平臺上收集相關信息,所有這些平臺都在為已知的事件進行協調,從而實現了集體訓練點。在更大的事件中,實現這些功能的機會可能會在細節和機會的海洋中消失,以引起更大的力量反應。然而,正是通過保持任務的簡單性來控制信息的流程和流動,才可以在不影響訓練對象或創造支持環境的白軍元素的情況下常規地實現CCTO。

最后,為了改變行動區的任務,特定的任務集在整個行動區被輪換使用。這種輪換使不同的C2機構能夠在四個演習日的每一天改變他們的重點。當一些機構負責支持CAS時,其他機構則負責協調COMAO包、SCAR資產或動態目標事件。此外,戰斗的性質在四天的演習中也有所改變。通過不保持時間線(演習第1天=第100天,演習第2天=第101天,等等),計劃者可以用較小的每日投入進一步構建演習事件。在這個例子中,演習日以10天為單位向前移動。這樣,雙方的補給都可以完成,但更重要的是,戰爭的基調可以得到調整。對于SW20-9來說,10天的增量提供了創造紅方部隊推進日、藍方部隊推進日、停火(以及隨后重新陷入戰爭)日和僵局日的機會。這些都會在對事件的整體解釋中產生色調和變化,從可能的叛逃者到自相殘殺的擔憂,都需要加以考慮。這些變化為所有玩家提供了一系列的事件和任務集,以解釋和建立他們的行動方案,從而增加集體的訓練機會。

7 結論和對北約聯合MTDS的建議

北約內部MTDS能力的發展并不限于MSG-165的工作。MSG-180工作組努力在海洋領域建立MTDS能力(名為LVC-T)(NATO STO MSG-169. 2019)。此外,這兩個小組的工作與MSG-164建模與仿真服務(MSaaS)有關(NATO STO MSG-164. 2018)。MTDS也是北約的智能防御倡議之一,由美國贊助,因此在各個層面都有很好的知名度,但遺憾的是仍然未能取得必要的進展。為了幫助這個問題,我們打算通過將海洋領域納入MTDS倡議,將智能防御的努力結合起來。雖然仍有一些挑戰,但迄今為止所開展的工作已經為其他現有的北約合成訓練問題提供了解決方案。這些問題包括:

  • 分析未來的空中訓練需求,從而重新確認多國MTDS活動的好處。

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 制定MSG 165的愿景,即如何利用MTDS來支持北約空中業務培訓。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

為了支持北約聯合MTDS的發展,我們提出了以下建議:

  • 發展北約綜合演習要求,從北約贊助的年度MTDS演習開始。這將有助于提高整個北約對MTDS能力和好處的認識,并有助于為MTDS的培訓制定必要的優先次序。

  • 正式確定聯盟對未來多國合成訓練的期望。我們相信,這將帶來巨大的好處,并提供必要的自上而下的方向和指導,以幫助推動MTDS能力的發展,這是一個初步要素。

鳴謝

本文介紹的工作是由以下北約國家和組織在MSG-165任務組中合作完成的。比利時、加拿大、法國、德國、意大利、荷蘭、挪威、西班牙、土耳其、英國、美國、歐洲航空集團(EAG)、北約工業咨詢集團(NIAG)和北約空中作戰卓越中心。所以這項工作的功勞應該歸功于這個MSG-165任務小組的所有參與者。本文的作者是MSG-165的聯合主席,并代表整個小組的作用。

付費5元查看完整內容

摘要

在要求嚴格的航空航天、國防和安全領域,操作和維護人員必須在保證系統運行方面表現出色。因此,遠程培訓和支持是有助于實現這一目標的關鍵活動。滿足高度標準化的程序和復雜的任務,如果以傳統的方式進行,在物流、成本、安全和環保方面會有很大的缺陷。新興技術,特別是那些促進全面互聯互通的技術,正在為解決這些問題提供創新的解決方案。這一點正由建模與仿真服務(MSaaS)范式來解決,而諸如虛擬、增強和混合現實(VR/AR/MR)等新興技術提供了革命性的方法,能夠大幅降低成本并提高性能。在這種情況下,在聯盟正在進行的數字化轉型中,本文為遠程培訓和支持開發創新的解決方案,通過開發一個集成的協作數字平臺,使客戶在操作中得到充分的幫助,與專家進行遠程連接,并訪問所有相關文件,在云端安全地存儲和參考。然而,這種專用平臺的成功實施和運行是以全面連接、數據攝取和處理、云計算和網絡安全、人工智能等因素為前提的。

關鍵詞:建模與仿真、云計算、擴展現實、連接、培訓即服務、遠程培訓和支持。

1.0 引言

在過去的十年里,世界和工業已經進入了被定義為第四次工業革命的階段。它的特點是創新技術和工藝的出現,如超連接性、人工智能、機器人、物聯網、自動駕駛汽車、增材制造、納米技術、生物技術、材料科學、能源儲存、量子計算等等[1]。人們過去的操作和合作方式發生的最劇烈的轉變之一是平臺技術的崛起,特別是由數字化促成的平臺技術。事實上,大多數相關行業目前正處于現在眾所周知的數字轉型之中。雖然很少使用 "革命 "一詞,但包括北約在內的全球防務領域肯定正在許多(如果不是所有)部門中沖浪,進行數字化轉型。

軍隊需要有能力在復雜的現實環境中為部隊做準備,包括威脅和作戰環境(OE)不斷變化的靈活場景,以確保訓練有素的預備人員能夠在整個軍事行動范圍內執行任務。利用新興技術,軍隊現在比以往任何時候都更注重創造全方位的作戰環境(OE)能力和學習經驗,以訓練和準備部隊應對未來的作戰情況,而這些情況是由動蕩、不確定、復雜和模糊的全球安全所決定的。使用數字技術的創新為軍事領域注入了越來越多的能力。在很大程度上,根據北約建模與仿真總體規劃,未來的軍事能力(即理論、訓練、行動等)將由建模與仿真(M&S)來開發和支持[2,3]。為了強調這一重要性,北約STO內的北約M&S小組(NMSG)已經建立了一個方案,以建議、促進和協調聯盟機構、北約成員國和伙伴國之間的合作,最大限度地有效利用M&S解決方案。根據他們的設想,M&S服務和工具必須盡可能方便地被大量用戶使用,從而實現 "作為一種服務 "的方法,以提供更具成本效益的 "按需 "產品、數據和流程的可用性[4] 。

為了實現這一點,許多國防部隊被吸引到現場、虛擬和建設性(LVC)環境中進行訓練。這種方法確實突破了傳統訓練方法的限制,因為它提供了一個安全、更真實和身臨其境的體驗。它還提供了一個無限的空間來進行訓練,以及為增加真實感所需的所有可變威脅。M&S即服務(MSaaS)在NATO STO技術文件MSG-131[5]中已經被定義。"M&S即服務(MSaaS)是一種向客戶提供價值的手段,以實現或支持建模和仿真(M&S)用戶的應用和能力,并按需求提供相關數據,而不需要擁有具體的成本和風險"。這種 "作為一種服務 "的方法正在推動全球社區開發與這一理念相匹配的最新技術的產品,其目的是不僅在產品方面,而且在其相關的商業模式及其對行業與采購部門關系的影響方面獲得重大的現代化。萊昂納多作為國際陸軍、海軍、航空航天、國防和安全領域的領導者,一直在根據這些概念開發最先進的解決方案。

本文描述和討論了一些解決方案,主要集中在創新的培訓目的上,這大大顛覆了傳統方法。更具體地說,描述了用于提供服務的云平臺OCEAN,以及相關的合成環境(RIAce)和M&S中心之間的安全網絡基礎設施(SHORE)。此外,還介紹了專門為培訓目的設計的擴展現實工具。

付費5元查看完整內容

全域作戰 (ADO) 是美國軍事聯合概念的演變,旨在應對戰略對手,他們希望利用戰爭的新興特征來破壞和克服美國在日益復雜和全球戰場上的優勢。ADO作為一個概念很重要,因為它同時認識到作戰環境的復雜性以及對手打算如何在其中實現戰略優勢。這個概念描述了美國陸軍如何在鞏固成果的同時,使聯合部隊能夠防止、拒絕和利用對手。隨著多域作戰環境的出現和美國陸軍尋求在未來獲得并保持持久的優勢,繼續發展ADO概念將至關重要。

兵棋推演繼續作為軍事組織的一項關鍵職能和工具。兵棋推演工具根據玩家的決定,以不同程度的現實和抽象來模擬過程和后果。兵棋推演理論對美國陸軍領導力的開發至關重要,因為它提供了一個過程,通過抽象的機制將關鍵的決策還原成一個反復的過程,使人們能夠探索失敗并獎勵學習,以做出更合適的決策。兵棋推演是測試ADO概念的關鍵因素,也是培訓和教育未來領導力的關鍵方法。

ADO的關鍵是發展理解概念和作戰環境的能力。ADO推演允許領導者和軍事理論家學習和探索作戰環境,包括對手與美國和盟軍在作戰環境中的能力。設計一個關于ADO作戰概念的兵棋推演工具,可以創造一個框架,在這個框架內,領導者可以練習規劃、執行和反思關鍵因素。這篇論文提出了一個概念證明,即通過教育和培訓,重點關注陸軍的ADO規劃和執行的作戰方法,以促進未來的領導力開發。

引言

戰爭是永遠存在的。在某種不同程度上,行為者總是為沖突做準備或參與沖突。戰爭的特征和現代戰爭的概念在時間上無情地向前推進。美國的戰爭專家和政策制定者主要認為,全域作戰(ADO)是未來的戰爭概念。全域作戰代表了美國軍隊在2020年和不久將來的現代聯合作戰概念和方法。這一概念將空中、陸地、海洋、網絡空間、電磁和太空領域整合在一起,進行跨時空的規劃和同步執行。ADO固有的復雜性要求領導者對跨領域的能力、規劃和執行有一定的了解。

從戰術層面開始的領導力開發路徑限制了聯合和作戰經驗。對ADO的理解和更好的執行需要領導者在經驗發展的早期學習規劃和實施新生的概念。到目前為止,真實世界的親身體驗是最好的,但很難復制,在聯合作戰中更是如此。兵棋推演提供了一個補充教育和培訓的工具,利用機械原理來幫助對問題和決策過程的理解框架。一個全面的兵棋推演工具對于ADO中未來作戰領導力的開發是至關重要的。

本報告的目的是展示兵棋推演如何為美國陸軍在ADO中的角色開發和領導力培養提供方法。該研究旨在為對ADO感興趣的領導人提供一個基礎,并通過兵棋推演進行開發和教育。本報告展示了兵棋推演如何模擬ADO的概念,以指導和促進教育。兵棋推演的目的包括跨越時間和空間,通過所有領域來規劃和管理軍事行動,同時在與ADO相關的各個階段納入作戰藝術和科學元素。兵棋推演模型應能適應任何場景,并采用模塊化設計,允許根據需要強調背景。設計者根據現有的作戰框架,通過在至少兩個主要對手之間的偶發階段來開發兵棋推演工具,從而實現反思和討論。本報告提供了一個概念證明,即作為進一步開發的基線Theatrum Belli,并解決了陸軍理論中關于兵棋推演的一個重要空白。

在陸軍兵棋推演中,ADO的概念和理論存在一個重大的空白。很少有現有的模型能以現代的方式將所有的五個戰爭領域都納入其中,以適當地呈現ADO的要素。此外,美國陸軍缺乏一個模擬的、標準化的模型來最好地描述從師到戰區陸軍在作戰層面執行 ADO。美國空軍和美國海軍目前正在開發一個以ADO為導向的兵棋推演,但仍然沒有納入大量的地面部隊。本報告提出了一種兵棋推演的設計,能夠在作戰層面上對ADO的規劃和執行的領導力進行教育和開發。鑒于該兵棋推演的主要目標,設計者必須承認該模型和研究的局限性。

第一手和真實世界的經驗是最好的學習環境。然而,在作戰層面為ADO創造一個真實世界的訓練環境,在時間、物質和人員上的成本可能是令人望而卻步的。兵棋推演是一個有明確目標的模型,它準確地描述了至少兩個對立面之間的一些戰爭要素。為了實現這個明確的目標,必須對設計的因素進行優先排序。該模型只模擬了現實和戰爭的某些部分,優先用于實現兵棋推演的目標。設計的細節越精確、越全面,它就越復雜。兵棋推演通常會犧牲不同程度的精確性來實現簡單性,以減輕參與者所需的時間和精力成本。設計的目的是在ADO上進行指導,這也帶來了其他的限制。兵棋推演可以通過多次迭代來教授類似的學習目標,但對現實的每一次抽象都意味著模型的應用在任何時候都只能解決這么多問題。

兵棋推演的獲取和可用性是對擬議的兵棋推演的關鍵限制。兵棋推演中的任何機密材料都會大大降低大多數專業軍事教育(PME)項目的準入門檻。由于缺乏機密材料,該設計不可避免地掩蓋了ADO固有的某些方面。這使得一個用于訓練和教育目的的模型能夠得到更廣泛的傳播,甚至可能包括盟軍部隊。此外,該模型的擴大傳播鼓勵了PME之外更廣泛的參與,這可以進一步創新和調整未來的迭代。除了所討論的本報告的局限性外,設計過程的范圍更好地定義了設計方法。

本報告的兵棋推演設計范圍提出了一個課堂環境的概念說明,以補充ADO的學習。因此,重點支持實現具體的學習目標,只需要教師和學生的必要時間和努力。一個兵棋推演如果吸收了太多的時間,無論是學習操作還是執行本身,對任何有時間安排的人來說都會成為一種負擔。為了解決參與者的注意力問題,兵棋推演的模式必須是高效和簡短的,但仍然包括促進學習目標的機制。教員通過兵棋推演來管理學生的注意力,并需要利用剩余的時間來發揮綜合作用,而不是讓學生筋疲力盡。為了補充高級軍事研究項目(AMSP)的課程,設計應該以研討會的環境為基線。這種形式可以擴展到旅以上梯隊的工作人員,在幾個小時內執行迭代,而不是全天的事務。設計的迭代性質適合于情節性的場景,參與者可以用默認的標準跳入和跳出場景,或者在不同的情節之間進行進展,以實現持續的連續性。這是對兵棋推演范圍的一般性介紹,本報告將在后面對其設計背后的理論作進一步的詳細說明。

本報告的引言闡述了論文和主要目的,確定了重大差距,以及兵棋推演設計的局限性和范圍。下一節涵蓋了所研究的文獻、理論、概念和以前的兵棋推演,以及它們對擬議設計方法的應用。

圖4. 在MDO框架中強調的軍事問題。

付費5元查看完整內容

摘要

建模與仿真(M&S)是作戰分析人員用來支持決策者的一種關鍵方法,因為它有能力對復雜的問題提供清晰的見解。鑒于其好處,許多北約國家和北約內部的組織擁有大量的M&S專業知識,并將其應用于廣泛的問題。然而,這些模擬,特別是那些具有高度復雜性的模擬,可能是昂貴的,開發和驗證需要時間,并且需要專業知識和資源來使用。雖然在整個北約共享這些專業知識和這些模擬可能會導致更有效的決策支持,但它充滿了障礙,包括與項目時間表有關的時間壓力、知識產權,有時還需要共享機密材料。克服這些障礙將有助于北約從整個聯盟的M&S投資和專業知識中獲得應有的決策優勢。然而,為了克服這些障礙,需要有切實可行的解決方案。

在本文中,我們概述了MSG-SAS-178的工作,其目的是開發一種方法來減少這些障礙。我們討論了該小組的兩個主要貢獻。首先,該小組對北約內部共享M&S軟件、資源和模擬本身的常見障礙進行了識別和分類。其次,我們提出了一個障礙交換框架,在考慮數據、軟件、供應商和決策者等多個方面的障礙時,它可以作為決策支持工具。該框架提供了一種可操作的方式,通過仔細考慮模型和數據交換的要求以及交換帶來的障礙來塑造合作。這使得整個聯盟的M&S共享得到加強。

引言

幾十年來,建模與仿真(M&S)已被成功地用于支持北約的決策,是一種關鍵的分析能力。應用的領域包括先進的作戰計劃、基于能力的計劃、能力和/或概念開發,以及支持實驗和戰爭游戲。M&S有多種形式,從設計多年的大型復雜戰役模擬,到為單一目的快速建立的模擬。大型復雜模型的開發和維護成本很高,而且許多模型需要專家的專業知識,而這些專業知識是供不應求的。成本和所需的專業知識使M&S成為北約集體能力和合作意愿的一個領域,應使聯盟比其對手更有優勢。

通常情況下,有四個來源可以提供模擬服務。(1)北約實體,(2)國家政府,(3)工業,和(4)學術界。這四個方面都有專業知識、工具和數據。專業知識和工具的開發和維護可能是昂貴和費時的,特別是在專業或利基領域。對于數據來說,國防中使用的分類級別可能是一個問題,限制了工業界和學術界,并影響了國家和北約層面的共享。

北約實體和國家政府已經成為北約仿真服務的首選。在北約內部簽訂服務合同相對容易,但經驗表明,與國家政府或其他實體簽訂合同則充滿了困難。在整個北約提供模擬服務方面存在障礙,導致爐灶和低效率。在北約的科學和技術組織(STO)下,2019年啟動了一個聯合建模與仿真小組(MSG)和系統分析與研究(SAS)活動(MSG-SAS-178)。該活動的目的是考慮如何克服障礙,使北約及其所有成員受益。本文討論了該小組的兩個主要貢獻。首先,該小組對在北約內部共享M&S軟件、資源和模擬本身的共同障礙進行了識別和分類。第二,一個障礙交換框架,在考慮數據、軟件、供應商和決策者等多個方面的障礙時,可作為決策支持工具。該框架提供了一種可操作的方式,通過仔細考慮模型和數據交換的要求以及交換帶來的障礙,來塑造合作并為成功創造條件。這使得整個聯盟的M&S共享得到加強。

本文的其余部分組織如下。第2節概述了本研究中使用的方法。接下來,第3節討論了共享的障礙:首先是通過對知識共享文獻的回顧而發現的障礙,其次是通過MSG-SAS-178活動而發現的與北約內部和國家之間共享模擬有關的障礙。第4節介紹了一種引導模型和數據交換的方法,這也許是國防領域最重要的一組障礙。從MSG-SAS-178更詳細的案例研究庫中,我們介紹了數據和模型交換框架如何在現實世界的場景中使用。第5節提供了結論意見。

付費5元查看完整內容

摘要

目前越來越多的趨勢是從實況空中訓練轉向明顯更便宜的模擬任務訓練。然而,節省成本并不是唯一的原因;特定任務根本無法在真實環境中得到有效和安全的訓練。模擬似乎是通用的解決方案。

但戰斗機飛行員僅在飛行模擬中無法達到所需的戰備水平。因此,現場訓練和綜合訓練相結合可能是理想的答案。

北約MSG活動128和165通過分布式模擬探索了北約任務訓練的操作和技術要求,并提出了聯合和聯合空中作戰的通用參考架構。盡管他們的主要重點是虛擬和建設性模擬,但實時訓練方面一直被考慮在未來擴展到LVC培訓網絡。

本次講座強調了混合現場和綜合訓練的好處,并適當考慮了在多域和跨國網絡中連接多個資產的困難。目前正在開發和建立諸如LVC網關、多級安全(MLS)架構、跨域解決方案(CDS)、特殊人機界面(HMI)等技術解決方案,以使這一切成為可能。

剩下的主要限制是什么?解決方法是什么?

付費5元查看完整內容

摘要

北約正在進行一項名為聯邦任務網絡(FMN)的重大舉措,旨在在北約成員國和伙伴國家之間建立一個共同的技術和培訓基礎,以便在聯盟行動需要時,他們的部隊能夠對關鍵信息系統進行互操作。FMN不是網絡;它是一套互操作的標準和實踐。作者正在領導MSG-193專家團隊的工作,該團隊一直致力于支持在FMN中納入適當的建模和仿真 (M&S) 標準和實踐。本文總結了FMN規范是如何制定的,包括MSG-193作為“M&S辛迪加”在過程中的作用。然后,該論文強調了NMSG的科學技術與FMN支持的軍事行動之間的文化差距,以及如何有效彌合這種差距。FMN開發的第5和第6螺旋(階段)將是建模和仿真的主要重點,包括任務演練、培訓和決策支持。本文最后總結了當前針對這些螺旋的建議中的M&S技術。

付費5元查看完整內容

摘要

北約和各國迫切需要進行團結和聯合集體訓練,以確保任務準備就緒:目前和未來的行動是多國性質的,任務和系統慢慢變得更加復雜,需要詳細準備和迅速適應不斷變化的情況。由于可用資源少、訓練范圍有限、避免對手關注第五代戰術和系統能力的挑戰以及政治決策和部署之間準備時間有限,多國背景下的現場訓練和任務準備的機會減少了。模擬已經成為解決我們軍隊訓練需求的重要工具,各國正朝著通過分布式模擬(MTDS)能力采用國家任務訓練的方向發展。聯合部隊正在尋找實況和模擬訓練與演習之間的新平衡,以提供兩全其美的效果。

北約建模和仿真組(NMSG)的若干倡議為北約MTDS愿景和行動概念的發展貢獻了寶貴的投入(MSG-106 NETN, MSG-128 MTDS, MSG-169 LVC-T)。基于這些結果,當前/最近的NMSG活動(MSG-163北約標準演變、MSG-165 MTDS- ii、MSG-180 LVC-T)致力于為聯合和聯合作戰開發一個通用MTDS參考體系結構(MTDS RA)。最近完成的MTDS RA版本以構建模塊、互操作性標準和模式的形式定義了指導方針,用于實現和執行分布式模擬支持的綜合集體訓練和演習,獨立于應用領域(陸地、空中、海上)。此外,MSG-164 (M&S作為服務II)開發了一種技術參考體系結構(MSaaS TRA),其中包含用于實現所謂MSaaS能力的構建塊。這些構建模塊可以與MTDS RA相結合,以包括作為服務執行綜合集體訓練和演習的指導方針。

MTDS RA的當前版本提供了一個基線,以詳細說明和確定應進行進一步需求/技術開發的領域。未來更新的主題包括網絡作戰和影響、危機管理、實時系統集成、多域或混合作戰等。

聯合MTDS對北約和國家戰備至關重要。本文提供了MTDS RA的背景、目標和原則,以及實現持久的北約范圍內綜合性集體訓練能力的前進方向。聯合MTDS RA的維護和繼續發展將是幾個北約國家、伙伴國家和組織在NMSG主持下的合作努力。

付費5元查看完整內容

摘要

人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。

引言

縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。

人工智能的進展

幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
 雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。

付費5元查看完整內容

低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。

【報告概要】

在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。

無人機的參數化定義包括以下幾類:

  • 類型學,指的是無人機可以飛行的模式;
  • 用于制造無人機的材料;
  • 飛行性能;
  • 螺旋槳種類;
  • 分類;
  • 導航系統;
  • 遠程控制器特性(如果有);
  • 有效載荷,考慮自身傳感器和可能的危險;
  • 通信系統。

描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。

考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。

在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。

由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。

無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。

然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。

sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。

此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。

圖1 無人機類別與其他類別/參數的關系(part 1)

圖2 無人機類別與其他類別/參數的關系(part 2)

圖3 參考坐標系

【報告目錄】

付費5元查看完整內容
北京阿比特科技有限公司