亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

論文題目

Automatic Differentiable Monte Carlo: Theory and Application

論文摘要

可微程序設計已經成為一種關鍵的程序設計范式,它使深度學習得以快速發展,而它在蒙特卡羅等重要計算方法中的應用還沒有得到很大的探索。在這里,我們提出了在非正規概率分布下,對蒙特卡羅計算的期望值進行無窮階自動微分的一般理論,我們稱之為“自動可微蒙特卡羅”。通過在計算圖上實現dmc算法,人們還可以將最先進的機器學習框架和技術用于統計和物理中的傳統Monte Carlo應用。通過展示ADMC的一些應用來說明其多功能性:快速搜索相位傳遞和準確地找到二維多體模型相互作用的基態。ADMCP是一種很有前途的方法,它可以在各個方面對蒙特卡羅進行創新,以獲得更高的精度和效率,例如通過ADMCA來緩解或解決量子多體模型的符號問題。

論文作者

張希欣,周泉灣,洪耀,來自于清華大學,美國斯坦福大學。

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

推薦書目:Convex Optimization《凸優化》

推薦理由:機器學習,深度學習中我們尋找最優參數來得到模型,實際上就是用到了凸優化的理論。推薦原著,雖然看英文有困難,但目前凸優化的理論在各項最新論文中經常被引用,所以當你需要認真理解凸優化,引用凸優化時,這本書可以讓你找到出處。這本書主要講了三塊,凸優化理論、應用和算法。

付費5元查看完整內容

深度學習系統在許多任務中都取得了顯著的性能,但要確保生成的模型服從硬約束(在許多控制應用程序中可能經常需要這樣做),常常是出了名的困難。在這次演講中,我將介紹一些最近的關于在深度學習系統中加強不同類型的約束的工作。具體來說,我將重點介紹最近的一些工作,包括將一般的凸優化問題集成為深網絡中的層次,研究保證表示凸函數的學習網絡,以及研究增強非線性動力學的全局穩定性的深層動力系統。在所有情況下,我們都強調我們可以設計網絡結構來編碼這些隱性偏見的方式,這種方式可以讓我們輕松地執行這些硬約束。

付費5元查看完整內容

【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 于美國紐約舉辦。近年來,將傳統的處理效果估計方法(如匹配估計器)和先進的表示學習方法(如深度神經網絡)相結合的一個新興的研究方向在廣闊的人工智能領域引起了越來越多的關注。來自Georgia、Buffalo、阿里巴巴與Virginia的學者做了因果推理表示學習報告,在本教程中,介紹用于治療效果估計的傳統和最先進的表示學習算法。關于因果推論,反事實和匹配估計的背景也將被包括。我們還將展示這些方法在不同應用領域的應用前景。

摘要

因果推理在醫療保健、市場營銷、醫療保健、政治科學和在線廣告等許多領域都有大量的實際應用。治療效果估計作為因果推理中的一個基本問題,在統計學上已被廣泛研究了幾十年。然而,傳統的處理效果估計方法不能很好地處理大規模、高維的異構數據。近年來,將傳統的處理效果估計方法(如匹配估計器)和先進的表示學習方法(如深度神經網絡)相結合的一個新興的研究方向在廣闊的人工智能領域引起了越來越多的關注。在本教程中,我們將介紹用于治療效果估計的傳統和最先進的表示學習算法。關于因果推論,反事實和匹配估計的背景也將被包括。我們還將展示這些方法在不同應用領域的應用前景。

付費5元查看完整內容

題目: Logical Expressiveness of Graph Neural Networks

摘要:

圖神經網絡(Graph Neural Networks, GNNs)是近年來在分子分類、知識圖譜補全等結構化數據處理領域中流行起來的一類機器學習體系結構。最近關于GNNs表達能力的研究已經建立了它們對圖中節點進行分類的能力與用于檢查圖同構的WeisfeilerLehman (WL)測試之間的緊密聯系。具體來說,這兩篇論文的作者分別觀察到,WL測試產生的節點分類總是細化了任何GNN產生的分類,而且有GNN可以重現WL測試。這些結果表明,GNNs在節點分類方面與WL測試一樣強大。然而,這并不意味著GNNs可以表達任何通過WL測試改進的分類器。我們的工作旨在回答以下問題:什么是可以用GNNs捕獲的節點分類器?在本文中,我們從邏輯的角度來看待這個問題,將其限制在FOC2中可表達的屬性上,即具有計數能力的一階邏輯的兩變量片段進行研究。

作者:

Pablo Barceló是智利天主教大學工程學院和數學學院數學與計算工程研究所所長,研究領域為數據庫理論、計算機科學中的邏輯、自動機理論。

付費5元查看完整內容

斯坦福大學Stephen Boyd教授與加州大學Lieven Vandenberghe教授合著的應用線性代數導論:向量、矩陣和最小二乘法《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares》在2018年由劍橋大學出版社發行,開源書包含19章,473頁pdf,這本書的目的是提供一個介紹向量,矩陣,最小二乘方法,應用線性代數的基本主題。目標是讓學生通俗易懂,入門學習。讓學習者了解在包括數據擬合、機器學習和人工智能,斷層、導航、圖像處理、金融、和自動控制系統的應用。是一本不可多得好教材。?

Stephen P. Boyd是斯坦福大學電子工程Samsung 教授,信息系統實驗室電子工程教授,斯坦福大學電子工程系系主任。他在管理科學與工程系和計算機科學系任職,是計算與數學工程研究所的成員。他目前的研究重點是凸優化在控制、信號處理、機器學習和金融方面的應用。 //web.stanford.edu/~boyd/

Lieven Vandenberghe,美國加州大學洛杉磯分校電子與計算機工程系和數學系教授

這本書的目的是提供一個介紹向量,矩陣,最小二乘方法,應用線性代數的基本主題。我們的目標是讓很少或根本沒有接觸過線性代數的學生快速學習,以及對如何使用它們在許多應用程序中, 包括數據擬合、機器學習和人工智能, 斷層、導航、圖像處理、金融、和自動控制系統。

讀者所需要的背景知識是熟悉基本的數學符號。我們只在少數地方使用微積分,但它并不是一個關鍵的角色,也不是一個嚴格的先決條件。雖然這本書涵蓋了許多傳統上作為概率和統計的一部分來教授的話題,比如如何將數學模型與數據相匹配,但它并不需要概率和統計方面的知識或背景。

這本書涉及的數學比應用線性代數的典型文本還少。我們只使用線性代數中的一個理論概念,線性無關,和一個計算工具,QR分解;我們處理大多數應用程序的方法只依賴于一種方法,即最小二乘(或某種擴展)。從這個意義上說,我們的目標是知識經濟:僅用一些基本的數學思想、概念和方法,我們就涵蓋了許多應用。然而,我們所提供的數學是完整的,因為我們仔細地證明了每一個數學命題。然而,與大多數介紹性的線性代數文本不同,我們描述了許多應用程序,包括一些通常被認為是高級主題的應用程序,如文檔分類、控制、狀態估計和組合優化。

這本書分為三部分。第一部分向讀者介紹向量,以及各種向量運算和函數,如加法、內積、距離和角度。我們還將描述如何在應用程序中使用向量來表示文檔中的字數、時間序列、病人的屬性、產品的銷售、音軌、圖像或投資組合。第二部分對矩陣也做了同樣的處理,最終以矩陣的逆和求解線性方程的方法結束。第三部分,關于最小二乘,是回報,至少在應用方面。我們展示了近似求解一組超定方程的簡單而自然的思想,以及對這一基本思想的一些擴展,可以用來解決許多實際問題。

付費5元查看完整內容

A Survey of Model Compression and Acceleration for Deep Neural Networks 深度卷積神經網絡(CNNs)最近在許多視覺識別任務中取得了巨大的成功。然而,現有的深度神經網絡模型在計算上是昂貴的和內存密集型的,這阻礙了它們在低內存資源的設備或有嚴格時間延遲要求的應用程序中的部署。因此,在不顯著降低模型性能的情況下,在深度網絡中進行模型壓縮和加速是一種自然的思路。在過去幾年中,這方面取得了巨大的進展。本文綜述了近年來發展起來的壓縮和加速CNNs模型的先進技術。這些技術大致分為四種方案: 參數剪枝和共享、低秩因子分解、傳輸/緊湊卷積過濾器和知識蒸餾。首先介紹參數修剪和共享的方法,然后介紹其他技術。對于每種方案,我們都提供了關于性能、相關應用程序、優點和缺點等方面的詳細分析。然后我們將討論一些最近比較成功的方法,例如,動態容量網絡和隨機深度網絡。然后,我們調查評估矩陣、用于評估模型性能的主要數據集和最近的基準測試工作。最后,對全文進行總結,并對今后的研究方向進行了展望。

付費5元查看完整內容

近年來,移動設備得到了越來越大的發展,計算能力越來越強,存儲空間越來越大。一些計算密集型的機器學習和深度學習任務現在可以在移動設備上運行。為了充分利用移動設備上的資源,保護用戶的隱私,提出了移動分布式機器學習的思想。它使用本地硬件資源和本地數據來解決移動設備上的機器學習子問題,只上傳計算結果而不是原始數據來幫助全局模型的優化。該體系結構不僅可以減輕服務器的計算和存儲負擔,而且可以保護用戶的敏感信息。另一個好處是帶寬的減少,因為各種各樣的本地數據現在可以參與培訓過程,而不需要上傳到服務器。本文對移動分布式機器學習的研究現狀進行了綜述。我們調查了一些廣泛使用的移動分布式機器學習方法。我們還就這一領域的挑戰和未來方向進行了深入的討論。我們相信這項調查能夠清晰地展示移動分布式機器學習的概況,并為移動分布式機器學習在實際應用中的應用提供指導。

付費5元查看完整內容

主題: Deep Reinforcement Learning with Applications in Transportation

簡介: 交通運輸,特別是移動乘車共享領域,存在許多傳統上具有挑戰性的動態決策問題,這些問題涉及研究文獻,而且很容易從人工智能(AI)中受益匪淺。一些核心示例包括在線乘車指令調度,該系統將可用的駕駛員與乘車共享平臺上的出行請求乘客實時匹配;路線規劃,用于規劃行程起點和終點之間的最佳路線;交通信號控制,可動態自適應地調整區域內的交通信號以實現低延遲。所有這些問題都有一個共同的特征,即在我們關注某個范圍內的一些累積目標時,要做出一系列決定。強化學習(RL)是一種機器學習范例,可訓練代理通過與之交互并獲取反饋信號來學習在環境中采取最佳行動(以所獲得的總累積獎勵衡量)。因此,它是用于解決順序決策問題的一類優化方法。得益于深度學習研究和計算能力的飛速發展,深度神經網絡和RL的集成為解決復雜的大規模學習問題在RL中產生了爆炸性的進展,近年來引起了巨大的興趣。深度學習和RL的結合甚至被認為是通往真正AI的道路。它具有巨大的潛力,以前所未有的方式解決運輸中的一些難題。

目錄簡介:

  • Part I: 介紹:機器學習與強化學習
  • Part II: 強化學習基礎
  • Part III:基于policy的強化學習
  • Part IV:強化學習框架
付費5元查看完整內容
北京阿比特科技有限公司