亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要—神經場(Neural Fields)已成為計算機視覺和機器人領域中用于3D場景表示的變革性方法,能夠從帶姿態的2D數據中精準推理幾何、3D語義和動態信息。通過可微分渲染(differentiable rendering),神經場包括連續隱式和顯式神經表示,實現高保真3D重建、多模態傳感器數據的整合,以及新視角的生成。本綜述探討了神經場在機器人領域的應用,強調其在提升感知、規劃和控制方面的潛力。神經場的緊湊性、內存效率和可微性,加之與基礎模型和生成模型的無縫集成,使其非常適合實時應用,有助于提升機器人的適應性和決策能力。本文對機器人中的神經場進行了全面回顧,涵蓋200多篇論文中的應用,并對其優缺點進行評估。首先,我們介紹了四種關鍵的神經場框架:占用網絡(Occupancy Networks)、符號距離場(Signed Distance Fields)、神經輻射場(Neural Radiance Fields)和高斯分布(Gaussian Splatting)。其次,我們詳細描述了神經場在機器人五大主要領域中的應用:姿態估計、操控、導航、物理仿真和自動駕駛,重點介紹了關鍵工作并討論了主要發現與開放挑戰。最后,我們總結了神經場在機器人應用中的當前局限性,并提出了未來研究的有前景方向。項目頁面:robonerf.github.io 關鍵詞—神經輻射場(Neural Radiance Field, NeRF)、神經場(Neural Fields)、符號距離場(Signed Distance Fields)、3D高斯分布(3D Gaussian Splatting)、占用網絡(Occupancy Networks)、計算機視覺新視角合成(Novel View Synthesis)、神經渲染(Neural Rendering)、體渲染(Volume Rendering)、姿態估計機器人操控導航自動駕駛

I. 引言

機器人依賴對環境的精確且緊湊的表示來執行廣泛的任務,從穿越繁忙的倉庫到整理雜亂的家庭環境,甚至參與高風險的搜救任務。在典型的機器人系統中,感知與行動之間的協同作用是其核心。感知系統通過RGB相機、LiDAR和深度傳感器等設備采集感官數據,并將其轉化為一致的環境模型——例如,使機器人能夠在動態且障礙密集的空間中導航的3D地圖。這種表示的質量直接影響機器人的決策或策略,從而將所感知的環境轉化為行動,使其能夠避開移動的叉車、拾取散落的物體或在緊急情況下規劃安全路徑。 傳統上,機器人使用點云 [13–15]、體素網格 [16]、網格 [17–19]和截斷符號距離函數(TSDF)[20]等數據結構來建模環境。盡管這些表示提升了機器人能力,但它們在捕捉復雜或動態環境中的精細幾何細節方面仍存在局限,導致在適應性場景中的性能不佳。

為了克服這些限制,神經場(Neural Fields, NFs)[21]作為一種有前途的替代方案出現,它提供了從空間坐標到物理量(如顏色或符號距離)的連續、可微映射。與傳統的數據結構不同,神經場可以將3D環境建模為由神經網絡或高斯分布參數化的連續函數,從而更加高效地表示復雜的幾何結構和精細細節 [22, 23]。神經場可以使用基于梯度的方法與各種真實世界的傳感器數據(包括圖像和深度圖)進行優化,從而生成高質量的3D重建。

在機器人領域,神經場相比傳統方法具有幾大優勢:

  • 高質量3D重建:神經場生成詳細的3D環境表示,對于導航、操控和場景理解等任務至關重要 [24–28]。
  • 多傳感器融合:神經場可以無縫整合來自多種傳感器的數據,如LiDAR和RGB相機,從而提供更穩健且適應性強的環境感知 [29, 30]。
  • 連續且緊湊的表示:與體素網格或點云的離散性不同,神經場提供連續的表示,能夠以更少的參數捕捉空間細節,提升計算效率 [22, 31]。
  • 泛化與適應性:訓練完成后,神經場可以生成場景的新視角,即使是先前未見過的視角,這對探索或操控任務特別有價值。這一能力得益于通用的NeRF方法 [32–34]。
  • 與基礎模型的集成:神經場可以與基礎模型(如CLIP [35]或DINO [36])結合,使機器人能夠理解并響應自然語言查詢或其他語義輸入 [37, 38]。

生成式AI的最新進展 [39]通過將合成數據作為監督信號進一步擴展了神經場的能力,從而減少了對真實世界觀測數據的依賴。這一范式轉變使得神經場可以在現實數據采集不可行或成本高昂的情況下進行優化。重要的是,它將神經場定位為生成式AI與機器人之間的關鍵橋梁。盡管2D數據生成先驗具有強大的功能,但通常缺乏進行有效機器人決策所需的空間一致性。神經場將這些先驗與稀疏的真實世界數據 [33]結合,能夠在物理環境約束(如有限的傳感器配置和遮擋)下建模傳感與運動空間。 鑒于這些優勢,神經場在機器人領域的應用正迅速發展。圖1和圖2概述了神經場在機器人的應用,并展示了與神經場相關的機器人研究出版物的增長趨勢。本文旨在梳理和分析其對該領域的影響。

本文的結構如下:第II節介紹了神經場的基本公式,而第III節則從以下主題中概述其在不同領域中的優勢:

  • 姿態估計:重點探討神經場在相機姿態估計、物體姿態估計以及同時定位與地圖構建(SLAM)中的應用(第III-A節)。
  • 操控:討論神經場的精確3D重建如何協助機器人操控物體(第III-B節)。
  • 導航:探討神經場如何通過提供對真實環境的精確和高效感知來增強機器人導航(第III-C節)。
  • 物理:研究神經場如何幫助機器人推理物理交互,以改進其對現實動態的理解(第III-D節)。
  • 自動駕駛:重點介紹神經場在構建真實世界的寫實模擬器中的作用(第III-E節)。

我們在第IV節通過探討若干研究方向和挑戰進行總結。據我們所知,本綜述是首批對機器人領域的神經場進行全面考察的研究之一。我們在最接近的并行綜述 [40] 的基礎上補充了對NeRF、3DGS、占用網絡、符號距離場等多個領域的全面涵蓋。通過結合多個維度的見解,本綜述旨在提供對神經場在機器人應用中當前狀態的整體理解,突顯近期成就、未來挑戰及未探索的研究領域。

付費5元查看完整內容

相關內容

摘要—視覺目標跟蹤(VOT)是計算機視覺領域一個具有吸引力且重要的研究方向,其目標是在視頻序列中識別和跟蹤特定目標,且目標對象是任意的、與類別無關的。VOT技術可以應用于多種場景,處理多種模態的數據,如RGB圖像、熱紅外圖像和點云數據。此外,由于沒有單一傳感器能夠應對所有動態和變化的環境,因此多模態VOT也成為了研究的重點。本文全面綜述了近年來單模態和多模態VOT的最新進展,特別是深度學習方法的應用。具體而言,本文首先回顧了三種主流的單模態VOT,包括RGB圖像、熱紅外圖像和點云跟蹤。特別地,我們總結了四種廣泛使用的單模態框架,抽象出其架構,并對現有的繼承方法進行了分類。接著,我們總結了四種多模態VOT,包括RGB-深度、RGB-熱紅外、RGB-LiDAR和RGB-語言。此外,本文還呈現了所討論模態在多個VOT基準測試中的對比結果。最后,我們提出了建議和深刻的觀察,旨在激發這一快速發展的領域的未來發展。 關鍵詞—視覺目標跟蹤,深度學習,綜述,單模態,多模態

//www.zhuanzhi.ai/paper/2edd0971ae625f759822052af4d569fd

1 引言

視覺目標跟蹤(VOT)是過去幾十年來計算機視覺領域的一個高度活躍的研究課題,因其在視頻監控 [1]、[2]、[3]、自動駕駛 [4]、[5]、移動機器人 [6]、[7]、人機交互 [8]、[9] 等廣泛場景中的重要應用而受到關注。VOT任務的定義是:給定目標在第一幀中的邊界框位置,跟蹤器需要在隨后的所有幀中持續且魯棒地識別和定位該目標,其中目標可以是任意實例且不依賴于類別。這個任務非常具有挑戰性,因為:1)目標可能經歷諸如形變、旋轉、尺度變化、運動模糊和視野丟失等復雜的外觀變化;2)背景可能帶來諸如光照變化、相似物體干擾、遮擋和雜亂等無法控制的影響;3)視頻捕捉設備可能會震動和移動。 作為計算機視覺中的一項核心任務,VOT有多種數據模態可供選擇。最常見的模態是RGB視頻,因其普及和易獲取性,吸引了大量研究者關注這一任務。RGB模態的VOT提供了在圖像坐標系下的大致目標位置,并通過二維邊界框為許多高級圖像分析任務奠定了基礎,例如姿態估計、步態/活動識別、細粒度分類等。基于RGB的VOT的演進 [2]、[10]、[11]、[12] 是持久且歷史悠久的,隨著深度學習 [13]、[14]、[15]、[16]、[17] 和大規模數據集 [18]、[19]、[20] 的出現,這一進展進一步加速。本文主要關注過去十年中的方法,特別是基于深度神經網絡(DNN)的方法。根據其工作流程,我們將主流的RGB跟蹤器分為四類:判別性相關濾波器(DCF) [17]、[21],Siamese跟蹤器 [22]、[23]、[24],實例分類/檢測(ICD) [25]、[26]、[27] 和單流變換器(OST) [1]、[28]、[29]。為了便于說明,圖3展示了這四種基于深度學習的框架及其最簡化的組件。前兩種框架在過去十年中非常流行,而后兩種則較少被提及,甚至在以往的綜述中沒有出現過,因為ICD不像DCF和Siamese那么常見,OST則是一個自2022年才出現的新框架。 另一方面,RGB模態的缺點也非常明顯,應用場景受到限制。首先,它在夜間和惡劣天氣(如雨天和雪天)下的表現不盡如人意。在這些嚴酷的視覺條件下,可以使用基于熱紅外(TIR)的VOT [30]、[31]、[32],通過TIR攝像機捕捉來自生物體的熱輻射,在沒有光照的情況下跟蹤目標。其次,缺乏深度信息使得單一的RGB模態VOT無法感知三維幾何和定位信息,這在自動駕駛和移動機器人等應用場景中尤為重要。最近,基于LiDAR的VOT [5]、[33]、[34]、[35] 應運而生,解決了這一問題,通過探索3D點云的內在幾何結構來感知目標的深度。LiDAR點的幾何結構有助于感知目標物體的深度,從而提供精確的3D形狀和位置。因此,本文還概述了兩種單模態VOT方法(基于TIR和LiDAR的)。此外,容易發現這些模態之間的共同框架,以便更好地理解。例如,基于TIR的跟蹤器通常遵循DCF和Siamese框架,因為TIR數據格式與RGB圖像非常相似。同樣,基于LiDAR的VOT借用了RGB模態中的Siamese框架,并將其發展為主導3D跟蹤領域的方法。 此外,由于不同的單模態VOT各有優缺點,因此也提出了融合多模態信息的跟蹤器,具有提高精度和魯棒性的潛力。更具體地說,融合意味著將兩種或多種模態的信息結合起來進行目標跟蹤。例如,TIR傳感器對光照變化、偽裝和物體姿態變化不敏感,但在人群中區分不同人的TIR輪廓會比較困難。另一方面,RGB傳感器則具有相反的特性。因此,直觀地將這兩種模態進行融合,可以互相補充 [36]、[37]、[38]。此外,融合選擇可能根據不同的應用有所不同。例如,RGB-LiDAR [39]、[40] 可以是適用于機器人跟隨的良好選擇,因其需要準確的3D信息;而RGB-語言VOT [8]、[9]、[41] 則適用于人機交互。隨著實際需求的增加,VOT領域的一些研究者已轉向集成多種模態,以構建魯棒的跟蹤系統。 現有關于VOT的綜述論文主要集中在單一RGB模態方法的不同方面和分類 [42]、[43]、[44]、[45]、[46]、[47]、[48]、[49]、[50]。例如,最近的綜述 [46] 將現有的RGB跟蹤器分為生成性跟蹤器和判別性跟蹤器。Javed等人 [43] 介紹了兩種廣為人知的RGB基VOT框架,即DCF和Siamese。然而,這些以往的工作未包含最新流行的基于變換器的方法,而這些方法不僅建立了新的最先進的性能,還帶來了許多有洞察力的研究方向。此外,ICD框架的展示也不夠充分。而且,關于多模態VOT的綜述非常少,要么僅討論了兩種模態(RGB-Depth和RGB-TIR) [51],要么側重于多線索特征的融合(如顏色、梯度、輪廓、空間能量、熱輪廓等) [52]、[53]。在過去五年里,我們目睹了多模態VOT的顯著進展。同時,新的研究方向如基于LiDAR的VOT、RGB-LiDAR VOT和RGB-語言VOT相繼出現。然而,這些研究在以往的VOT綜述中未被很好地總結。 本文從數據模態的角度,系統地回顧了VOT方法,考慮了單模態VOT和多模態VOT的最新發展。我們在圖1中總結了所回顧的模態及其代表性示例、優缺點和應用。具體而言,我們首先概述了三種常見的單模態VOT方法:基于RGB、基于TIR和基于LiDAR的。接下來,我們介紹了四種多模態融合跟蹤方法,包括RGB-Depth、RGB-TIR、RGB-LiDAR和RGB-Language。除了算法外,我們還報告并討論了不同模態的VOT基準數據集及其結果。本文的主要貢獻總結如下:

  1. 我們從數據模態的角度全面回顧了VOT方法,包括三種常見的單模態(RGB、TIR、LiDAR)和四種多模態(RGB-Depth、RGB-TIR、RGB-LiDAR、RGB-Language)。據我們所知,這是第一篇綜述工作,展示了新興的基于LiDAR、RGB-LiDAR和RGB-Language的VOT方法。
  2. 我們總結了四種廣泛使用的基于深度神經網絡的單模態跟蹤器框架,抽象出其架構并展示了其對應的定制繼承者。
  3. 我們提供了對VOT社區中300多篇論文的全面回顧,涉及最新和先進的方法,為讀者提供了最先進的技術和工作流程。
  4. 我們對不同模態的現有方法在廣泛使用的基準測試中的表現進行了廣泛比較,并最終給出了深刻的討論和有前景的未來研究方向。

本文的其余部分安排如下:第2節介紹現有的VOT綜述,并闡述本文的不同方面。第3節回顧了使用不同單一數據模態的VOT方法及其比較結果。第4節總結了多模態VOT方法。第5節介紹了不同模態的VOT數據集。最后,第6節討論了VOT的未來發展潛力。由于篇幅限制,部分結果表格,包括單模態和所有多模態結果,已移至附錄A,且不同模態的VOT數據集介紹見附錄B。

付費5元查看完整內容

人工智能(AI)理論的持續發展推動了這一領域的前所未有的高度,這歸功于學者和研究人員的不懈努力。在醫學領域,人工智能發揮著關鍵作用,依托強大的機器學習(ML)算法。醫學影像中的人工智能技術幫助醫生進行X射線、計算機斷層掃描(CT)和磁共振成像(MRI)診斷,基于聲學數據進行模式識別和疾病預測,提供疾病類型及發展趨勢的預后,利用智能健康管理可穿戴設備結合人機交互技術等。盡管這些成熟的應用在醫學診斷、臨床決策和管理中起到了重要作用,但醫學和人工智能領域的合作面臨著一個迫切的挑戰:如何驗證決策的可靠性?這一問題的根源在于醫學場景中對問責制和結果透明度的需求與人工智能的“黑箱”模型特性之間的沖突。本文綜述了近期基于可解釋人工智能(XAI)的研究,重點關注視覺、音頻及多模態視角下的醫學實踐。我們旨在對這些實踐進行分類和綜合,旨在為未來的研究人員和醫療專業人士提供支持和指導。

1 引言

隨著許多技術瓶頸的突破,人工智能(AI)已經催生了多個重要分支,包括深度學習(DL)、計算機視覺(CV)、自然語言處理(NLP)和大語言模型(LLMs)[203]。這些子領域相互聯系,共同推動了人工智能的全面發展。隨著技術的不斷進步,人工智能已經逐步滲透到教育、交通和醫療等多個領域[123]。 近年來,基于人工智能的醫療領域迅速擴展,催生了許多針對不同臨床學科的新技術。深度學習的興起標志著數字技術范式的重大變化,顯著提升了醫療模型預測的精準度[120]。例如,基于卷積神經網絡(CNNs)的醫學影像模型在腫瘤識別、器官分割和異常檢測等任務中展現了卓越的準確性[199, 201]。另一方面,遞歸神經網絡(RNNs)顯著提高了語音識別的準確性,替代了傳統的GMM-HMM模型。RNN在音頻數據上的卓越表現得到了驗證[209]。因此,這些方法被廣泛應用于聲學病理檢測系統和遠程醫療中[63, 137]。此外,基于注意力機制的Transformer架構在研究界得到廣泛應用[186, 189]。例如,它被用來處理多模態醫學數據,將影像數據與其他醫療數據(如音頻或生理參數)結合,以獲得更全面的健康視圖[2, 178]。 然而,病例的復雜性和數據的龐大規模使得醫療領域充滿了巨大的挑戰。根據國際數據公司(IDC)的預測,全球數據量預計將從2018年的33澤字節增長到2025年的175澤字節,其中醫療數據預計將以最快的速度增長,這是由于醫療分析技術的進步和醫學影像頻率及分辨率的提升[150]。這些龐大的數據集不僅包含個體信息、生理參數和為患者量身定制的治療數據,還包括疾病特征、財務考慮和文化差異等[83, 195]。此外,突發流行病的發生,尤其是2019年底爆發的COVID-19大流行,顯著加重了醫療系統的壓力。截至2024年1月28日,全球政府機構已確認報告了774,469,939例COVID-19病例[113],且因該病及其并發癥導致的死亡人數不可估量。這場災難暴露了醫療系統中醫務人員短缺、醫療決策效率低下和醫療設施不足等問題[124]。因此,在如此復雜和不斷變化的環境中找到有效解決方案,成為醫療領域亟待解決的問題。 研究人員通常需要對復雜且往往不透明的機器學習(ML)算法進行大量訓練,經過成千上萬次迭代才能取得令人滿意的結果[40]。這些復雜的人工智能模型已被證明能夠有效推動創新和提高模型的準確性[70, 138]。然而,隨之而來的新問題是如何闡明人工智能模型的決策過程:人工智能模型的不透明性使得人們無法理解或解釋其決策過程[69]。這一問題的根本原因在于,許多復雜的機器學習模型,特別是深度學習模型,涉及數百萬個參數和層次結構,導致決策過程錯綜復雜,難以解釋[159]。然而,在醫療領域,醫療決策的透明性和可解釋性恰恰是醫生和患者最需要的[37, 70]。 目前,已經有多種可解釋人工智能(XAI)技術在醫療行業中得到了應用和擴展[107, 152, 211]。本文將介紹在醫學視覺、音頻和多模態解決方案中近期的可解釋性研究成果。這些成就包括成熟的XAI模型的演變以及提高可解釋性的創新努力。 許多顯著的綜述探討了XAI與醫療領域的交集。Loh等人[103]回顧了2011年至2022年間XAI在醫療中的應用,重點介紹了各種醫療環境下不同的XAI技術。然而,他們的綜述涵蓋的時間跨度較長,許多他們討論的傳統人工智能方法如今已經不再使用。此外,他們沒有深入探討與低維生物信號相關的XAI應用。Band等人[20]考察了XAI在醫療中的應用,提出了一些常見的XAI方法,并探討了這些方法如何應用于解釋特定疾病。他們還對實施方法進行了簡要評估。然而,文章缺乏對XAI分類框架的深入討論,也沒有分析更廣泛的醫療XAI研究。Singh等人[173]的綜述專注于可解釋的深度學習模型在醫學影像分析中的應用。他們的綜述主要集中在醫學影像領域,而沒有考慮其他數據模態。類似地,Chaddad等人[28]回顧了XAI在醫療中的應用,分類并總結了醫學影像中的XAI類型和算法。然而,他們僅涵蓋了有限的XAI技術,且未探討這些技術在更廣泛臨床應用中的表現。 與此不同,我們的綜述做出了不同的貢獻,提供了更全面和新穎的視角。我們首先探討了醫療領域中的具體可解釋性需求,突出了患者和臨床醫生對于可解釋性的共同需求。然后,我們介紹了XAI的定義、相關術語及分類標準。值得注意的是,我們在醫療層面上對可解釋性需求進行了分類,澄清了相關術語,并解釋了它們之間的關系。在分類標準方面,我們結合了[183]、[70]、[34]和[106]提出的框架,基于四個標準對19種在醫療中常用且具有前景的XAI技術進行了分類。此外,我們分析了過去五年內發表的100多篇聚焦于XAI在不同模態(視覺、音頻和多模態)應用的論文,批判性地評估了這些研究,識別了當前的挑戰,并提供了未來研究方向和XAI應用發展的展望。 基于這些貢獻,本文的組織框架如下:第二節闡明了在醫療領域中解釋的重要性以及XAI在醫療領域的獨特背景。第三節介紹了XAI的定義、相關術語、分類標準和詳細技術。第四節分別探討了視覺、音頻和多模態解決方案中醫學應用中可解釋性的最新進展。通過呈現和深入分析這些應用,第五節和第六節討論了XAI在醫學應用中的挑戰與展望。最后,第七節對本文進行全面總結。

付費5元查看完整內容

摘要—密集的三維環境表示一直是機器人領域的長期目標。盡管之前的神經輻射場(NeRF)表示因其基于坐標的隱式模型而廣泛應用,但最近出現的三維高斯濺射(3DGS)在顯式輻射場表示方面展示了顯著潛力。通過利用三維高斯基元進行顯式場景表示并實現可微渲染,3DGS在實時渲染和逼真性能上比其他輻射場有顯著優勢,這對于機器人應用極具益處。在本綜述中,我們對3DGS在機器人領域的應用進行了全面分析。我們將相關工作的討論分為兩個主要類別:3DGS的應用及其技術進展。在應用部分,我們從場景理解和交互的角度探討了3DGS在各種機器人任務中的應用。而在技術進展部分,我們聚焦于3DGS在適應性和效率方面的改進,以期提升其在機器人領域的性能表現。隨后,我們總結了機器人領域中最常用的數據集和評估指標。最后,我們識別了當前3DGS方法的挑戰與局限,并探討了3DGS在機器人領域的未來發展方向。索引詞—三維高斯濺射,機器人,場景理解與交互,挑戰與未來方向

神經輻射場(NeRF)的出現推動了機器人領域的發展,特別是在感知、場景重建和環境交互方面提升了機器人的能力。然而,這種隱式表示在優化過程中,由于逐像素光線投射渲染的低效性而受到限制。三維高斯濺射(3DGS)的出現通過其顯式表示解決了這一效率問題,并通過濺射實現了高質量和實時渲染。具體來說,3DGS使用一組具有可學習參數的高斯基元來建模環境,為場景提供顯式表示。在渲染過程中,3DGS通過濺射將三維高斯映射到給定攝像機位置的二維圖像空間,并使用基于切片的光柵化器進行加速,從而實現了實時性能。因此,3DGS在提升機器人系統性能和擴展其能力方面具有更大的潛力。自2023年3DGS問世以來,已有多篇綜述論文[4]、[5]、[6]、[7]、[8]、[9]展示了該領域的發展。Chen等人[4]首次綜述了3DGS的發展歷程和關鍵貢獻。Fei等人[5]提出了一個統一框架,用于對現有3DGS工作進行分類。Wu等人[7]則提供了一份包含傳統濺射方法與新興的基于神經網絡的3DGS方法的綜述,展示了3DGS濺射技術的發展。Bao等人[9]基于3DGS技術提供了更詳細的分類。此外,Dalal等人[6]聚焦于3DGS中的三維重建任務,而Bagdasarian等人[8]則總結了基于3DGS的壓縮方法,展示了3DGS在特定領域的優勢與不足。然而,現有的3DGS綜述要么對3DGS工作進行廣泛的分類,要么聚焦于3DGS的實時視圖合成,缺乏對機器人領域的詳細總結。因此,在本文中,我們對機器人領域中的3DGS進行了全面總結和詳細分類。我們介紹了3DGS在機器人中的應用,并詳細分類了與機器人應用相關的3DGS研究。此外,我們總結了增強3DGS表示以適用于機器人系統的潛在解決方案。最后,我們展示了基于3DGS的工作的性能評估,并討論了3DGS在機器人領域的未來發展。本綜述的整體框架如圖1所示。第二部分簡要介紹了3DGS的核心概念和數學原理。第三部分將3DGS在機器人中的各種應用方向進行分類,并詳細介紹了相關工作的分類。第四部分討論了改進3DGS表示以增強其在機器人任務中的能力的各種進展。此外,在第五部分中,我們總結了用于3DGS機器人應用的數據集和評估指標,并比較了現有方法在不同機器人方向上的表現。第六部分探討了3DGS在機器人領域的挑戰和未來方向。最后,第七部分總結了本次綜述的結論。

付費5元查看完整內容

摘要—近年來,三維視覺已成為計算機視覺領域的關鍵方向,推動了自動駕駛、機器人技術、增強現實(AR)和醫學成像等廣泛應用。該領域依賴于從圖像和視頻等二維數據源中準確感知、理解和重建三維場景。擴散模型最初設計用于二維生成任務,但它們提供了更靈活的概率方法,更好地捕捉了真實世界三維數據中的多樣性和不確定性。然而,傳統方法往往在效率和可擴展性方面面臨挑戰。本文綜述了當前最先進的擴散模型在三維視覺任務中的應用,包括但不限于三維物體生成、形狀補全、點云重建和場景理解。我們深入討論了擴散模型的基本數學原理,概述了其前向和反向過程,并介紹了支持這些模型處理三維數據集的各種架構進展。我們還探討了擴散模型在三維視覺中應用所面臨的主要挑戰,如處理遮擋和點密度變化,以及高維數據的計算需求。最后,我們討論了包括提升計算效率、增強多模態融合、探索大規模預訓練以改善三維任務泛化能力在內的潛在解決方案。本文為這一快速發展的領域的未來探索和開發奠定了基礎。

關鍵詞—擴散模型,三維視覺,生成模型。

I. 引言

近年來,三維視覺已成為計算機視覺領域中的重要方向,推動了自動駕駛、機器人、增強現實和醫學成像等各種應用。這些應用依賴于從圖像和視頻等二維數據源中對三維場景的準確感知、理解和重建。隨著三維視覺任務的日益復雜,傳統方法常常在效率和可擴展性方面遇到挑戰。 擴散模型[1]–[5]最初在生成建模領域提出,并迅速發展,展現出在許多計算機視覺領域的顯著潛力。基于通過一系列隨機步驟轉換數據的理念,這些模型在圖像生成[6]–[9]、去噪[10]和修復任務[11]中取得了成功。尤其是,擴散模型在生成高質量、多樣化輸出方面表現出強大的生成能力,同時對噪聲具備魯棒性。 近年來,擴散模型的發展已從二維拓展到更具挑戰性的三維任務[12]–[14],如三維物體生成[15]–[17]、形狀補全[18]、點云重建[20]等,標志著擴散建模與三維視覺的新時代的到來。 將擴散模型應用于三維視覺任務展現出前景,主要原因在于它們能夠建模復雜的數據分布,并且在噪聲處理上具備固有的魯棒性。擴散模型為需要三維數據合成、補全或增強的任務(如形狀生成[21]或深度估計[22])提供了強大的框架。與依賴確定性算法的傳統三維建模技術不同,擴散模型提供了更靈活的概率方法,可以更好地捕捉真實三維數據中的多樣性和不確定性。 對擴散模型的日益關注源于它們在二維任務中生成精細高質量結果的能力,這促使研究人員探索其在三維中的應用。本文綜述了將擴散模型用于三維視覺的最新方法,討論了其潛在的優勢,如在三維重建中提升精度、更好地處理遮擋和稀疏數據等。 盡管將擴散模型應用于三維視覺前景廣闊,但其并非沒有挑戰。其中一個主要技術障礙是三維數據的復雜性增加,它可以以多種形式表示,如網格、體素或點云,每種形式都有其特定的處理需求。將擴散模型與這些異構數據結構集成仍然是一個挑戰,同時三維任務的計算需求常常遠遠高于二維任務,導致可擴展性問題。 另一個挑戰在于建模三維數據中的長距離依賴關系,擴散模型并非原生具備該能力。此外,許多三維視覺任務缺乏大規模標注數據集,這進一步增加了擴散模型的訓練難度,要求大量高質量數據以實現有效泛化。 本綜述聚焦于擴散模型在廣泛三維視覺任務中的應用,包括但不限于三維物體生成、點云去噪、三維重建及場景理解[23]。我們回顧了多種擴散模型架構及其在三維視覺中的適應性,涵蓋了過去五年的早期階段和最新進展。特別關注于這些模型如何應對三維數據的特定挑戰以及大規模三維視覺問題的計算限制。本文的主要貢獻如下: * 對現有將擴散模型應用于三維視覺任務的研究進行了全面分類和總結,分析其優缺點。 * 深入分析和比較了用于三維數據的關鍵技術、框架和方法。 * 詳細討論了該領域當前的挑戰和開放問題,以及未來研究方向,以改進三維視覺應用中的擴散模型。 * 對用于評估三維視覺任務中擴散模型的相關數據集和基準進行了廣泛的回顧。

為完成本綜述,我們采用了全面的文獻檢索策略,以確保深入探索該領域。首先確定了與主題相關的關鍵詞和短語,如“擴散模型”、“三維視覺”以及相關概念(如“生成模型”和“三維數據的神經網絡”)。我們在多個學術數據庫(包括IEEE Xplore、arXiv和Google Scholar)中進行檢索,重點關注過去五年的出版物,以捕捉最新進展。此外,我們優先選擇經過同行評審的期刊文章、會議論文和預印本,確保包含高質量的前沿研究。通過此策略,我們旨在提供關于三維視覺中擴散模型的全面、最新的綜述。 本文其余部分的組織結構如下:第二節概述擴散模型的理論基礎及其在二維和三維視覺任務中的關鍵發展。第三節深入探討三維視覺的核心概念,討論不同數據表示及其挑戰。第四節對擴散模型在不同三維視覺任務中的應用進行了詳細回顧。第五節總結了用于評估的可用數據集和基準。最后,第六節討論了未來方向和開放問題。

第七節為結論。

**擴散模型基礎

A. 擴散模型簡介 擴散模型(Diffusion Models)是一類生成模型,通過逐步將隨機噪聲轉換為結構化數據來學習生成數據的分布。該過程包括前向擴散過程,在此過程中噪聲逐步添加到數據中,以及反向過程,利用去噪算法從噪聲中重建數據。這種方法旨在通過迭代去噪來建模數據分布,已證明能夠在多個領域(包括三維視覺)生成高質量的樣本。 擴散模型最早作為一種受非平衡熱力學啟發的隨機過程被引入,發展迅速。尤其是在Ho等人提出去噪擴散概率模型(DDPMs)之后,擴散模型在可擴展性和采樣效率方面有了顯著提升。擴散模型的關鍵特性在于其迭代生成過程,主要包括: * 前向過程:逐步向數據添加高斯噪聲。 * 反向過程:通過去噪還原數據,生成新樣本。

這種框架允許擴散模型避免模式崩潰,與生成對抗網絡(GANs)相比,生成出多樣性更高的樣本。B. 擴散模型的數學基礎

 C. 擴散模型的變體 1. 去噪擴散概率模型(DDPMs):在DDPM中,前向過程逐步將高斯噪聲添加到數據中,使原始數據分布轉變為已知先驗(通常為標準高斯分布)。反向過程則由神經網絡參數化,并訓練為逐步去噪。DDPM通過優化變分下界,實現高保真度圖像生成(Diffusion Models in 3D …)。 1. 基于得分的生成模型(Score-Based Generative Models):這種變體使用得分匹配技術,以更直接地估計數據分布的梯度(Diffusion Models in 3D …)。 1. 隨機微分方程(SDE):此類擴散模型的連續時間公式使其在三維生成任務中更具靈活性,例如生成點云和體素網格(Diffusion Models in 3D …)。 D. 三維視覺中的生成過程 與生成對抗網絡(GANs)和變分自編碼器(VAEs)相比,擴散模型在三維視覺任務中具有更強的生成能力,能夠生成光滑的連續表面,并處理復雜的高維數據。這對于需要詳細幾何結構的應用(如三維形狀重建)特別有利。

三維視覺基礎

三維視覺領域是現代計算機視覺中不可或缺的一部分,涉及各種數據表示方法及深度學習技術,以理解和處理三維信息。三維視覺廣泛應用于增強現實、虛擬現實以及自動駕駛等領域,這些應用都依賴于準確的三維場景感知與分析。

**A. 三維表示

三維數據表示是三維視覺的核心,提供了建模、分析和交互的手段。不同的表示方式各有其特點、優缺點,通常用于不同的三維任務。 二維表示

二維表示使用平面圖像推斷三維信息,適用于渲染與理解三維場景。通過多視圖圖像或深度圖,可以從多個角度獲取場景或物體的三維結構。

深度圖:深度圖表示從特定視角到場景中物體的距離,將深度信息編碼成圖像。它在三維重建、場景理解等應用中十分重要,因為它提供了一種整合二維圖像處理技術的有效方式。 顯式表示

顯式表示直接定義了三維模型的幾何形狀,如點云、體素網格和網格。它們直觀易操作,但存儲復雜形狀時空間需求較大。

點云:點云通過三維坐標表示物體或場景的形狀。其主要優勢在于對幾何數據的直接捕獲。然而,由于缺乏拓撲信息,點云通常需要進一步處理,以實現渲染或仿真。 1. 隱式表示 隱式表示通過數學函數定義三維幾何,例如有符號距離場(SDF)和占用場。它們通常用于生成平滑、連續的表面,并能處理復雜的幾何形狀。

**B. 三維視覺中的深度學習方法

深度學習的進步推動了三維視覺的發展,使得自動駕駛、機器人導航等領域能夠高效地分析和解釋三維數據。

基于卷積的神經網絡 三維卷積神經網絡(3D CNN)將二維卷積擴展到體素數據,捕捉三維空間的關系,適用于體素網格處理任務。然而,三維CNN計算需求高,因此多視圖CNN和球面CNN等變體在實際應用中被廣泛采用。

直接點云處理方法 點云數據的處理逐步由PointNet等方法引領,這些方法通過直接操作點云數據而無需將其轉換為其他形式,從而保留了數據的稀疏性與不規則性。

圖神經網絡 在點云上應用圖神經網絡(GNN)通過捕獲非歐幾里得結構中的關系,適合于對拓撲信息的建模。

占用網絡與深度有符號距離場 占用網絡和深度有符號距離場(DeepSDF)模型能有效地在復雜場景中生成詳細的三維形狀,在物體重建和場景理解中具有優勢。

基于Transformer的架構 Transformer的引入使得長距離依賴關系的建模成為可能,尤其在三維點云數據上,表現出在自適應分割和語義理解方面的能力。

**C. 三維視覺中的挑戰

遮擋 遮擋問題在三維視覺中普遍存在,尤其在物體間相互重疊的場景中。這會導致數據缺失或失真,影響物體識別和場景重建。多視圖聚合和深度完成是應對此問題的常用技術。

點密度變化 由于掃描設備距離和角度的不同,點云密度可能不均勻,導致重建和特征提取的復雜度增加。點云上采樣和表面插值技術被用來處理這些問題。

噪聲與離群值 三維數據采集過程中常伴有噪聲和離群值,影響數據的準確性。去噪濾波和離群值去除是常見的應對手段,但在精度和計算需求之間的平衡仍具挑戰性。

三維視覺的復雜性及其數據的高維特性使得這一領域充滿了挑戰,但隨著深度學習技術的不斷進步,三維視覺的準確性和效率正在顯著提高,為實際應用帶來了新的突破。

三維擴散生成任務

擴散模型在三維數據生成任務中表現出極大的潛力,能夠生成高質量的三維模型及其相關內容。這些任務涵蓋了各種生成和處理三維數據的方式,使擴散模型成為三維視覺研究的重要工具。

**A. 無條件生成

無條件生成指的是不依賴于任何輸入或條件(如類標簽、圖像或文本提示)生成三維形狀或物體。在這種生成模式下,模型從隨機噪聲或潛在變量出發,基于學習到的數據模式生成多樣化的三維結構。無條件生成常用于三維設計、虛擬環境和游戲等應用,其目的是在沒有外部指導的情況下捕捉數據的底層分布,生成逼真且多樣的三維輸出。

Zhou等人提出的Point-Voxel Diffusion框架,是最早利用擴散模型生成三維物體的工作之一。該方法將去噪擴散模型與三維形狀的概率生成模型結合,使用點-體素混合表示進行生成。模型通過一系列去噪步驟,將觀察到的點云數據逆擴散回到高斯噪聲狀態,從而生成新的三維形狀。

**B. 條件生成

在條件生成任務中,擴散模型會根據特定輸入(例如圖像或文本提示)生成對應的三維數據。該方法通常用于圖像到三維、文本到三維轉換等場景。這類任務對于三維數據合成的控制性較強,允許模型根據輸入生成具有特定特征的三維結構。例如,Ren等人提出的模型結合卷積和Transformer架構,生成動態掩模以在生成過程中實現特征融合,從而在不同階段優化全局和局部特征的平衡(Diffusion Models in 3D …)。

**C. 三維編輯與操作

三維編輯任務涉及對已有的三維數據進行修改或增強。擴散模型在這一領域展示了顯著的靈活性,允許對三維場景進行細致的控制。Zheng等人開發的PointDif方法,應用擴散模型進行點云預訓練,有助于在分類、分割和檢測等任務中提高性能。該方法將點云預訓練任務視為條件點對點生成問題,通過循環均勻采樣優化策略,使模型在不同噪聲水平下實現一致的恢復(Diffusion Models in 3D …)。

**D. 新視角合成

新視角合成任務主要集中于從給定的視角生成不同角度的三維圖像。擴散模型能夠有效處理三維數據的長距離依賴關系,并生成新的視角。Shue等人提出的Triplane Diffusion模型將三維訓練場景轉換為一組二維特征平面(稱為triplanes),然后利用現有的二維擴散模型對這些表示進行訓練,從而生成高質量的三維神經場。

**E. 深度估計

擴散模型在深度估計任務中的應用表現在通過噪聲抑制的方式改善深度信息提取質量。在復雜的場景中,模型可以利用擴散過程生成連續的深度數據,有效應對噪聲和不完整信息的問題。擴散模型通過生成更為平滑和準確的深度圖,為三維視覺系統在動態場景中的應用提供了新的解決方案。 綜上所述,擴散模型為三維視覺中的多項任務提供了有效的生成和增強工具。模型的應用不僅在無條件生成和條件生成方面取得了顯著成果,還在三維數據的編輯、合成和估計等任務中展現了出色的性能。這一領域的研究仍在不斷發展,未來可通過結合物理約束和多模態數據進一步提升模型的表現,為復雜和動態場景中的三維任務提供更強大的支持。

結論

本文對擴散模型在三維視覺任務中的應用進行了全面綜述。擴散模型最初是為二維生成任務設計的,但隨著三維數據(如點云、網格和體素網格)的處理需求增長,這些模型逐步適應了三維數據的復雜性。我們詳細回顧了將擴散模型應用于三維對象生成、形狀補全、點云重建和場景生成等任務的關鍵方法,并深入討論了擴散模型的數學基礎,包括其前向和反向過程及架構改進,使之能夠處理三維數據。

此外,本文分類和分析了擴散模型在不同三維任務中的顯著影響,包括從文本生成三維數據、網格生成以及新視角合成等。我們還探討了擴散模型在三維視覺中面臨的主要挑戰,如遮擋處理、點密度變化以及高維數據的計算需求。針對這些挑戰,我們提出了一些潛在解決方案,包括提升計算效率、增強多模態融合,以及探索使用大規模預訓練以更好地在三維任務中實現泛化。

通過整合當前擴散模型在三維視覺領域的研究現狀,并識別出其中的不足與機遇,本文為未來在這一快速發展的領域進行更深入的探索和開發奠定了基礎。擴散模型在三維視覺中的應用還在不斷進步,未來的研究有望繼續優化模型的計算效率和多任務處理能力,為三維數據的生成、重建和理解開拓新的可能性。

付費5元查看完整內容

摘要——目前,大多數工業物聯網(IIoT)應用仍然依賴于基于卷積神經網絡(CNN)的神經網絡。盡管基于Transformer的大模型(LMs),包括語言、視覺和多模態模型,已經在AI生成內容(AIGC)中展示了令人印象深刻的能力,但它們在工業領域(如檢測、規劃和控制)中的應用仍然相對有限。在工業環境中部署預訓練的大模型往往面臨穩定性與可塑性之間的挑戰,這主要是由于任務的復雜性、數據的多樣性以及用戶需求的動態性。為了應對這些挑戰,預訓練與微調策略結合持續學習已被證明是一種有效的解決方案,使模型能夠適應動態需求,同時不斷優化其推理和決策能力。本文綜述了大模型在工業物聯網增強的通用工業智能(GII)中的集成,重點關注兩個關鍵領域:大模型賦能GII和GII環境下的大模型。前者側重于利用大模型為工業應用中的挑戰提供優化解決方案,而后者則研究在涉及工業設備、邊緣計算和云計算的協同場景中,持續優化大模型的學習和推理能力。本文為GII的未來發展提供了洞見,旨在建立一個全面的理論框架和研究方向,從而推動GII向更加通用和適應性強的未來發展。 關鍵詞——通用工業智能、大語言模型、持續學習、工業物聯網、邊緣計算。

工業5.0將網絡-物理-社會元素集成到制造業中,強調數字與物理系統的交互以及人機協作,通過互聯網有效地連接設備、物體和人[1]。隨著物聯網(IIoT)的快速發展[2]-[4]、通信技術[5], [6]、AI生成內容(AIGC)[7]、機器人和數字孿生技術[8]-[10],現代工業系統變得越來越復雜。這些系統不僅生成高頻的單模態數據,還包括文本、圖像、視頻、代碼和音頻等多模態數據類型。工業大數據可以用于創建數字化制造工作流程和工業流程,極大地推動了工業5.0和網絡-物理-社會系統中生產力、效率和效能的提升。 如圖1所示,數據集和模型構成了GII生態系統的基礎要素,推動了更高層次算法和應用的快速發展。這些應用包括智能控制系統、預測性維護[11]、故障診斷[12], [13]和異常檢測[14],這些都高度依賴于對IIoT數據的提取和分析。GII的成功特別依賴于其從這些IIoT數據集中高效學習和提取有價值特征的能力。基于Transformer的大模型(LMs),例如大語言模型(LLMs)[16]–[18]、視覺模型[19], [20]、時間序列模型[21]以及多模態模型[22], [23],由于其獨特優勢,受到廣泛關注。通過在大規模數據集上進行預訓練,這些擁有數十億到數萬億參數的模型積累了廣泛的知識,極大地推動了數據處理的自動化和多樣化,同時減少了對人類專業知識的依賴。

在工業領域,大模型的精度和可擴展性使其在提高工業流程的準確性方面非常有效。然而,在工業環境中部署預訓練大模型時,需要根據具體任務架構、動態數據分布和用戶偏好進行謹慎的適配。盡管大模型在多任務泛化、小樣本學習和推理方面具有優勢,但在這些環境中平衡穩定性和適應性仍然是一個顯著挑戰。受到大模型在自然語言處理(NLP)中成功的啟發,工業界越來越多地探索其在GII中的潛力。一種方法是從頭構建行業特定的基礎模型[24],但特定領域數據規模的限制通常阻礙了涌現能力的發展。另一種方法是通過大數據集上的預訓練,然后進行特定任務的微調,這已顯示出在構建穩健的工業模型方面的巨大潛力,顯著提高了各類任務的性能。這種方法有效地應對了特定領域數據匱乏的挑戰,同時加速了工業應用中先進能力的發展。

為工業任務調整大模型是一個重要的研究方向[25]。這些模型在跨任務泛化、零樣本/小樣本學習和推理能力方面的優勢,為解決知識遷移、數據稀缺性和解釋性問題提供了新的途徑。 ****持續大模型(CLMs)****在維持和發展這些工業模型的能力方面發揮了關鍵作用。CLMs在大規模數據集上進行預訓練,并由Transformer架構驅動,設計用于持續學習和適應,確保工業大模型在滿足GII不斷變化的需求時仍然保持相關性和有效性。

A. 本綜述的目標

本文旨在建立一個全面的視角,并對IIoT增強的GII進行深入分析。它提出了將GII分為兩個主要類別的概念:

  • 通用工業智能的大模型(LMs for GII):該方向重點利用大模型的高級數據處理和分析能力來解決工業應用中固有的優化問題。具體來說,LMs通過其處理實時多模態IIoT數據、執行復雜特征提取并確保精確的模式識別和結果驗證的能力,提升了IIoT驅動的工業系統的智能化和運營效率,最終提高了不同工業環境中的測量精度和系統性能。
  • 通用工業智能上的大模型(LMs on GII):該視角探討了工業應用如何通過持續模型操作,在協同的IIoT設備-邊緣-云環境中擴展和優化大模型的能力。通過采用持續學習(CL)和在線學習策略,模型可以適應新數據和環境變化,而無需昂貴的再訓練。這種方法節省了計算資源,最小化了延遲,并高效處理了數據分布變化和性能退化,確保了動態工業場景中的穩健模型性能。

本文通過一個示意圖(圖2)進一步明確了這些類別的引入,幫助闡明了兩種方法之間的結構性差異和操作機制。

B. 本綜述的獨特特征

近年來,持續學習(CL)作為一個研究課題獲得了顯著關注,許多研究探討了其在設備健康管理[26]、機器人[27]和流數據[28]等領域的應用。在大模型的背景下,由于這些模型的規模巨大,頻繁的再訓練成本高昂,因此CL已被認為是至關重要的[29]。盡管CL的文獻廣泛,但我們的綜述獨特地關注了CL在IIoT增強的工業系統中的大模型的持續適應性——這是現有文獻中未被充分覆蓋的領域。本綜述首次為大模型在四個不同的IIoT工業場景中應用的CL方法提供了全面而系統的回顧。

如表I所示,本文通過以下幾個關鍵貢獻來區分自身

  • 新穎的分類體系:我們引入了一個新的GII理論框架。通過將大模型的應用分為兩個維度——“LMs for GII”和“LMs on GII”,本文不僅探討了如何利用大模型優化工業應用,還研究了這些應用如何反過來優化模型本身。這種雙向交互視角顯著豐富了現有文獻。

  • 跨領域多模態集成:與大多數僅專注于特定類型大模型(如語言模型或視覺模型)的現有研究不同,本綜述涵蓋了大語言模型(LLMs)、視覺Transformer、多模態模型和時間序列模型。這種跨模態集成增強了復雜儀器和測量系統的設計、開發和評估,這些系統用于信號的生成、獲取、調理和處理。通過利用不同模型的獨特優勢,它為推進測量科學及其應用提供了更全面和深入的視角,從而更有效地應對復雜的工業挑戰。

  • 持續學習的實際應用:本文強調了持續學習策略在IIoT增強的工業系統,特別是邊緣計算和云計算協同環境中的實際應用。這個重點確保了模型不僅能適應新數據和變化的條件,還能資源高效。通過減少計算需求和訓練成本,我們的方法解決了工業應用中的關鍵約束。

付費5元查看完整內容

機器視覺通過使機器能夠解讀和處理視覺數據,增強了工業應用中的自動化、質量控制和運營效率。盡管傳統的計算機視覺算法和方法仍被廣泛使用,但機器學習在當前的研究活動中已變得至關重要。特別是,生成式人工智能(AI)展示了通過數據增強、提高圖像分辨率以及識別質量控制中的異常,從而改善模式識別能力的潛力。然而,由于數據多樣性、計算需求以及對穩健驗證方法的必要性等挑戰,生成式AI在機器視覺中的應用仍處于早期階段。為全面了解生成式AI在工業機器視覺中的現狀,特別是最近的進展、應用和研究趨勢,進行了一次基于PRISMA指南的文獻綜述,分析了超過1200篇關于工業機器視覺中生成式AI的論文。我們的研究發現揭示了當前研究中的各種模式,生成式AI的主要用途是數據增強,用于分類和目標檢測等機器視覺任務。此外,我們收集了一系列應用挑戰及數據需求,以促進生成式AI在工業機器視覺中的成功應用。本綜述旨在為研究人員提供對當前研究中不同領域和應用的深入見解,突出重要進展并識別未來工作的機會。

關鍵詞:機器視覺,生成式人工智能,深度學習,機器學習,制造業 1 引言

視覺檢查由受過培訓的檢查員執行,仍在工業中廣泛使用,但自20世紀70年代以來,自動化機器視覺已被系統地引入[1]。工業機器視覺是現代制造過程中的關鍵組成部分,涉及圖像的處理和分析,以自動化任務,包括質量檢查、物體或缺陷檢測以及過程控制[2]。傳統的計算機視覺系統依賴于需要手工設計特征的經典算法和技術,雖然這些方法在實踐中很有效,但在處理具有顯著變化性和不可預見情況的復雜場景時存在局限性[2, 3]。在20世紀80年代和90年代,隨著數字圖像處理、紋理和顏色分析等技術的進步,并有更好的硬件和軟件支持,機器視覺技術得到了發展[4]。當時,任務如質量檢測和物體識別主要依賴于預定義的算法[3, 5]。 20世紀90年代末和2000年代初,機器學習逐漸興起,支持向量機(SVM)[6]、隨機森林[7]和人工神經網絡(ANN)等模型使系統能夠以數據驅動的方式進行學習,提高了它們應對現實世界中變化和復雜性的能力[2]。機器視覺領域的真正革命出現在2010年代,隨著深度學習(DL)的發展。卷積神經網絡(CNN)在圖像處理任務中表現出極強的能力。CNN使機器能夠從原始圖像數據中自動學習層次特征,大大提高了在圖像分類、圖像分割、目標檢測、缺陷檢測和姿態估計等任務中的性能[4, 9-11]。像AlexNet、VGG和ResNet這樣的里程碑模型展示了深度學習的潛力,迅速在學術研究和工業界得到了廣泛應用[2]。 生成式人工智能(GenAI)代表了機器視覺演變中的最新前沿。與傳統的區分性模型用于分類或識別模式不同,GenAI模型能夠創建新的數據實例。雖然大多數流行的GenAI模型和創新設計是為了與人類互動,但探索GenAI如何改變工業制造領域具有重要的機會。類似于數據生成的替代方法如模擬需要專家領域知識和手動執行,因此在工業制造應用中,它們的使用僅限于預處理和后處理步驟。而GenAI方法一旦訓練完成,具有在制造過程中自動化當前手動處理步驟的潛力。由于其前景廣闊,GenAI已被應用于不同的機器視覺用例,其中每個提出的解決方案都是在特定用例約束下開發的。這些在機器視覺研究領域中積累的發現和經驗為其他從業者提供了寶貴的見解,幫助他們在自己的研究中使用GenAI。盡管已有關于將GenAI應用于各種機器視覺用例的知識,但據我們所知,目前尚無專門針對工業機器視覺中GenAI的綜述,匯總已有的應用經驗。現有的文獻綜述中提及GenAI在工業機器視覺中的應用時,主要關注的是AI在特定制造領域(如印刷電路板[12]、硅片[13]、一般缺陷識別[14]或表面缺陷識別[15])中的應用。 本綜述的貢獻包括:(i)概述了工業機器視覺應用中使用的GenAI方法,(ii)提供了應用GenAI時的工具、潛力和挑戰的概述,以及(iii)展示了GenAI在典型機器視覺應用中的益處,為從業者提供參考。 基于這些目標,我們提出了以下在本綜述中探討的研究問題

  1. 在工業機器視覺應用中使用了哪些GenAI模型架構?
  2. GenAI方法需要滿足哪些要求和特性才能適用于工業機器視覺領域?
  3. GenAI已成功應用于哪些工業機器視覺任務?

本文結構如下:第2節首先概述了GenAI領域及其方法。第3節介紹了文獻綜述的方法,包括對排除標準的推導和選擇信息提取的詳細理由。第4節展示了搜索結果及其特征,并對提取的數據進行了廣泛分析。第5節討論了文獻綜述的結果,并結合研究問題進行探討。討論還包括對所用文獻綜述方法中的偏見和局限性的反思。最后,本文總結了本綜述的主要結果,并提出了在工業機器視覺任務中應用GenAI的指導原則。

2 生成式人工智能

生成式人工智能(GenAI)領域代表了旨在學習給定數據集 x∈Xx \in Xx∈X 的概率分布 p(x)p(x)p(x) 的半監督和無監督深度學習技術。在深度學習的背景下,GenAI方法使用參數化的人工神經網絡(ANNs)來近似概率分布 p(x)p(x)p(x),這些網絡通過權重 Θ\ThetaΘ 進行參數化,從而得到一個參數化模型 pΘ(x)p_\Theta(x)pΘ(x)。與判別式深度學習技術相比,判別式技術近似的是在給定輸入 xxx 的情況下,屬性(或標簽) yyy 上的概率分布 p(y∣x)p(y|x)p(y∣x),而生成模型 GGG 可以用于從訓練數據分布中抽取類似樣本 x~~pΘ(x~)\tilde{x} \sim p_\Theta(\tilde{x})x~~pΘ(x~) [16]。 對 p(x)p(x)p(x) 的估計可以分為顯式和隱式兩種方法。顯式估計模型嘗試提供概率密度 pΘ(x)p_\Theta(x)pΘ(x) 的參數化,而隱式估計模型則構建一個合成數據的隨機過程[17]。生成式人工智能的分類概述(參見圖1)總結了現有估計 pΘ(x)p_\Theta(x)pΘ(x) 的方法。不論模型類型如何,它們生成逼真高分辨率圖像的能力使得它們在解決諸如圖像修復、圖像去噪、圖像到圖像翻譯以及其他圖像編輯問題等經典計算機視覺任務中得到了廣泛應用。它們在學術基準測試中的出色表現,使其在機器視覺領域中具有重要意義。每種模型架構的進一步描述及其優缺點將在以下小節中進行探討。 3 研究方法

如引言中所述,本篇文獻綜述旨在概述生成式人工智能(GenAI)在工業機器視覺領域中的方法和應用,特別是針對制造業應用。該綜述采用了系統評價和薈萃分析的首選報告項目(PRISMA)方法進行,PRISMA方法旨在以透明、完整和準確的方式呈現和生成系統性綜述[36]。基于該方法,以下各節將介紹系統性綜述的實施方法。首先,介紹了以排除標準形式出現的適用性衡量標準,以及搜索策略和所使用的文獻數據庫(參見第3.1節)。接下來是研究選擇過程(參見第3.2節)和數據提取(參見第3.3節)。

付費5元查看完整內容

摘要——從演示中學習(Learning from Demonstrations),即通過數據學習機器人行為模型的領域,隨著深度生成模型的出現,正在越來越受到關注。盡管這一問題在“模仿學習”、“行為克隆”或“逆強化學習”等名稱下已經被研究了多年,但傳統方法依賴的模型往往難以有效捕捉復雜的數據分布,或者無法很好地擴展至大量演示數據。近年來,機器人學習社區對于使用深度生成模型來捕捉大數據集的復雜性表現出了越來越濃厚的興趣。在本綜述中,我們旨在提供對去年機器人領域中使用深度生成模型的進展的統一且全面的回顧。我們介紹了社區探索的不同類型的模型,如基于能量的模型、擴散模型、動作值圖、生成對抗網絡等。我們還展示了深度生成模型在不同應用中的使用情況,從抓取生成到軌跡生成或成本學習等。生成模型的一個重要元素是分布外的泛化能力。在我們的綜述中,我們回顧了社區為改善所學模型的泛化能力而做出的不同決策。最后,我們強調了研究中的挑戰,并提出了未來在機器人領域學習深度生成模型的一些研究方向。關鍵詞——機器人,生成模型,決策制定,控制,模仿學習,行為克隆,從演示中學習

I. 引言**

從演示中學習(Learning from Demonstration, LfD)[1], [2],也稱為模仿學習(Imitation Learning)[3], [4],是通過觀察和模仿一組專家演示來學習期望的機器人行為模型的領域**。基于場景的觀察和所需任務的條件,模型(通常稱為策略)被訓練生成與專家演示中行為相似的動作。根據任務的不同,這些動作可能代表期望的末端執行器姿態 [5], [6]、機器人軌跡 [7], [8] 或期望的場景安排 [9], [10] 等。LfD 包括幾種解決這一問題的方法。行為克隆(Behavioral Cloning, BC)方法 [1] 將條件生成模型擬合到基于觀察的動作上。盡管在序列決策問題中存在一些缺點(例如,錯誤累積導致的協變量偏移 [11]),但在實踐中,由于其穩定且高效的訓練算法,它已經展示了一些最為令人印象深刻的結果 [6], [12], [7], [13]。另一種方法是逆強化學習(Inverse Reinforcement Learning, IRL)[14], [15], [16] 或其變體 [17], [18], [19],結合了演示數據與環境中的試錯(即強化學習(Reinforcement Learning, RL)),生成的策略比 BC 更具魯棒性,但受到訓練算法穩定性較差的限制。與直接模仿演示動作的 BC 不同,IRL 側重于推斷演示行為所優化的潛在獎勵函數,并應用 RL 來推斷策略。IRL 的一個關鍵優勢在于它能夠僅通過觀察進行學習 [20], [21],而無需明確的演示動作信息。在 LfD 中,演示的固有特性帶來了重大挑戰。通常,收集的數據是次優的、噪聲較大的、基于高維觀察條件的,并且包含多種行為模式 [22], [23], [24]。這種多樣性可以在對給定物體的多種抓取方式、專家提供演示的偏好或專家之間的分歧中體現出來。數據的這些固有屬性促使研究人員尋找能夠恰當地捕捉其分布的模型。傳統上,在深度學習成為主流之前,LfD 方法通常使用高斯過程(Gaussian Process, GP)[25], [26]、隱馬爾可夫模型(Hidden Markov Model, HMM)[27], [28] 或高斯混合模型(Gaussian Mixture Models, GMM)[29] 來表示生成模型。然而,這些模型無法擴展至大數據集,也無法在圖像等高維上下文中表示條件分布。基于神經網絡的模型允許在圖像 [30], [31] 或文本 [32], [33] 等高維變量上進行條件設定,但它們通常被訓練為單峰模型。這些模型與收集的演示數據的多模式特性相沖突。這些模型無法捕捉數據中的固有多樣性和多模式,導致研究人員不得不將自己局限于較小的 [34] 或高度策劃的數據集,以確保單峰性,從而簡化建模過程。

近年來,深度生成模型(Deep Generative Models, DGM)在圖像 [35] 和文本生成 [36] 中的成功展示了其捕捉高度多模態數據分布的能力。近年來,這些表現力強的模型在機器人領域的模仿學習應用中引起了廣泛關注(見圖2)。例如,擴散模型(Diffusion Models, DM)[37], [35] 已被有效用于學習高維軌跡分布 [38], [7], [8];基于語言和圖像的策略使用類似GPT的模型來表示動作空間中的類別分布 [39];變分自編碼器(Variational Autoencoders, VAE)[40] 被應用于生成任意物體的六自由度(6-DoF)抓取姿態 [5]。本文統一且全面地回顧了機器人領域中為捕捉數據固有的多模態性而從演示中學習 DGM 的各種方法。盡管其中一些模型借鑒了其他機器學習領域的成果,如 DM,但我們也重點介紹了在機器人動作分布表示中特別有影響力的方法,如動作價值圖(Action Value Maps)[41], [42], [43]。本綜述主要關注使用離線數據的方法,即不收集額外的在線或交互數據,以及離線監督,即除了專家動作外不使用額外的監督。盡管在從視覺到文本生成的各個領域中,從離線數據集中學習 DGM 已被廣泛研究,但機器人領域有其固有的挑戰,需要謹慎的設計選擇。為了激發機器人應用中的具體設計選擇,我們將在 I-A 節中介紹從演示中學習策略的基本挑戰。我們將綜述分為六個部分(見圖1): 在第二部分中,我們將形式化問題并提供整個綜述中使用的術語。 在第三部分中,我們介紹了機器人領域中最常用的 DGM,展示了它們的固有屬性,簡要列出了應用這些方法的各種工作,并介紹了每種模型的訓練和采樣算法。 在第四部分中,我們展示了深度生成模型應用的不同類型,重點介紹了模型生成的數據類型以及考慮的條件變量類型。 在第五部分中,我們提出了一系列設計和算法歸納偏差,以提高從學習模型的數據分布中的泛化能力。我們如何保證在上下文觀察中生成有用的動作,而這些動作在演示中沒有出現?我們提出的選項包括生成模型的模塊化組合、從觀察中提取有用特征以及利用觀察與動作之間的對稱性。 最后,在第六部分中,我們強調了該領域當前的研究挑戰,并提出了未來的研究方向。

A. 從離線演示中學習的挑戰從離線演示中學習機器人策略面臨著若干挑戰。盡管其中許多挑戰(例如演示中的多模態)與其他研究領域(如圖像生成或文本生成)共享,但在機器人領域中,我們還需要考慮一些特有的挑戰。以下是從離線數據中學習機器人策略的主要挑戰。演示的多樣性。主要挑戰之一是演示本身的固有變化。不同的演示者可能具有不同的技能水平、偏好和完成相同任務的策略,導致數據集中包含廣泛的方法。單峰分布缺乏表達能力,無法捕捉演示中的這種變化,從而導致性能不佳。DGM 是解決這一挑戰的有前景的方法。通過捕捉復雜的多模態分布,這些模型可以學習表示演示中展現的不同策略和行為。異質的動作和狀態空間。與數據空間定義明確的計算機視覺不同,在機器人領域中,沒有單一的狀態-動作空間。機器人動作可以包括從力矩命令到期望的目標位置或期望的軌跡。此外,機器人行為可以在機器人的配置空間和任務空間中建模。這種多樣性導致了異質的數據集和用于學習機器人策略的異質解決方案。部分可觀察的演示。當人類執行演示時,其動作不僅基于可觀察到的元素,還受到任務知識和觀察歷史影響的內部狀態驅動。此外,人類可以整合環境中的信息,這些信息可能無法被機器人的傳感器輕易獲得或觀察到,例如人類視覺捕捉到的外圍細節但被機器人的攝像頭遺漏。這種不匹配往往導致演示僅部分代表任務的上下文,從而導致機器人學習的策略中出現歧義。關于部分可觀測性的問題已經在文獻中得到了廣泛研究 [44]。一種常見的實際方法是將觀察歷史編碼為上下文,而不是單一的觀察,允許模型提取內部狀態,從而減少歧義 [45]。時間依賴性和長視距規劃。機器人任務通常涉及序列決策,其中動作在時間上是相互關聯的。這種序列性可能導致錯誤的累積,將機器人引向訓練演示中未遇到的情況。為解決此問題,已有多種方法提出。一些工作建議學習短視距技能,然后與高層規劃器連接。另一方向是,許多工作 [38], [13] 提出學習生成動作軌跡而不是單步動作的策略,從而減少序列累積錯誤。此外,其他選項包括在生成演示時注入噪聲 [46] 或交互式擴展數據集 [11]。訓練和評估目標之間的不匹配。從離線演示中學習通常被定義為密度估計問題。學習的模型經過訓練以生成類似于訓練數據集的樣本。然而,學習的模型用于解決特定任務,最大化的度量是任務成功率。這種訓練目標與評估目標之間的不匹配可能導致在機器人用于解決特定任務時表現不佳。解決這一問題的一個可能方向是將行為克隆階段與后續強化學習微調相結合 [47]。分布偏移和泛化。從離線演示中學習的一個基本挑戰是演示數據與實際場景之間的分布偏移,在這些場景中,學習的策略被部署。演示通常在受控環境或特定上下文中收集,但機器人必須在演示未覆蓋的潛在新環境中運行。這種不匹配可能導致泛化失敗和性能下降。解決這一挑戰需要能夠從給定演示中推斷并適應新環境的技術。我們將在第五部分中探討提高機器人應用中泛化能力的不同方法。

B. 相關綜述

LfD 領域有著悠久的歷史,已有多篇綜述對此進行了探討。在基于深度學習的方法成為主流之前,已有幾篇綜述 [50], [51], [52], [53] 探討了模仿學習的基本問題。這些綜述回答了諸如我們應該如何獲取數據?我們應該學習什么模型?或我們應該如何學習策略?等問題。近年來,一些最新的研究 [54], [3], [55] 更新了基于深度學習模型在 LfD 問題中的應用的綜述。特別是 [3] 從算法的角度審視了模仿學習,使得不同算法的比較可以從信息論的角度進行。機器人學習社區的當前階段,隨著大規模機器人演示數據集的增加(無論是在模擬中還是在現實中),模仿學習方法的重要性日益增加,以及廉價機器人硬件的日益普及,當前適時提供一個涵蓋過去幾年研究進展并專注于該領域當前面臨挑戰(多模態性、泛化、異質數據集等)的綜述。最近,幾篇綜述 [56], [57] 探討了學習機器人基礎模型的問題,主要集中在將互聯網規模的視覺和語言基礎模型整合到機器人問題中。盡管將視覺-語言基礎模型應用于機器人問題具有潛力,但我們的綜述關注于不同的問題。本綜述的興趣在于探索如何直接從具體現體機器人的數據中學習策略(部分原因是大規模數據集的日益豐富 [24], [58]),而不是將視覺-語言模型適應于機器人。

付費5元查看完整內容

近年來,神經輻射場(NeRF)已成為計算機圖形學和計算機視覺領域中一個重要的研究方向,因其高逼真的視覺合成效果,在真實感渲染、虛擬現實、人體建模、城市地圖等領域得到了廣泛的應用。NeRF利用神經網絡從輸入圖片集中學習三維場景的隱式表征,并合成高逼真的新視角圖像。然而原始NeRF模型的訓練和推理速度都很慢,難以在真實環境下部署與應用。針對NeRF的加速問題,研究者們從場景建模方法、光線采樣策略等方面展開對NeRF進行提速的研究。該類工作大致可分為以下研究方向:烘焙模型、與離散表示方法結合、提高采樣效率、利用哈希編碼降低MLP網絡復雜度、引入場景泛化性、引入深度監督信息和分解方法。通過介紹NeRF模型提出的背景,對上述思路的代表方法的優勢與特點進行了討論和分析,最后總結了NeRF相關工作在加速方面所取得的進展和對于未來的展望。

付費5元查看完整內容

A Survey of Model Compression and Acceleration for Deep Neural Networks 深度卷積神經網絡(CNNs)最近在許多視覺識別任務中取得了巨大的成功。然而,現有的深度神經網絡模型在計算上是昂貴的和內存密集型的,這阻礙了它們在低內存資源的設備或有嚴格時間延遲要求的應用程序中的部署。因此,在不顯著降低模型性能的情況下,在深度網絡中進行模型壓縮和加速是一種自然的思路。在過去幾年中,這方面取得了巨大的進展。本文綜述了近年來發展起來的壓縮和加速CNNs模型的先進技術。這些技術大致分為四種方案: 參數剪枝和共享、低秩因子分解、傳輸/緊湊卷積過濾器和知識蒸餾。首先介紹參數修剪和共享的方法,然后介紹其他技術。對于每種方案,我們都提供了關于性能、相關應用程序、優點和缺點等方面的詳細分析。然后我們將討論一些最近比較成功的方法,例如,動態容量網絡和隨機深度網絡。然后,我們調查評估矩陣、用于評估模型性能的主要數據集和最近的基準測試工作。最后,對全文進行總結,并對今后的研究方向進行了展望。

付費5元查看完整內容
北京阿比特科技有限公司