亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文推薦來自Krikamol Muandet博士講述《概率分布的希爾伯特空間表示》,136頁ppt系統性講述了希爾伯特空間表示基礎知識和最新進展,非常干貨。

概率分布的希爾伯特空間表示的最新進展

概率分布的希爾伯特空間嵌入最近出現了作為一個強大的機器學習和統計推斷工具。在本教程中,我將介紹分布的希爾伯特空間嵌入的概念,以及它在機器學習、統計推理、因果推理和計量經濟學中的最新應用。本教程的第一部分將重點了解可以概括特征圖的數據點分布的概率分布和這個新的表示允許我們建立強大的算法,如最大平均差異(MMD), Hilbert-Schmidt獨立標準(仿人智能控制),和支持測量機(多發性骨髓瘤)。在第二部分,我將解釋如何推廣這個概念來表示條件分布。條件分布的嵌入擴展了希爾伯特空間嵌入建模更復雜的依賴的能力,在各種應用,如動力系統,馬爾可夫決策過程,強化學習,潛在變量模型,核貝葉斯規則,因果推理。在本教程的最后,我將討論這一研究領域的最新進展,并強調未來可能的研究方向。

付費5元查看完整內容

相關內容

概率分布,是指用于表述隨機變量取值的概率規律。事件的概率表示了一次試驗中某一個結果發生的可能性大小。若要全面了解試驗,則必須知道試驗的全部可能結果及各種可能結果發生的概率,即隨機試驗的概率分布。如果試驗結果用變量X的取值來表示,則隨機試驗的概率分布就是隨機變量的概率分布,即隨機變量的可能取值及取得對應值的概率。根據隨機變量所屬類型的不同,概率分布取不同的表現形式。

人類的視覺系統證明,用極少的樣本就可以學習新的類別;人類不需要一百萬個樣本就能學會區分野外的有毒蘑菇和可食用蘑菇。可以說,這種能力來自于看到了數百萬個其他類別,并將學習到的表現形式轉化為新的類別。本報告將正式介紹機器學習與熱力學之間的聯系,以描述遷移學習中學習表征的質量。我們將討論諸如速率、畸變和分類損失等信息理論泛函如何位于一個凸的,所謂的平衡曲面上。我們規定了在約束條件下穿越該表面的動態過程,例如,一個調制速率和失真以保持分類損失不變的等分類過程。我們將演示這些過程如何完全控制從源數據集到目標數據集的傳輸,并保證最終模型的性能。

付費5元查看完整內容

【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 于美國紐約舉辦。遷移學習近年來受到了非常大的關注,今年AAAI也有很多相關論文,這場Tutorial全面回顧可遷移表示學習方法的最新發展,重點介紹文本、多關系和多媒體數據的可遷移表示學習方法。除了介紹域內嵌入學習方法外,還討論各種半監督、弱監督、多視圖和自監督學習技術來連接多個域特定的嵌入表示,是一個非常全面的遷移表示學習總結,講者最后也介紹了其未來發展趨勢,值得研究者關注和收藏。

遷移表示學習最新進展

Recent Advances in Transferable Representation Learning

Tutorial 目標

本教程針對有興趣將深度學習技術應用于跨域決策任務的AI研究人員和從業人員。這些任務包括涉及多語言和跨語言自然語言處理,特定領域知識以及不同數據模式的任務。本教程將為聽眾提供以下方面的整體觀點:(i)針對未標記的文本,多關系和多媒體數據的多種表示學習方法;(ii)在有限的監督下跨多種表示對齊和遷移知識的技術;以及(iii)在自然語言理解,知識庫和計算生物學中使用這些技術的大量AI應用程序。我們將通過概述該領域未來的研究方向來結束本教程。觀眾不需要有特定的背景知識。

概述

許多人工智能任務需要跨域決策。例如,許多NLP任務涉及跨多種語言的預測,其中可以將不同的語言視為不同的域;在人工智能輔助的生物醫學研究中,藥物副作用的預測常常與蛋白質和有機體相互作用的建模并行進行。為了支持機器學習模型來解決這種跨域任務,必須提取不同域中數據組件的特征和關系,并在統一的表示方案中捕獲它們之間的關聯。為了滿足這一需求,表示學習的最新進展往往涉及到將不同域的未標記數據映射到共享嵌入空間。這樣,跨域的知識遷移可以通過向量搭配或變換來實現。這種可遷移的表現形式在涉及跨域決策的一系列人工智能應用中取得了成功。然而,這一領域的前沿研究面臨兩大挑戰。一是在學習資源很少的情況下如何有效地從特定領域中提取特性。另一個是在最少的監督下精確地對齊和傳遞知識,因為連接不同域的對齊信息常常是不充分和有噪聲的。

在本教程中,我們將全面回顧可遷移表示學習方法的最新發展,重點介紹文本、多關系和多媒體數據的可遷移表示學習方法。除了介紹域內嵌入學習方法外,我們還將討論各種半監督、弱監督、多視圖和自監督學習技術來連接多個域特定的嵌入表示。我們還將比較域內嵌入算法和跨域對齊算法的改進和聯合學習過程。此外,我們將討論如何利用獲得的可遷移表征來解決低資源和無標簽的學習任務。參會者將了解本主題的最新趨勢和挑戰,了解代表性工具和學習資源以獲取即用型模型,以及相關的模型和技術如何有益于現實世界AI應用程序。

講者介紹

Muhao Chen目前是美國賓夕法尼亞大學研究生院博士后。他于2019年在加州大學洛杉磯分校獲得了計算機科學博士學位。Muhao從事過機器學習和NLP方面的各種課題。他最近的研究也將相關技術應用于計算生物學。更多信息請訪問//muhaochen.github.io。

Kai-Wei Chang是加州大學洛杉磯分校計算機科學系的助理教授。他的研究興趣包括為大型復雜數據設計魯棒的機器學習方法,以及為社會公益應用程序構建語言處理模型。其他信息請訪問

Dan Roth是賓夕法尼亞大學CIS的Eduardo D. Glandt Distinguished Professor,也是AAAS、ACM、AAAI和ACL的Fellow。Roth因在自然語言理解建模、機器學習和推理方面的重大概念和理論進展而被認可。更多信息可以參考: /.

付費5元查看完整內容

臺灣交通大學的Jen-Tzung Chien教授在WSDN 2020會議上通過教程《Deep Bayesian Data Mining》介紹了深度貝葉斯數據挖掘的相關知識,涵蓋了貝葉斯學習、深度序列學習、深度貝葉斯挖掘和學習等內容。

Jen-Tzung Chien教授在WSDM 2020的教程《Deep Bayesian Data Mining》(《深度貝葉斯數據挖掘》)介紹了面向自然語言的深度貝葉斯挖掘和學習,包括了它的基礎知識和進展,以及它無處不在的應用,這些應用包括語音識別、文檔摘要、文本分類、文本分割、信息抽取、圖像描述生成、句子生成、對話控制、情感分類、推薦系統、自動問答和機器翻譯等。

從傳統上,“深度學習”被認為是一個學習過程,過程中的推斷和優化都使用基于實數的判別模型。然而,從大量語料中提取出的詞匯、句子、實體、行為和文檔的“語義結構”在數學邏輯或計算機程序中可能不能很好地被這種方式表達或正確地優化。自然語言的離散或連續潛在變量模型中的“分布函數”可能不能被正確分解或估計。

該教程介紹了統計模型和神經網絡的基礎,并聚焦于一系列先進的貝葉斯模型和深度模型,包括層次狄利克雷過程、中國餐館過程、遞歸神經網絡、長短期記憶網絡、序列到序列模型、變分自編碼器、生成式對抗網絡、策略神經網絡等。教程還介紹了增強的先驗/后驗表示。教程展示了這些模型是如何連接的,以及它們為什么適用于自然語言中面向符號和復雜模式的各種應用程序。

變分推斷和采樣被提出解決解決復雜模型的優化問題。詞和句子的嵌入、聚類和聯合聚類被語言和語義約束合并。針對深度貝葉斯挖掘、搜索、學習和理解中的不同問題,一系列的案例研究、任務和應用被提出。最后,教程指出一些未來研究的方向和展望。教程旨在向初學者介紹深度貝葉斯學習中的主要主題,激發和解釋它對數據挖掘和自然語言理解正在浮現的重要性,并提出一種結合不同的機器學習工作的新的綜合方法。

教程的內容大致如下:

  • 簡介
    • 動機和背景
    • 概率模型
    • 神經網絡
  • 貝葉斯學習
    • 推斷和優化
    • 變分貝葉斯推斷
    • 蒙特卡羅馬爾科夫鏈推斷
  • 深度序列學習
    • 深度非展開主題模型
    • 門遞歸神經網絡
    • 貝葉斯遞歸神經網絡
    • 記憶增強神經網絡
    • 序列到序列學習
    • 卷積神經網絡
    • 擴增神經網絡
    • 基于Transformer的注意力網絡
  • 深度貝葉斯挖掘和學習
    • 變分自編碼器
    • 變分遞歸自編碼器
    • 層次變分自編碼器
    • 隨機遞歸神經網絡
    • 正則遞歸神經網絡
    • 跳躍遞歸神經網絡
    • 馬爾科夫遞歸神經網絡
    • 時間差分變分自編碼器
    • 未來挑戰和發展
  • 總結和未來趨勢

完整教程下載

請關注專知公眾號(點擊上方藍色專知關注) 后臺回復“DBDM20” 就可以獲取完整教程PDF的下載鏈接~

教程部分內容如下所示:

參考鏈接:

//chien.cm.nctu.edu.tw/home/wsdm-tutorial/

-END- 專 · 知

專知,專業可信的人工智能知識分發,讓認知協作更快更好!歡迎注冊登錄專知www.zhuanzhi.ai,獲取更多AI知識資料!

歡迎微信掃一掃加入專知人工智能知識星球群,獲取最新AI專業干貨知識教程視頻資料和與專家交流咨詢!

請加專知小助手微信(掃一掃如下二維碼添加),獲取專知VIP會員碼,加入專知人工智能主題群,咨詢技術商務合作~

點擊“閱讀原文”,了解注冊使用專知

付費5元查看完整內容
北京阿比特科技有限公司