亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

【導讀】近年來深度學習芯片的研究發展是業界關注的焦點。專知之前報道過Google AI Jeff Dean獨自撰文的關于AI時代芯片的歷史發展趨勢-【Google Jeff Dean獨自署名論文】深度學習革命及其對計算機架構和芯片設計的影響,講述AI芯片發展歷程與未來,但學術業界一直缺乏對當前深度學習編譯器框架的綜述。最近北航的學者撰寫了第一篇關于當下深度學習編譯器的綜述論文《The Deep Learning Compiler: A Comprehensive Survey》36頁pdf1,從各個方面對現有的DL編譯器進行了全面的比較。此外,還詳細分析了多級紅外設計和編譯優化技術。最后,指出了DL編譯器的研究方向,很好的論文。

摘要

在不同的DL硬件上部署各種深度學習(DL)模型的困難,促進了社區中DL編譯器的研究和開發。工業界和學術界已經提出了幾個DL編譯器,如Tensorflow XLA和TVM。類似地,DL編譯器將不同DL框架中描述的DL模型作為輸入,然后為不同的DL硬件生成優化代碼作為輸出。然而,現有的綜述論文沒有一個全面地分析DL編譯器的獨特設計。在本文中,我們通過剖析通常采用的設計細節,對現有的DL編譯器進行了全面的調研,重點是面向DL的多級IRs和前端/后端優化。具體來說,我們從各個方面對現有的DL編譯器進行了全面的比較。此外,還詳細分析了多級紅外設計和編譯優化技術。最后,指出了DL編譯器的研究方向。這是第一篇關于DL編譯器的獨特設計的綜述論文,我們希望能夠為將來DL編譯器的研究鋪平道路。

概述

深度學習(DL)的發展對各個科學領域產生了深遠的影響。它不僅在自然語言處理(NLP) (Manning et al., 1999)和計算機視覺(CV) (Forsyth and Ponce, 2002)等人工智能領域顯示出顯著的價值,而且在電子商務(Ha et al., 2016)、智慧城市(Mohammadi et al., 2017)和藥物發現(Chen et al., 2018a)等更廣泛的應用領域也取得了巨大的成功。隨著卷積神經網絡(convolutional neural network, CNN) (LeCun et al., 1998)、遞歸神經網絡(neural network, RNN) (Rumelhart et al., 1986)、長短時記憶(long short-term memory, LSTM) (Hochreiter and Schmidhuber, 1997)、生成對抗網絡(adversarial network, GAN) (Goodfellow et al., 2014)等多種深度學習模型的出現,簡化DL模型的編程是實現其廣泛應用的關鍵。

在工業界和學術界的不斷努力下,為了簡化各種DL模型的應用,提出了TensorFlow (Abadi et al., 2016)、PyTorch (Paszke et al., 2019)、MXNet (Chen et al., 2015)和CNTK (Seide and Agarwal, 2016)等流行的DL編程框架。盡管上述DL編程框架的優點和缺點取決于它們設計中的折衷方案,但是互操作性對于減少冗余工程工作變得非常重要,因為它支持跨現有DL模型的新出現的DL模型。為了提高互操作性,ONNX (onn, [n.d.])被提議定義一種表示DL模型的開放源碼格式,這種格式可以促進不同DL框架之間的模型轉換。

與此同時,矩陣乘法等獨特的計算特性激發了芯片架構師為提高效率而設計定制DL芯片的熱情。互聯網巨頭(如谷歌TPU (Jouppi等,2017年),Hisilicon NPU (Liao等,2019年),蘋果Bonic (Kingsley-Hughes, 2017年)),處理器供應商(如NNP (tur, [n.d]),英特爾NNP (NNP, [n.d])),服務提供商(如亞馬遜推論(inf, [n.d]),阿里巴巴Hanguang (han, [n.d]),甚至初創公司(如Cambricon (Liu等,2016年),Graphcore (Jia等,為了提高DL模型的計算能力,他們投入了大量的人力和資本來開發DL芯片。一般來說,DL芯片的種類包括:1)通用芯片與軟硬件協同設計;2)完全定制DL機型專用芯片;3)受生物腦科學啟發的神經形態芯片。例如,通用芯片(如CPU、GPU)增加了AVX512矢量單元和張量核等特殊硬件組件來加速DL模型。而對于專用芯片,如谷歌張量處理單元(TPU),應用特定的集成電路(如矩陣乘法引擎和高帶寬內存)被設計來提高性能和能源效率到極致。在可預見的未來,DL芯片的設計將變得更加多樣化。

為了在不同的DL芯片上加速DL模型,有效地將計算映射到DL芯片是很重要的。在通用芯片上,高度優化的線性代數庫(如基本線性代數子程序庫(BLAS))(如MKL和cuBLAS)是DL模型高效計算的基礎。以卷積運算為例,DL框架將卷積轉換為矩陣乘法,然后調用BLAS庫中的GEMM函數。此外,芯片廠商還為DL計算(例如,MKL-DNN和cuDNN)發布了特別優化的庫,包括前向和后向卷積、池化、標準化和激活。還開發了更高級的工具來進一步加速DL操作。以TensorRT (ten, [n.d])為例,它支持圖形優化(如層融合)和低比特量化,并具有大量高度優化的GPU內核。在專用的DL芯片上,供應商還提供了類似的庫和工具鏈,以有效地執行DL模型。然而,依賴上述的庫和工具在不同的DL芯片上映射DL模型的缺點是,它們通常落后于DL模型的快速開發,因此不能有效地利用DL芯片。

為了解決DL庫和工具的缺陷,以及減輕手工優化每個DL芯片上的DL模型的負擔,DL社區求助于領域特定的編譯器技術來解決問題。很快地,一些流行的DL編譯器被提了出來,例如來自工業界和學術界的TVM (Chen等人,2018b)、Tensor Comprehension (Vasilache等人,2018)、Glow (Rotem等人,2018)、nGraph (Cyphers等人,2018)和XLA (Leary和Wang, 2017)。DL編譯器將DL框架中描述的模型定義作為輸入,并在各種DL芯片上生成高效的代碼實現作為輸出。模型定義和特定代碼實現之間的轉換針對模型規范和硬件體系結構進行了高度優化。具體地說,DL編譯器結合了面向DL的優化,比如層和操作符融合,這支持高效的代碼生成。此外,現有的DL編譯器也利用了來自通用編譯器(如LLVM (Lattner和Adve, 2004))的成熟工具鏈,這些工具鏈提供了跨不同硬件架構的更好的可移植性。與傳統編譯器相似,DL編譯器也采用了包括前端、中間表示(IR)和后端在內的分層設計。然而,DL編譯器的惟一性在于多層IRs和DL特定優化的設計。

在這篇論文中,我們通過將編譯器的設計分為前端、多級IR和后端,并著重介紹了IR的設計和優化方法,對現有的DL編譯器進行了全面的研究。據我們所知,這是第一篇全面介紹DL編譯器設計的論文。具體而言,本文的貢獻如下:

  • 我們從硬件支持、DL框架支持、代碼生成和優化等方面對現有的DL編譯器進行了全面的比較,為最終用戶選擇合適的DL編譯器提供了指導。

  • 我們剖析了現有DL編譯器的總體設計,并詳細分析了多級IR設計和編譯器優化技術,如數據流底層優化、硬件內在映射、內存延遲隱藏和并行化。

  • 我們為DL編譯器的未來發展提供了一些見解,包括自動調優、多面體編譯器、量化、可微編程和隱私保護,希望能促進DL編譯器社區的研究。

本文其余部分組織如下。第2節介紹DL編譯器的背景,包括DL框架、DL芯片以及硬件(FPGA)特定的DL編譯器。第3節詳細比較了現有的DL編譯器。第4節描述了DL編譯器的總體設計,重點介紹了IR和前端/后端優化。第五部分是全文的總結,并對未來的研究方向進行了展望。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

【導讀】知識蒸餾是一種典型的模型壓縮和加速方法,在很多應用場景對此有需求。來自悉尼大學的學者發布了《知識蒸餾》的綜述論文,值的關注。

//arxiv.org/abs/2006.05525

近年來,深度神經網絡在工業和學術界取得了巨大的成功,特別是在視覺識別和神經語言處理方面的應用。深度學習的巨大成功,主要歸功于其巨大的可擴展性,既有大規模的數據樣本,也有數十億的模型參數。然而,在資源有限的設備如移動電話和嵌入式設備上部署這些笨重的深模型也帶來了巨大的挑戰,不僅因為計算量大,而且存儲空間大。為此,開發了各種模型壓縮和加速技術,如剪枝、量化和神經結構搜索。知識蒸餾是一種典型的模型壓縮和加速方法,旨在從大教師模型中學習小學生模型,越來越受到社會的關注。本文從知識分類、訓練方案、知識提取算法以及應用等方面對知識提取進行了綜述。此外,我們簡要回顧了知識提煉的挑戰,并對未來的研究課題提供了一些見解。

概述

在過去的幾年里,深度學習在人工智能領域取得了巨大的成功,包括計算機視覺(Krizhevsky et al., 2012)、強化學習(Silver et al., 2016)和神經語言處理(Devlin et al., 2018)的各種應用。借助最近許多技術,包括殘差連接(He et al., 2016)和批處理歸一化(Ioffe and Szegedy, 2015),我們可以輕松地在強大的GPU或TPU集群上訓練具有數千層的深度模型。例如,只需不到10分鐘就可以在數百萬張圖像的數據集上訓練ResNet模型(Deng et al. , 2009 ; Sun et al. , 2019); 訓練一個強大的BERT模型進行語言理解只需要不到一個半小時 (Devlin et al., 2018; You et al., 2019).。雖然大規模的深度模型帶來了令人難以置信的性能,但其龐大的計算復雜度和海量的存儲需求給實時應用的部署帶來了巨大的挑戰,特別是對于那些資源有限的設備,比如嵌入式人臉識別系統和自動駕駛汽車。

為了開發高效的深度模型,最近的工作通常集中在1)基于深度可分離卷積的高效基本塊,如MobileNets (Howard et al. , 2017 ; Sandler et al. , 2018) 和ShuffleNets (Zhang et al. , 2018a ; Ma et al. , 2018); (2)模型壓縮和加速技術,主要包括以下類別(Cheng et al., 2018)。

  • 參數修剪和共享: 這些方法主要是去除深層神經網絡中不重要的參數,去除的參數對性能影響不大。該類別又分為模型量化(Wu et al., 2016)和二值化(Courbariaux et al., 2015)、參數共享(Han et al., 2015)和結構矩陣(Sindhwani et al., 2015)。

  • 低秩分解: 這些方法通過矩陣/張量分解來探索深度神經網絡參數的冗余性(Denton et al., 2014)。

  • 傳輸/壓縮卷積濾波器: 這些方法通過傳輸/壓縮卷積濾波器來減少不必要的參數(Zhai et al., 2016)。

  • 知識蒸餾(KD): 這些方法通常將知識從一個較大的深度神經網絡提取到一個較小的網絡中(Hinton et al., 2015)。

對模型壓縮和加速的全面回顧超出了本文涵蓋的范圍,而我們關注的是知識蒸餾,這已經得到越來越多的研究社區關注。在實踐中,大型深度模型往往會取得非常好的性能,因為過參數化提高了泛化性能 (Brutzkus and Globerson, 2019; Allen-Zhu et al., 2019; Arora et al., 2018)。知識蒸餾通過在大教師模型的監督下學習小學生模型,從而探究深度模型中參數的冗余性,用于推理(Bucilua et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015; Urban et al., 2016),而知識蒸餾的關鍵問題是如何將知識從大教師模型轉移到小學生模型。一般情況下,知識蒸餾的師生框架如圖1所示。雖然在實踐中取得了巨大的成功,但在理論或經驗上理解知識提煉方法的工作并不多(Cheng et al., 2020; Phuong and Lampert, 2019; Cho and Hariharan, 2019)。具體來說,為了理解知識蒸餾的工作機制,Phuong和Lampert在深度線性分類器的情況下,從理論上證明了學習精餾學生網絡快速收斂的泛化邊界(Phuong和Lampert, 2019)。這一解釋理論上回答了學生學習的內容和速度,并揭示了決定蒸餾成功的因素。蒸餾的成功依賴于數據幾何、蒸餾目標的優化偏差和學生分類器的強單調性。Cheng等人量化了來自深度神經網絡中間層的視覺概念知識,以解釋知識蒸餾(Cheng et al., 2020)。Cho和Hariharan對知識蒸餾的有效性進行了詳細的實證分析(Cho和Hariharan, 2019)。實證分析發現,由于模型容量的差距,較大的模型不一定是更好的老師(Mirzadeh et al., 2019),而精餾會對學生的學習產生不利影響。據我們所知,(Cho and Hariharan, 2019)忽略了對教師和學生之間不同知識、不同蒸餾和相互感情的經驗評價。此外,通過實證分析,從標簽平滑、教師和先驗對最優輸出層幾何形狀的預測置信度等角度探討了對知識蒸餾的理解(Tang et al., 2020)。

模型壓縮的知識蒸餾思想與人類的學習方案非常相似。為此,近年來的知識蒸餾方法不僅擴展到了師生學習(Hinton et al., 2015),還擴展到了相互學習(Zhang et al., 2018b)、自學(Yuan et al., 2019)、輔助教學(Mirzadeh et al., 2019)和終身學習(Zhai et al., 2019)。知識蒸餾的大部分擴展集中于壓縮深度神經網絡,因此輕量級的學生網絡可以很容易地部署在諸如視覺識別、語音識別和自然語言處理(NLP)等應用程序中。此外,知識蒸餾中從一個模型到另一個模型的知識轉移符號也可以擴展到其他任務,如對抗攻擊(Papernot et al., 2016b)、數據增強(Lee et al., 2019a;Gordon和Duh, 2019),數據隱私和安全(Wang等,2019a)。

本文對知識蒸餾的研究進行了綜述。本綜述的主要目的是1) 全面概述知識蒸餾,包括動機的背景,基本符號和公式,以及幾種典型知識,蒸餾和算法; 2) 全面回顧知識蒸餾的最新進展,包括理論、應用和在不同現實場景下的擴展; 3) 從知識遷移的不同角度,包括不同類型的知識、訓練方案、知識提煉算法/結構和應用,闡述知識蒸餾的一些挑戰和見解。本文組織概況如圖2所示。具體地說,本文的其余部分結構如下。第二節給出了知識蒸餾的重要概念和常規模型。知識和蒸餾的種類分別在第3節和第4節中進行了總結。現有的關于知識提煉中的師生結構的研究在第5部分進行了說明。第6節對許多最新的知識蒸餾方法進行了全面的總結和介紹。知識蒸餾的廣泛應用將在第7節的不同方面加以說明。第8節討論了知識蒸餾中具有挑戰性的問題和未來的方向。最后,在第9節給出結論。

付費5元查看完整內容

智能視頻監控(IVS)是當前計算機視覺和機器學習領域的一個活躍研究領域,為監控操作員和取證視頻調查者提供了有用的工具。人的再識別(PReID)是IVS中最關鍵的問題之一,它包括識別一個人是否已經通過網絡中的攝像機被觀察到。PReID的解決方案有無數的應用,包括檢索顯示感興趣的個體的視頻序列,甚至在多個攝像機視圖上進行行人跟蹤。文獻中已經提出了不同的技術來提高PReID的性能,最近研究人員利用了深度神經網絡(DNNs),因為它在類似的視覺問題上具有令人信服的性能,而且在測試時執行速度也很快。鑒于再識別解決方案的重要性和廣泛的應用范圍,我們的目標是討論在該領域開展的工作,并提出一項最先進的DNN模型用于這項任務的調查。我們提供了每個模型的描述以及它們在一組基準數據集上的評估。最后,我們對這些模型進行了詳細的比較,并討論了它們的局限性,為今后的研究提供了指導。

付費5元查看完整內容

卷積神經網絡(Convolutional Neural Network, CNN)是深度學習領域中最重要的網絡之一。由于CNN在計算機視覺和自然語言處理等諸多領域都取得了令人矚目的成就,因此在過去的幾年里,CNN受到了業界和學術界的廣泛關注。現有的綜述主要關注CNN在不同場景下的應用,并沒有從整體的角度來考慮CNN,也沒有涉及到最近提出的一些新穎的想法。在這篇綜述中,我們的目標是在這個快速增長的領域提供盡可能多的新想法和前景。不僅涉及到二維卷積,還涉及到一維和多維卷積。首先,這篇綜述首先簡單介紹了CNN的歷史。第二,我們提供CNN的概述。第三,介紹了經典的和先進的CNN模型,特別是那些使他們達到最先進的結果的關鍵點。第四,通過實驗分析,得出一些結論,并為函數選擇提供一些經驗法則。第五,介紹了一維、二維和多維卷積的應用。最后,討論了CNN的一些有待解決的問題和有發展前景的方向,為今后的工作提供參考。

付費5元查看完整內容

【導讀】對抗攻擊防御研究用于提升深度學習的魯棒性,是當下的關注焦點。最近,中山大學等學者發布了最新關于圖對抗學習綜述論文,19頁pdf83篇文獻,對在圖形分析任務中對現有的攻防工作進行了梳理和統一,同時給出了適當的定義和分類。此外,我們強調了相關評價指標的重要性,并對其進行了全面的調查和總結。

圖數據的深度學習模型在節點分類、鏈路預測、圖數據聚類等各種圖數據分析任務中都取得了顯著的效果。然而,它們暴露了對于設計良好輸入的不確定性和不可靠性, 對抗樣本。因此,在不同的圖數據分析任務中,出現了各種攻擊和防御的研究,從而導致了圖數據對抗學習中的競爭。例如,攻擊者有投毒和逃避攻擊,防御組相應地有基于預處理和對抗的方法。

盡管工作蓬勃發展,但仍然缺乏統一的問題定義和全面的調研綜述。為了彌補這一不足,我們對已有的關于圖對抗學習任務的研究進行了系統的總結。具體來說,我們在圖形分析任務中對現有的攻防工作進行了梳理和統一,同時給出了適當的定義和分類。此外,我們強調了相關評價指標的重要性,并對其進行了全面的調查和總結。希望我們的工作可以為相關研究者提供參考,為他們的研究提供幫助。更多關于我們工作的細節,

請訪問

//github.com/gitgiter/Graph-Adversarial-Learning

在過去的幾十年里,深度學習已經成為人工智能領域的皇冠上的寶石,在語音和語言處理[72,18]、人臉識別[45]和目標檢測[33]等各種應用中都表現出了令人印象深刻的表現。然而,最近頻繁使用的深度學習模型被證明是不穩定和不可靠的,因為它們容易受到干擾。例如,一張圖片上幾個像素的細微變化,對于人眼來說是難以察覺的,但是對于深度學習模型[44]的輸出卻有很大的影響。此時,定義良好并通過反向傳播學習的深度學習模型具有固有的盲點和非直觀特征,應該以明顯的[59]方式推廣到數據分布中。

圖作為一種強大的表示方法,在現實的[25]中有著重要的作用和廣泛的應用。當然,深度學習對圖形的研究也是一個熱門話題,并在不同的領域帶來了許多令人耳目一新的實現,如社交網絡[46]、電子商務網絡[64]和推薦系統[14,71]。不幸的是,作為機器學習關鍵領域的圖分析領域也暴露了深度學習模型在受到精心設計的攻擊時的脆弱性[81,83]。例如,考慮到節點分類的任務,攻擊者通常控制多個假節點,目的是欺騙目標分類器,通過在這些節點與其他良性節點之間添加或刪除邊緣,從而導致誤分類。通常,這些惡意節點被稱為“攻擊者節點”,而其他受害節點被稱為“受影響節點”。如圖1所示,在一個干凈的圖上執行了小的擾動(增加了兩個鏈接,改變了幾個節點的特征),這導致了圖學習模型的錯誤分類。

隨著對圖數據模型安全性的日益關注,圖數據對抗學習的研究也隨之興起。,一個研究圖數據模型安全性和脆弱性的領域。一方面,從攻擊圖數據學習模型的角度出發,[81]首先研究了圖數據的對抗性攻擊,在節點特征和圖結構受干擾較小的情況下,目標分類器容易對指定的節點進行欺騙和誤分類。另一方面,[65]提出了一種改進的圖卷積網絡(GCNs)模型,該模型具有對抗防御框架,以提高魯棒性。此外,[55]研究了現有的圖數據攻防對抗策略的工作,并討論了它們的貢獻和局限性。然而,這些研究主要集中在對抗性攻擊方面,而對防御方面的研究較少。

挑戰 盡管關于圖表對抗學習的研究大量涌現,但仍然存在一些需要解決的問題。i) 統一與具體的形式化。目前的研究都是將圖對抗學習的問題定義和假設用自己的數學形式化來考慮,大多沒有詳細的解釋,這使得比較和跟進更加困難。ii) 相關評價指標。而對于不同的任務,對應性能的評價指標也有很大的不同,甚至有不同的標準化。此外,圖對抗學習場景的特殊度量還沒有被探索,例如,對攻擊影響的評估。

對于公式和定義不一致的問題,我們考察了現有的攻防工作,給出了統一的定義,并從不同的角度進行了劃分。雖然已經有了一些努力[81,37,19]來概括定義,但大多數公式仍然對自己的模型進行定制。到目前為止,只有一篇文章[55]從綜述的角度概述了這些概念,這不足以全面總結現有的工作。在前人研究的基礎上,我們總結了不同類型的圖,并按層次介紹了三個主要任務,分別在3.1節和4.1節給出了攻擊和防御的統一公式。

自然地,不同的模型伴隨著許多量化的方法,其中提供了一些新的度量。為了幫助研究人員更好地量化他們的模型,也為了系統地總結度量標準,我們在第5節中對度量標準進行了更詳細的討論。特別地,我們首先介紹了防御和攻擊的一些常見度量,然后介紹了它們各自工作中提供的三個類別的度量:有效性、效率和不可感知性。例如,攻擊成功率(ASR)[9]和平均防御率(ADR)[10]分別被用來衡量攻擊和防御的有效性。

綜上所述,我們的貢獻如下:

  • 我們深入研究了這一領域的相關工作,并對當前防御和攻擊任務中不統一的概念給出了統一的問題公式和明確的定義。
  • 我們總結了現有工作的核心貢獻,并根據防御和攻擊任務中合理的標準,從不同的角度對其進行了系統的分類。
  • 我們強調了相關指標的重要性,并對其進行了全面的調查和總結。
  • 針對這一新興的研究領域,我們指出了現有研究的局限性,并提出了一些有待解決的問題
付費5元查看完整內容

題目: A Survey of Deep Learning Techniques for Neural Machine Translation

摘要: 近年來,隨著深度學習技術的發展,自然語言處理(NLP)得到了很大的發展。在機器翻譯領域,出現了一種新的方法——神經機器翻譯(NMT),引起了學術界和工業界的廣泛關注。然而,在過去的幾年里提出的大量的研究,很少有人研究這一新技術趨勢的發展過程。本文回顧了神經機器翻譯的起源和主要發展歷程,描述了神經機器翻譯的重要分支,劃分了不同的研究方向,并討論了未來該領域的一些研究趨勢。

付費5元查看完整內容

題目: The Deep Learning Compiler: A Comprehensive Survey

摘要: 在不同的DL硬件上部署各種深度學習(deep learning,DL)模型的困難,推動了DL編譯器在社區中的研究和開發。業界和學術界都提出了一些DL編譯器,如Tensorflow XLA和TVM。類似地,DL編譯器將不同DL框架中描述的DL模型作為輸入,然后為不同的DL硬件生成優化代碼作為輸出。然而,現有的調查沒有全面分析DL編譯器的獨特設計。在本文中,我們對現有DL編譯器進行了全面的調查,通過對常用設計的詳細剖析,著重介紹了面向DL的多級IRS,以及前端/后端優化。具體來說,我們提供了一個全面的比較現有的DL編譯器從各個方面。此外,我們還詳細分析了多級IR設計和編譯器優化技術。最后,提出了DL編譯器潛在的研究方向。這是第一篇針對DL編譯器獨特設計的綜述性論文,希望能為以后的研究鋪平道路。

付費5元查看完整內容

//www.manning.com/books/deep-learning-with-javascript

深度學習已經改變了計算機視覺、圖像處理和自然語言應用領域。多虧了TensorFlow.js,現在JavaScript開發人員可以無需依賴Python或R就能構建深度學習應用程序。使用JavaScript的深度學習向開發人員展示了如何將DL技術引入web。本書由TensorFlow庫的主要作者編寫,為在瀏覽器或Node上使用JavaScript進行深度學習的應用程序提供了有趣的用例和深入的指導。

關于技術

在瀏覽器或基于Node的后端中運行深度學習應用程序,為智能web應用程序開辟了令人興奮的可能性。使用TensorFlow.js庫,您可以用JavaScript構建和訓練深度學習模型。TensorFlow.js具有無與倫比的可擴展性,模塊化和響應能力,其可移植性確實令人眼前一亮。它的模型可以在JavaScript運行的任何地方運行,從而將ML推向應用程序堆棧的更上層。

關于這本書

在Deep Learning with JavaScript這本書中,您將學習使用TensorFlow.js來構建直接在瀏覽器中運行的深度學習模型。這本快節奏的書由Google工程師撰寫,是實用的,引人入勝且易于閱讀。通過以文本分析,語音處理,圖像識別和自學習游戲AI為特色的各種示例,您將掌握深度學習的所有基礎知識并探索高級概念,例如對現有模型進行再訓練以進行遷移學習和圖像生成。

書里面有什么

在瀏覽器中的圖像和語言處理

用客戶端數據調優ML模型

通過生成式深度學習創建文本和圖像

源代碼示例以進行測試和修改

付費5元查看完整內容

簡介

近年來,由于機器學習(ML)/深度學習(DL)技術使用多維醫學圖像,在從一維心臟信號的心臟驟停的預測到計算機輔助診斷(CADx)的各種醫療保健應用中的卓越性能,見證了機器學習(ML)/深度學習(DL)技術的廣泛采用。盡管ML / DL的性能令人印象深刻,但對于ML / DL在醫療機構中的健壯性仍然存有疑慮(由于涉及眾多安全性和隱私問題,傳統上認為ML / DL的挑戰性很大),尤其是鑒于最近的研究結果表明ML / DL容易受到對抗性攻擊。在本文中,我們概述了醫療保健中各個應用領域,這些領域從安全性和隱私性的角度利用了這些技術,并提出了相關的挑戰。此外,我們提出了潛在的方法來確保醫療保健應用程序的安全和隱私保護機器學習。最后,我們提供了有關當前研究挑戰的見解以及未來研究的有希望的方向。

內容大綱

付費5元查看完整內容

Attention模型目前已經成為神經網絡中的一個重要概念,注意力模型(AM)自機器翻譯任務【Bahdanau et al 2014】首次引入進來,現在已經成為主流的神經網絡概念。這一模型在研究社區中非常受歡迎,適用領域非常廣泛,包括自然語言處理、統計學習、語音和計算機視覺方面的應用。本篇綜述提供了關于注意力模型的全面概述,并且提供了一種將現有注意力模型進行有效分類的分類法,調查了用于不同網絡結構的注意力模型,并顯示了注意力機制如何提高模型的可解釋性,最后,討論了一些受到注意力模型較大影響的應用問題。

付費5元查看完整內容

在過去的幾年里,自然語言處理領域由于深度學習模型的大量使用而得到了發展。這份綜述提供了一個NLP領域的簡要介紹和一個快速的深度學習架構和方法的概述。然后,篩選了大量最近的研究論文,并總結了大量相關的貢獻。NLP研究領域除了計算語言學的一些應用外,還包括幾個核心的語言處理問題。然后討論了目前的技術水平,并對該領域今后的研究提出了建議。

付費5元查看完整內容
北京阿比特科技有限公司