人機對話系統能夠讓機器通過人類語言與人進行交互,是人工智能領域的一項重要工作。因其在虛擬助手和社交聊天機器人等領域的商業價值而廣受工業界和學術界的關注。近年來,互聯網社交數據快速增長促進了數據驅動的開放領域對話系統研究,尤其是將深度學習技術應用到其中取得了突破性進展。基于深度學習的開放領域對話系統使用海量社交對話數據,通過檢索或者生成的方法建立對話模型學習對話模式。將深度學習融入檢索式系統中研究提高對話匹配模型的效果,將深度學習融入生成式系統中構建更高質量的生成模型,成為了基于深度學習的開放領域對話系統的主要任務。本文對近幾年基于深度學習的開放領域對話系統研究進展進行綜述,梳理、比較和分析主要方法,整理其中的關鍵問題和已有解決方案,總結評測指標,展望未來研究趨勢。
摘要:近年來,基于深度學習的表面缺陷檢測技術廣泛應用在各種工業場景中.本文對近年來基于深度學習的表面缺陷檢測方法進行了梳理,根據數據標簽的不同將其分為全監督學習模型方法、無監督學習模型方法和其他方法三大類,并對各種典型方法進一步細分歸類和對比分析,總結了每種方法的優缺點和應用場景.本文探討了表面缺陷檢測中三個關鍵問題,介紹了工業表面缺陷常用數據集.最后,對表面缺陷檢測的未來發展趨勢進行了展望.
題目: 基于深度學習的主題模型研究
摘要: 主題模型作為一個發展二十余年的研究問題,一直是篇章級別文本語義理解的重要工具.主題模型善于從一組文檔中抽取出若干組關鍵詞來表達該文檔集的核心思想,因而也為文本分類、信息檢索、自動摘要、文本生成、情感分析等其他文本分析任務提供重要支撐.雖然基于三層貝葉斯網絡的傳統概率主題模型在過去十余年已被充分研究,但隨著深度學習技術在自然語言處理領域的廣泛應用,結合深度學習思想與方法的主題模型煥發出新的生機.研究如何整合深度學習的先進技術,構建更加準確高效的文本生成模型成為基于深度學習主題建模的主要任務.本文首先概述并對比了傳統主題模型中四個經典的概率主題模型與兩個稀疏約束的主題模型.接著對近幾年基于深度學習的主題模型研究進展進行綜述,分析其與傳統模型的聯系、區別與優勢,并對其中的主要研究方向和進展進行歸納、分析與比較.此外,本文還介紹了主題模型常用公開數據集及評測指標.最后,總結了主題模型現有技術的特點,并分析與展望了基于深度學習的主題模型的未來發展趨勢。
【導讀】對話系統(Dialogue system,DS)由于其廣泛的應用前景,已經吸引了工業界和學術界極大的關注。研究人員通常根據對話系統的功能對其進行分類.然而許多對話需要DS在不同的功能之間來回切換。例如,電影評論就需要在對話和問答之間切換,交流式推薦就需要系統在對話與推薦之間轉換。因此,根據功能進行分類并不足以適應當前的發展趨勢。我們基于背景知識對DS進行分類。特別地,我們基于非結構化的文本來研究目前最新的對話系統。我們把基于文檔對話系統(Document Grounded Dialogue System,DGDS)定義為圍繞給定的文本進行對話交流的對話系統。DGDS可以被應用在諸多場景之中,如根據產品手冊談論商品,評論新聞報道等。我們相信抽取非結構化的信息是對話系統未來的發展趨勢,因為在這些非結構化的文本之中蘊藏著大量的人類知識。研究DGDS一方面是因為其廣泛的應用前景,另一方面是因為其能夠促進AI更好的理解人類知識和自然語言。我們從DGDS的類別,架構,數據集,模型和未來的發展方向進行了論述。
由于任務型對話系統在人機交互和自然語言處理中的重要意義和價值,越來越受到學術界和工業界的重視。在這篇論文中,我們以一個具體問題的方式綜述了最近的進展和挑戰。我們討論三個關鍵主題面向任務對話框系統: (1)提高數據效率促進對話系統建模在資源匱乏的設置,(2)建模多輪動態對話框策略學習獲得更好的完成任務的性能,和(3)將領域本體知識集成到模型在管道和端到端模型所示的對話框。本文還綜述了近年來對話評價的研究進展和一些被廣泛使用的語料庫。我們相信這項綜述可以為未來面向任務的對話系統的研究提供一些啟示。
自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。計算能力的最新發展和大量語言數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本調查對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們進一步分析和比較不同的方法和最先進的模型。