鄧力博士及劉洋博士等人合著的 Deep Learning in Natural Language Processing 一書系統介紹深度學習在 NLP 常見問題中的應用,而且是目前對此方面研究最新、最全面的綜述。 本書還對 NLP 未來發展的研究方向進行了探討,包括神經符號整合框架、基于記憶的模型、先驗知識融合以及深度學習范式(如無監督學習、生成式學習、多模學習、多任務學習和元學習等)。
題目: A Survey on Transfer Learning in Natural Language Processing
摘要:
深度學習模型通常需要大量數據。 但是,這些大型數據集并非總是可以實現的。這在許多具有挑戰性的NLP任務中很常見。例如,考慮使用神經機器翻譯,在這種情況下,特別對于低資源語言而言,可能無法整理如此大的數據集。深度學習模型的另一個局限性是對巨大計算資源的需求。這些障礙促使研究人員質疑使用大型訓練模型進行知識遷移的可能性。隨著許多大型模型的出現,對遷移學習的需求正在增加。在此調查中,我們介紹了NLP領域中最新的遷移學習進展。我們還提供了分類法,用于分類文獻中的不同遷移學習方法。
題目: Attention in Natural Language Processing
摘要:
注意力是一種越來越受歡迎的機制,在廣泛的神經結構中使用。該機制本身以各種格式實現。然而,由于這一領域的快速發展,仍然缺乏對注意力的系統概述。在本文中,我們為自然語言處理中的注意力架構定義了一個統一的模型,重點是那些設計用來處理文本數據的向量表示的模型。根據四個維度提出了注意力模型的分類:輸入的表示、兼容性函數、分布函數和輸入和輸出的多樣性。然后展示了如何在注意力模型中利用先驗信息的例子,并討論了該領域正在進行的研究工作和面臨的挑戰。
題目
NLP注意力機制綜述論文翻譯,Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing
關鍵詞
注意力機制,自然語言處理,深度學習,人工智能
簡介
注意力是一種廣泛用于神經體系結構的越來越流行的機制。由于該領域的快速發展,仍然缺少對注意力的系統概述。 在本文中,我們為自然語言處理的注意力體系結構定義了一個統一的模型,重點是旨在與文本數據的矢量表示一起工作的體系結構。 我們討論了提案不同的方面,注意力的可能用途,并繪制了該領域的主要研究活動和公開挑戰。
作者
Andrea Galassi
Department of Computer Science and Engineering (DISI),
University of Bologna, Bologna, Italy ;
Marco Lippi
Department of Sciences and Methods for Engineering (DISMI),
University of Modena and Reggio Emilia, Reggio Emilia, Italy ;
Paolo Torroni
Department of Computer Science and Engineering (DISI),
University of Bologna, Bologna, Italy
主題: Modern Deep Learning Techniques Applied to Natural Language Processing
簡要介紹: 該文章概述了基于深度學習的自然語言處理(NLP)的最新趨勢。 它涵蓋了深度學習模型(例如遞歸神經網絡(RNN),卷積神經網絡(CNN)和強化學習)背后的理論描述和實現細節,用于解決各種NLP任務和應用。 概述還包含NLP任務(例如機器翻譯,問題解答和對話系統)的最新結果摘要。
題目: Natural Language Processing Advancements By Deep Learning: A Survey
摘要: 自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。算力的最新發展和語言大數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本綜述對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們并進一步分析和比較不同的方法和最先進的模型。
簡介: 人們在閱讀文章時,可以識別關鍵思想,作出總結,并建立文章中的聯系以及對其他需要理解的內容等方面都做得很出色。深度學習的最新進展使計算機系統可以實現類似的功能。用于自然語言處理的深度學習可教您將深度學習方法應用于自然語言處理(NLP),以有效地解釋和使用文章。在這本書中,NLP專家Stephan Raaijmakers提煉了他對這個快速發展的領域中最新技術發展的研究。通過詳細的說明和豐富的代碼示例,您將探索最具挑戰性的NLP問題,并學習如何通過深度學習解決它們!
自然語言處理是教計算機解釋和處理人類語言的科學。最近,隨著深度學習的應用,NLP技術已躍升至令人興奮的新水平。這些突破包括模式識別,從上下文中進行推斷以及確定情感語調,從根本上改善了現代日常便利性,例如網絡搜索,以及與語音助手的交互。他們也在改變商業世界!
目錄:
1深度NLP學習
2 深度學習和語言:基礎知識
3文字嵌入
4文字相似度
5序列NLP和記憶
6NLP的6種情景記憶
7注意力機制
8多任務學習
附錄
附錄A:NLP
附錄B:矩陣代數
附錄C:超參數估計和分類器性能評估
My notes on Deep Learning for NLP.
Deep learning methods employ multiple processing layers to learn hierarchical representations of data, and have produced state-of-the-art results in many domains. Recently, a variety of model designs and methods have blossomed in the context of natural language processing (NLP). In this paper, we review significant deep learning related models and methods that have been employed for numerous NLP tasks and provide a walk-through of their evolution. We also summarize, compare and contrast the various models and put forward a detailed understanding of the past, present and future of deep learning in NLP.