在軍隊越來越多地使用基于機器學習(ML)的技術的背景下,我們的文章呼吁對ML平臺進行分析,以了解ML如何在軍隊中擴散以及產生什么影響。我們采用了新媒體研究中關于平臺的物質技術視角,并將這一文獻帶到了批判性安全研究中,我們認為需要關注平臺和它們所做的技術工作,以了解數字技術是如何出現和塑造安全實踐的。通過對谷歌開源ML平臺TensorFlow的詳細研究,以及對美國國防部算法戰爭跨職能團隊,即Project Maven的討論,我們做出了兩個更廣泛的貢獻。首先,我們確定了軍隊更廣泛的 "平臺化",我們指的是(技術材料)ML平臺的日益參與和滲透,它是使整個軍隊的分散和實驗性算法開發的新做法得以實現的基礎設施。其次,我們得出這種平臺化是如何伴隨著軍隊和企業領域的行為者之間的新的糾葛,特別是在這種情況下發揮關鍵作用的大科技公司,以及圍繞這些平臺組織的開源社區。
在軍隊越來越多地使用機器學習(ML)技術的背景下,我們的論文使用ML平臺的分析視角來理解ML是如何在軍隊中擴散的,并產生了什么影響。我們采用了新媒體研究中發展起來的關于平臺的物質/技術視角,將這一文獻與批判性安全研究結合起來,并認為關注平臺和它們所做的技術工作對于理解數字技術如何出現和塑造安全實踐是必要的。我們借鑒了對谷歌開源ML平臺TensorFlow的詳細研究,以及對美國國防部多功能算法戰爭團隊,即Project Maven的討論,并做出了兩個更廣泛的貢獻。我們首先確定了軍隊更廣泛的 "平臺化",我們指的是ML "硬件技術 "平臺的日益參與和滲透,作為軍隊中實驗性和分散性算法開發的新實踐的基礎設施。然后,我們繼續說明這種平臺化是如何伴隨著軍隊和企業行為者之間的新的糾葛,特別是GAFAMs,它們在這種情況下發揮著關鍵作用,而且圍繞這些平臺組織的開源社區也是如此。
在武裝部隊越來越多地使用自動學習技術(機器學習,ML)的背景下,在我們的文章中,我們描述了關于ML平臺的一個分析視角,目的是理解ML在武裝部隊中的發展以及其影響。采用一種關于平臺的物質和技術觀點,就像在關于新的通信媒體的研究中所開發的那樣,并在安全問題的研究中提及這一信息、 我們認為,有必要集中研究平臺和技術工作,以了解數字技術的發展和安全實踐的結構。通過對谷歌開放的ML平臺TensorFlow的詳細研究,以及美國國防部的交互式戰斗機設備的辯論,美國國防部的Proyectamento de Defensa,即美國國防部。美國的Proyecto Maven,實現了兩個更廣泛的貢獻。首先,我們確定了一個更廣泛的武裝部隊 "平臺",其中我們指的是ML平臺(技術/材料)的不斷參與和滲透,作為一種基礎設施,允許在武裝部隊中進行新的分散的算法開發和實驗實踐。第二,我們注意到這一平臺正伴隨著武裝部隊和公司統治者之間的新沖突,特別是那些在這一背景下發揮重要作用的大型科技公司,以及在這一平臺上組織起來的無國籍社區。
在描述未來戰場時,許多軍事從業人員推測人工智能(AI)的影響,還有人甚至要求使用人工智能。本文提供了對戰場AI技術的基本理解。首先,最重要的是,高質量、有標簽、有組織的數據為人工智能系統提供養料。此外,許多人工智能架構在接觸到太少或有污點的數據時被證明是脆弱的,有可能被對手所利用。應用一個健全的應用模式,考慮到人類與人工智能實施的互動,有助于確保軍事交戰不會變成純粹的數據驅動模式。
在描述未來的戰場時,許多軍事工作者推測人工智能(AI)的影響,還有人甚至要求使用人工智能。因為人工智能已經推動了部分經濟的發展,并引導了自動駕駛汽車原型開發。這些商業例子代表了工程師們對使用人工智能的選擇,因為它為特定問題提供了正確的解決方案。這些案例經常使用機器學習(ML),它能極好地完成一個特定的數據特征任務,但并不代表人工通用智能。ML算法可以產生令人印象深刻的結果,但事實證明其高度依賴訓練數據,這使它們很容易受到攻擊。盡管如此,軍事規劃者和領導人目前面臨著在哪里實施以及如何投資AI和ML的決定,如果處理不當將很有可能失去半自主性和決策速度方面的潛在戰場優勢。事實上,美國《2022財政年度國防授權法》第226條要求審查 "人工智能和數字技術在美國防部平臺、流程和業務中的潛在應用",這使得對人工智能和ML應用的理解變得更加緊迫。此外,通過聯合人工智能中心、美國海軍研究實驗室和美國空軍-馬薩諸塞州技術研究所人工智能加速器等組織,實施的有前途的投資和研究。ML對數據的依賴,以及它的脆弱性,揭示了潛在軍事應用的基本風險和限制。這些有助于為一個基本模型提供信息,軍事規劃人員可以據此決定在哪里以及如何利用一個基于人工智能的系統。這個模型,再加上確保數據干凈和跟蹤人工智能系統的訓練時間,可以幫助確保軍事應用不會落入讓人工智能做出不準確或錯誤決定的陷阱。
目前ML實施方式是通過訓練計算機系統來很好地完成一項任務。例如,目前的ML系統可以讀取路標。然而,盡管如此,一個用于圖像處理的ML算法如果應用于其他數據模式,很少會產生相稱的結果。例如,一個為其他目的而設計的系統,無法以同樣的信心使用圖像處理算法來識別人類的語音。即使是面對相同的數據模式,如圖像,一個在識別一種類型的圖像(如路標)時表現良好的ML算法,在訓練識別另一種圖像(如樹木)時也可能表現不佳。美國和中國人工智能創新的領導者李開復認為,實施一個ML系統 "需要大量的相關數據,一個強大的算法,一個狹窄的領域,以及一個具體的目標。如果你缺少其中任何一個,事情就會崩潰。" 因此,圖像、音頻、金融和信號處理之外的應用往往仍然是研究和發展的主題。互聯網提供了收集數以百萬計數據點的手段,這些數據點是開發許多強大人工智能系統原型所需要的。然而,這些數據隨后需要組織和標記,通常是由人類來完成,以便ML系統可以訓練。上面的例子,人類可能會查看、識別和標記ML系統最初學習的每一張停車標志的圖像。用來訓練軍事人工智能應用系統的真實標記數據往往很稀缺。數以千計的鳥類或停車標志圖像已經貼上了標簽,這反映了時間和資源的規模,但這不一定能用來標記訓練軍事人工智能系統所需的獨特傳感器數據。如果沒有找到可以轉化為軍事應用的已標記的數據,就必須實施一個收集和標記新訓練數據的系統。由于這些原因,數據的質量和可用性給任何軍事應用帶來了時間和資源障礙。
當提供優質數據時,人們可以在兩種基本模式下訓練ML程序:有監督的和無監督的。監督訓練需要有真實標簽(即正確答案)的樣本。在對新數據進行分類后,ML模型可以將其輸出與正確的解決方案進行比較。當它收到越來越多的訓練數據時,ML算法就會尋求使其輸出與正確標簽之間的誤差最小化。隨著更多的數據和樣本通過ML的反饋,其反應的準確性可能會增加,但太多類似的樣本會使模型過度擬合,使其在執行時對新數據進行錯誤分類。在無監督學習中,ML模型沒有正確分類的樣本;相反,它把數據分成類似的類別。同樣,訓練數據集影響了這些分組在相似性方面的精確程度。當遇到有標簽的數據并尋求特定的分類能力時,監督學習算法可能被證明更有用,而無監督學習最初可能被證明對一個新的數據集更有用。值得注意的是,兩種方法都存在錯誤。
監督和非監督學習都適用于軍事應用。對于圖像分析,一個ML系統有可能識別出特定類型的飛機或車輛的型號。一個ML系統也可以快速識別觀察到的環境變化。這種識別的變化可以觸發其他傳感器或ML系統進行更仔細的觀察。美國空軍最近表示,它已經實施了人工智能來支持目標定位。中國的軍事思想家認為人工智能和智能武器是未來戰爭中潛在的決定性技術。情報、監視和偵察(ISR);信息戰;和圖像分析是軍事ML的主要應用。
除了建立大量有組織和可消化的數據用于訓練外,ML系統必須可以獲得新數據和計算能力,以執行ML算法。事實證明,圖形處理單元,也就是驅動現代游戲電腦的硬件,可以提供所需的處理能力。然而,移動和處理ML數據所需的存儲空間和帶寬會使推動ML系統向戰術應用發展成為挑戰。這些限制意味著人們可能很快將導航、傳感器到射手射擊等應用推向戰術邊緣。其他可實現的應用,如復雜的飛機維護,需要大量的數據收集、開發和測試,然后在戰術邊緣進行輕度訓練。
有可能的是,人們可以通過在超級計算機上訓練ML系統,進而采用訓練好的算法來克服這些障礙,這個過程中可能會有專門的云架構幫助。網狀網絡和分布式計算方法也將有助于克服這一挑戰。然而,即使要實施這些解決方案,也需要對目前的戰術數據通信進行大規模的改革。訪問和處理數據的能力將決定AI應用在戰場上的位置。如果沒有在戰術邊緣推拉實時數據的能力,ML戰場應用仍將受到限制。
除了需要大量的數據來訓練ML系統,數據還必須具有良好的質量。質量意味著數據是在不同的情況下從不同來源獲取的,然后以ML系統可以接受的方式進行標注和展示。更重要的是,ML實施必須確保數據的完整性和標簽的準確性。古老的諺語 "垃圾進,垃圾出 "對ML來說是真實的,如果沒有高質量的訓練數據,假陽性或其他不良的結果會大量出現。一些研究實例已經證明了這一點對ML圖像處理算法的影響。簡單地給照片中的像素添加噪音或色調和亮度的輕微變化,就能迫使其做出錯誤的分類,即使在人眼看來圖像是一樣的。同樣,通過在停車標志上放置貼紙來改變一個物體的物理性質,也會迫使ML系統對該標志進行錯誤分類。(另一方面,人類仍然會感知到停車標志,而忽略貼紙)。同樣,谷歌已經證明,一個簡單的 ""放置在圖像的角落里會阻止正確的ML分類。雖然這些例子集中在ML的圖像應用上,但它們說明了ML系統在訓練中的脆弱性以及任何ML系統中數據完整性的重要性。這些問題對許多商業應用來說是可以容忍的,但在軍事背景下,它們就顯得更加突出。
這種對數據的依賴引入了兩種顛覆ML系統的主要方法。攻擊者可以在系統學習之前對數據下毒,或者向受訓系統提供病態數據。像素操作和圖像修補可以在模型訓練階段(即操作前)提供一種攻擊手段。將貼紙貼在停車標志上或房間里的海報上,可以用來攻擊操作中的訓練有素的ML系統。軍事從業人員可以很容易對數據進行篡改。這些可能性包括對數據庫進行網絡攻擊,以及應用簡單而一致的偽裝手段,以確保訓練中的簽名與行動中的簽名不一致。此外,偏離武器系統的正常使用方式,有可能影響ML系統的分類結果。任何ML的軍事應用都必須通過強調確保數據不被篡改、數據來自可靠來源以及數據被正確標記的重要性來防止此類攻擊。同時,軍事人工智能系統必須有一個維持計劃,以便在新的相關數據源可用時用其更新訓練過的模型。在戰場行動的緊迫時間框架內,這種維護可能很難實現。
為了防止這種可能性并反制對手對ML的應用,數據管理變得至關重要。首先,必須開發一種手段,以一種有標簽和有組織的方式跟蹤友軍的數據暴露。這意味著每一次追蹤友軍能力可能會暴露于對手的ISR或通過間諜活動、黑客攻擊、工業或新聞界不知不覺地泄露情況。同樣重要的是,友軍要保持對攻擊者可能擁有數據的理解。對手可能有機會獲得高質量的監控數據,甚至是國防部門實施的ML模型。有了這個數據集和相關的分析,就有可能進行兵棋推演并考慮到對手可能的ML能力。在兵棋推演之后,人工智能專家可以得出關于偽裝、欺騙、甚至數據攻擊的建議。另外,如果知道對手使用什么ML技術,再加上這些友軍數據,就可以估計友軍的弱點或揭示ML賦能決策中的可預測性。因此,了解對手的人工智能和ML算法應該是一個優先事項。這種數據跟蹤方法有助于確定友軍在戰場上使用前應將哪些物品隱藏起來,并指導其有效應用。
然而,僅僅識別關鍵數據是不夠的。軍事部門還必須提供培訓手段,以便進行技術簽名管理。更容易進入安全設施和無線電頻率(RF)屏蔽機庫,或只在適當的光線和云層條件下進行訓練,都是各單位必須實施的概念。人們無法抹去對手收集的舊數據,但隨著國防部門開始實施新的能力,部隊可以管理他們的數據暴露或改變簽名。簡單地改變飛機上的油漆顏色或略微改變一個射頻形式因素就可以減輕過去的簽名暴露。諸如擴大聯合攻擊戰斗機的部署、高機動性火炮火箭系統或新的戰術編隊(如海軍陸戰隊濱海團)等能力應適用所有這些原則,作為其部署和培訓計劃的一部分。總之,要應用的原則包括確保ML訓練數據的完整性,保護和改變友軍簽名數據,并確保友軍ML實施的保密性。
風險將推動軍隊應該在哪里實施人工智能以及系統應該有多大的自主性。麻省理工學院(MIT)林肯實驗室提出了一個描述人工智能 "影響領域"的模型,它試圖定義人工智能的現有商業和軍事應用。在這個模型中,低行動后果的應用包括將人工智能用于機器人吸塵器,而高行動后果的應用則將生命置于危險之中,如醫療診斷。這個模型將人工智能投資放在不同級別的可用數據和行動后果的類別中。例如,根據這個模型,最初投資于人工智能來分析ISR圖像的行動后果低于使用人工智能來直接攻擊目標。同樣的數據可以為ISR探測和武器交戰提供信息,但顯然行動的后果隨著交戰而增加。
另一個模型在試圖解釋人工智能在未來可能取代的東西時,更依賴于人的因素。李開復分析了人工智能可能取代的人類角色。他從不同的角度對待人工智能的應用,通過審查人工智能的潛在使用是否取代了社會或非社會角色,同時仍然認識到對高質量數據的要求。作為醫療領域的一個例子,精神病醫生的角色是高度社會化的,而放射科醫生的角色是非社會化的。李認為,當提供大量有標簽和可消化的數據時,人工智能投資可以最容易地取代非社會角色。這個觀點與經濟學家已經預測的有關工作場所的自動化取代 "常規手工和認知技能 "的觀點一致,這些技能不需要大量的創造性思維或個人互動。就軍事目的而言,人工智能發揮的社會作用與戰爭中的人類因素有關,如部隊士氣、政治目的和抵抗意志。在軍事應用中只使用基于社會的模型,意味著人們可以考慮用人工智能來取代人類在確定目標和開火的優先次序方面的某些作用。然而,火力行動的后果將必須要求人類繼續參與其中。
結合社會因素和行動后果,提供了一個初步評估工具的例子,即一項軍事活動是否會從人工智能應用中受益,以及應該保留多少人類監督(圖1)。
圖 1. 來自麻省理工學院林肯實驗室和李開復研究的人工智能軍事應用評估模型
正如李開復和麻省理工學院林肯實驗室所強調的數據重要性,組合模型的第一步需要策劃大量的高質量、有標簽的數據。必要的數據和對現有系統的完整理解只意味著人工智能可能會發揮作用。其他重要的技術考慮因素比比皆是,包括但不限于計算的可操作性、優化描述的精確性,以及學習模型的適用性。除了技術上的考慮,其他的標準也告知人們是否應該使用人工智能。使用的行動后果和社會方面的雙軸分析來評估應該如何使用人工智能,而不是是否可以。對人工智能應用的完整評估需要審查數據的可用性和人工智能的技術適用性,然后評估社會和行動的后果要素。
圖1所示的混合模型表明,初始軍事人工智能應用的最佳位置在于行動后果較低的非社會應用。同樣的左下角象限也為初步實施 "人在回路"(HOTL)模式提供了機會。這意味著人工智能將在遵守交戰規則(法律框架)的情況下提供戰斗管理選項,并有可能由人類進行否決,以確保人工智能的建議符合道德要求。 然而,如果沒有人類的干預,HOTL人工智能系統將執行這些行動。HOTL與 "人在回路 "模式形成鮮明對比,在這種模式下,操作者會向人工智能決策過程提供積極的輸入。越是在高度社會化或高后果行動領域的應用,人類就越是要在決策之前保持在循環中。最后,人們會避免在這個模型的右上角直接應用人工智能,在那里會發生具有高行動后果的高度社會活動。
圖2說明了這種方法在常見的聯合目標定位活動中的應用實例。目標開發和優先排序在很大程度上是技術性和非社會性的,導致了較高的行動后果,需要人類參與其中。相反,戰斗損傷評估的行動后果較低,但在確定火力對對手造成的影響時,具有較高的人類社會作用。武器配對和能力分析本身屬于非社會領域,其行動后果相對較低,只需要人類參與其中。指揮官的決策具有高度的社會性和行動后果,應該保持只由人工智能提供信息。這個簡單的應用作為一個說明,并提供了例子之間的相對評估。雖然這個模型提供了一個可以探索如何應用人工智能的例子,但還存在許多其他例子。使用任何這樣的模型,必須首先對人工智能在任何應用中的技術適用性以及數據的質量進行完整分析。
圖 2. AI 評估模型在常見聯合目標定位活動中的應用
這種人工智能應用模式本身并沒有回答對人工智能系統的信任這一重要問題。就其本質而言,人工智能產生的結果,用戶(甚至設計者)并不完全知道人工智能為何做出決定。這個 "黑盒"留下了重大的道德和信任漏洞。出于這個原因,提供風險控制和代表不確定性的技術研究在不斷推進。雖然圖1中的模型指向了一個人工智能與人類互動的案例,但這并不意味著軍事從業者會信任人工智能的結果。要獲得信任,首先要確保數據的干凈和完整性,這一點在前面已經討論過了。除此之外,人們必須對系統的性能有信心。 一個軍事人工智能的實施不會總是一個靜態的系統。隨著對手調整其設備或新的傳感器上線,人工智能系統將不斷需要接觸到擴大的和當前的數據,以確保其分類決定保持準確,并以正確的理由進行。
就像軍事飛行員和其他專家必須保持使用其武器系統的資格一樣,人工智能的實施將需要一個持續的培訓和評估計劃。人工智能在性能上的重復驗證將涉及到用更新的數據集進行再訓練。任何人工智能系統都必須進行這種性能上的再驗證,因為目前使用的模型并沒有達到通用智能。重新訓練人類操作員以適應新的或新的數據輸入要容易得多,而人工智能算法在引入新的數據時可能完全無法工作。例如,如果一個人工智能系統要將一張圖片分類為朋友或敵人,那么在循環中的人類會想知道人工智能系統使用的是當前的和經過嚴格測試的模型。此外,任何重新訓練人工智能系統的人也希望將當前的性能與過去的性能指標進行比較,以了解系統是否有改進。性能的退化可能表明數據的退化甚至妥協,需要在采用該系統之前對其進行重新訓練。就像訓練有素的軍事技術人員需要在武器平臺上保持最新的資格一樣,人工智能系統在某項任務上適用性和熟練程度也應保持跟蹤。
這些挑戰導致國防部門建立了人工智能道德的五項原則:負責任、公平、可追蹤、可靠和可管理。最近,美國人工智能安全委員會呼吁國家標準和技術研究所制定措施和 "人工智能可信的工具"。 在適當的領域實施人工智能系統,適當地管理數據,并確保當前的人工智能培訓,都有助于建立對軍事人工智能系統的信任。
隨著人工智能研究界開始向國防部門提供能力,沒有經驗的軍事從業者將正確地尋求了解AI和ML的作戰影響。然而,一些急于實施人工智能技術作為目的的軍事領導人有可能不理解人工智能技術的基本原則。人工智能作為解決一個問題的潛在手段,但不一定是最好的手段。首先,高質量的、有標簽的、有組織的數據為人工智能系統提供支持。在最初的開發中,AI/ML戰斗相關的應用可能會依賴來自圖像和信號處理的數據。此外,目前的ML結構在接觸到太少或有污點的數據時被證明是脆弱的。即使提供了一個健全的人工智能實施方案,現在的軍事應用也有可能被對手所預測。隨著國防部門開始使用新的能力并強調軍事行動中的簽名管理,數據管理將被證明是評估人工智能系統使用的最重要因素。應用一個健全的應用模型,考慮到人類與人工智能實施的互動,將有助于確保軍事交戰不會變成純粹的數據驅動。通過在適當領域應用人工智能,確保數據干凈,遵守道德原則,并跟蹤系統培訓,同時減輕新的攻擊載體,那軍事從業者可以信任人工智能。以錯誤的方式應用人工智能將為對手打開容易攻擊的載體,如果不能認識到戰爭中人因的重要性,導致寶貴的資源浪費,不能產生可預測的反應,那最終將無法創造出預期的戰場優勢。
技術的進步為自主系統提供了希望,使其形成比其單個成員更有能力的人機編隊。了解自主系統的內部運作,特別是當機器學習(ML)方法被廣泛地應用于這些系統的設計時,對與它們一起工作的人來說已經變得越來越具有挑戰性。定量ML方法的 "黑箱"性質,對人們理解機器學習系統的態勢感知(SA)構成了阻礙,往往導致采用機器學習算法的自主系統被廢棄或過度依賴。人機互動的研究表明,透明通信可以提高隊友的安全意識,促進信任關系,并提高人機團隊的績效。本文中將研究智能體透明度模型對人類與使用自動解釋基于ML的智能體互動的影響。我們將討論一種特殊的ML方法--強化學習(RL)在基于部分可觀察馬爾可夫決策過程(POMDP)智能體中的應用,以及POMDP中RL的解釋算法設計。
在一個跨國威脅不斷增加、全球相互依存度空前提高、大國競爭重新抬頭的時代,美國正處于一個拐點。這是在技術革命的背景下發生的,技術革命加劇了面臨的挑戰,同時也提供了潛在的解決方案,在氣候、醫藥、通信、運輸、智能和許多其他領域提供了突破。其中許多突破將通過利用人工智能(AI)及其相關技術--其中主要是機器學習(ML)。這些進步可能會塑造國家之間的經濟和軍事力量平衡,以及國家內部的工作、財富和不平等的未來。
ML的創新有可能從根本上改變美國軍隊的戰斗方式,以及美國防部的運作方式。機器學習的應用可以提高人類在戰場上的決策速度和質量,使人機合作的性能最大化,并將士兵的風險降到最低,并極大地提高依賴非常大的數據集的分析的準確性和速度。ML還可以加強美國以機器速度防御網絡攻擊的能力,并有能力將勞動密集型企業功能的關鍵部分自動化,如預測性維護和人員管理。
然而,人工智能和機器學習的進步并不只是美國的專利。事實上,面對中國在該領域的挑戰,美國在人工智能領域的全球領導地位仍然受到懷疑。美國防部和學術界的許多報告反映了需要在人工智能研究和開發方面進行更多投資,培訓和招聘一支熟練的勞動力,并促進支持美國人工智能創新的國際環境--同時促進安全、安保、隱私和道德的發展和使用。然而,人們對信任問題,特別是對這些系統的測試、評估、驗證和確認(TEVV)的關注太少。建立一個強大的測試和評估生態系統是負責任地、可靠地和緊急地利用這一技術的一個關鍵組成部分。如果不這樣做,就意味著落后。
本報告將首先強調為人工智能系統調整美國防部現有的TEVV生態系統的技術和組織障礙,特別強調ML及其相關的深度學習(DL)技術,我們預測這對未來的威懾和作戰至關重要,同時在可解釋性、可治理性、可追溯性和信任方面帶來獨特的挑戰。其次,本報告將向國防部領導層提供具體的、可操作的建議,與情報界、國務院、國會、工業界和學術界合作,通過改革流程、政策和組織結構,同時投資于研究、基礎設施和人員,推進ML/DL的TEV系統。這些建議是基于作者幾十年來在美國政府從事國家安全工作的經驗,以及對從事ML/DL和測試與評估的政府、工業和學術界專家的數十次訪談。
無人駕駛航空系統和其他相關技術的發展,包括人工智能、數據和云網絡、自主控制系統和系統/武器/傳感器的小型化和網絡化,以及增加昂貴的載人平臺艦隊數量的需要,推動了許多武裝部隊和工業界積極嘗試有人無人機編隊(MUM-T)。除非任務目標或載人平臺的生存需要,否則在有人平臺之外部署無人駕駛、"低成本 "和 "可損耗 "但不 "可拋棄 "的戰斗飛行器,可以最大限度地發揮其作為力量倍增器的價值,在高度競爭的空域提高殺傷力和生存能力。盡管自主技術和人工智能的引入正在徹底改變全域作戰,但新的自主平臺和武器系統的交戰規則正在通過嚴格的倫理考慮和評估來發展,其中人在環路上繼續發揮重要作用。本文希望對MUM-T方案和活動做一個整體的、非詳盡的分析。
天堡(Skyborg)是美國空軍 "先鋒 "計劃中迅速投入使用的三個技術項目之一,它是一個架構套件,旨在為自主可損耗的機身設計,根據該服務,它將能夠以足夠的節奏進行姿態、生產和維持多任務飛行,以挫敗對手在有爭議和高度爭議的環境中采取快速、決定性行動的企圖。天堡自主核心系統或ACS于2019年首次曝光,由Leidos公司開發,已在2021年的多月測試活動中得到驗證,在此期間,它被成功整合到兩個不同的無人平臺上,即Kratos UTAP-22 Mako和通用原子-航空航天系統公司的MQ-20,證明了政府擁有的自主核心的可移植性,使其在未來整合到不同平臺上。一個關鍵的活動里程碑是參加了 "橙旗21-2 "演習,這是美國在2021年6月進行的首要的大型部隊多領域測試活動,其中Skyborg ACS被集成到一個MQ-20中,成為在這種復雜活動中自主操作的無人車的首次飛行測試。由空軍研究實驗室(AFRL)進行,根據服務文件,Skyborg被組織成三個主要的努力方向(LOE)。LOE 1開發、演示和原型化由天堡自主架構和軟件組成的ACS,實現機器-機器和有人-無人的合作,同時也確保天堡自主任務系統套件的開放性、模塊化和可擴展性。ACS LOE還開發、演示和試制所需的硬件組件和開放架構標準,以便在系統集成實驗室和平臺上將模塊化傳感器、通信和其他有效載荷集成到Skyborg自主性和車輛架構中。LOE 2開發、演示和原型化新的低成本可移動飛行器的概念和技術,用于遠征的大規模生成,包括架次生成就業概念。LOE 3對可追蹤的、自主的、無人駕駛系統的操作概念和就業概念進行分析和實驗,并評估傳感器和任務系統的開放性、模塊化能力和整合。2021年8月,克拉托斯公司和通用原子公司都獲得了一份合同,以進一步支持將Skyborg分別集成到XQ-58A "女武神 "和MQ-20 "復仇者 "無人平臺,同時在大部隊演習中進行系統實驗。這些額外合同的目的是在資金允許的情況下,在2023年將Skyborg過渡到一個記錄方案。根據USAFRL的計劃,ACS還將從2022年開始在波音公司的隱形空中力量合作系統UCAV(無人駕駛戰斗飛行器)上進行實驗,該系統正在為澳大利亞國防部開發,如后所述。有趣的是,今年3月,AFRL授予藍色力量技術公司一份合同,開發一種支持對手空中訓練任務的無人駕駛飛行器,該飛行器將納入通過Skyborg努力開創的先進技術。2021年12月,空軍部長弗蘭克-肯德爾宣布,該軍種正在研究無人平臺與諾斯羅普-格魯曼公司的B-21 "突襲者 "遠程攻擊轟炸機和主要是下一代空中優勢(NGAD)先進飛機之間的MUM-T新概念方案,但也有可能與洛克希德-馬丁公司的F-22 "猛禽 "和F-35 "閃電II "聯合攻擊戰斗機合作。
圖:在通用原子公司的MQ-20上成功進行了測試,天堡自主核心系統(ACS)由自主架構和軟件組成,實現了機器-機器和有人-無人的合作。
圖:2021年8月,克拉托斯公司和通用原子公司都收到了一份合同,以進一步支持將天堡系統分別集成到XQ-58A "女武神"(此處描述)和MQ-20 "復仇者 "無人平臺上,同時在大部隊演習中進行系統試驗。
圖:去年11月的 "橙旗 "演習涉及F-35A "閃電 "II等飛機和兩架通用原子公司的MQ-20 "復仇者 "無人機,它們攜帶 "天堡 "自主核心系統進行了持續數小時的飛行測試。
美國海軍正在推行不同的高性能無人平臺計劃,以便在航空母艦上服役。在包括無人作戰系統的MUM-T工作中,2020年初,波音公司宣布,海軍作戰發展司令部在海軍作戰發展司令部的年度艦隊實驗中,由第三架飛機成功進行了兩架自主控制的EA-18G "咆哮者 "的演示。該實驗涉及到咆哮者在第三架咆哮者的控制下作為無人系統行動,以證明F/A-18超級大黃蜂和EA-18G咆哮者空勤人員從駕駛艙遠程控制戰斗機和攻擊平臺的有效性。該演示涉及四個架次的21項任務,為波音公司和海軍提供了分析所收集的數據并決定在哪里進行未來技術投資的機會。美國海軍繼續加速開發下一代空中優勢(NGAD)系統家族(FoS),以提供先進的、基于航母的力量投射能力,擴大其航空母艦的航程。當F/A-18E/F Block II飛機在2030年代開始達到使用年限時,NGAD FoS將取代這些飛機,并利用載人無人機組隊(MUM-T)來提供更強的殺傷力和生存能力。F/A-XX是NGAD FoS的攻擊戰斗機組件,根據該部隊的說法,它將成為MUM-T概念的 "四分衛",在戰斗空間的前沿指揮多個戰術平臺。F/A-XX在2021財年開始了概念完善階段,并且仍然按計劃進行。
2021年5月,澳大利亞政府宣布將對 "忠誠僚機"--高級發展計劃追加投資4.54億澳元。自2017年以來,根據澳大利亞皇家空軍(RAAF)計劃,澳大利亞國防部投資超過1.5億澳元,以支持澳大利亞皇家空軍和波音防務澳大利亞公司領導的當地工業團隊的合資企業,該企業設計、開發和生產了Loyal Wingman無人駕駛戰斗飛行器(UCAV),最近被命名為MQ-28A Ghost Bat。據澳大利亞政府稱,在短短四年內,該合資企業已經成功地制造和飛行了50年來的第一架澳大利亞制造的軍用作戰飛機,這可以使該計劃成為關鍵出口市場的重要競爭者。MQ-28A飛機于2020年5月亮相,2021年2月進行了首次飛行,距離項目啟動僅兩年零三個月。第二架飛機已經加入了飛行測試計劃,第三架飛機正準備在2022年晚些時候進行飛行測試。每架飛機的70%以上是在澳大利亞采購、設計和制造的。這項投資將看到該計劃擴大到更多的本地公司,以及國際合作伙伴和盟友,并在布里斯班附近的圖文巴(Toowoomba)建立一個生產設施,以及在今年加速開展側重于傳感器和任務系統能力的活動。除了用于概念演示的三架原型機外,這項投資將增加七架MQ28A,總共十架飛機,并將快速跟蹤 "幽靈蝙蝠 "在2024-2025年的服役情況。制造商所稱的空中力量組隊系統提供了類似戰斗機的性能,其機身長度為11.7米,能夠飛行超過3700公里。該UCAV有一個模塊化和可互換的機頭部分,可以容納集成傳感器包,以支持不同類型的任務,包括情報、監視和偵察、通信中繼以及動能和非動能打擊能力。據RAAF稱,該計劃是整合自主權和人工智能的探路者。
圖:澳大利亞國防部投資支持RAAF和波音防務澳大利亞公司領導的當地工業團隊的合資企業,該團隊設計、開發和生產了 "忠誠僚機"戰斗無人駕駛飛行器,最近被命名為MQ-28A幽靈蝙蝠。
圖:除了用于概念演示的三架 "忠誠僚機"原型機外,澳大利亞政府去年5月宣布的投資將增加7架MQ-28A,共10架飛機,并將加快 "幽靈蝙蝠 "在2024-2025年投入使用的步伐。
蚊子項目于2019年7月首次由英國皇家空軍快速能力辦公室和國防科技實驗室披露,該項目旨在開發和證明一種技術演示器,作為更廣泛的輕量級廉價新型作戰飛機(LANCA)計劃的一部分,根據公告,。該計劃旨在提供額外的能力,將無人平臺與F-35、"臺風 "和下一代 "暴風雪 "等戰斗機部署在一起,為有人駕駛的飛機提供更多的保護、生存能力和信息,甚至可以在未來提供一個無人駕駛的作戰航空 "艦隊"。有趣的是,2021年7月,英國皇家空軍空軍總司令邁克-威格斯頓爵士在空天力量協會的全球空軍首長會議上談到廣泛的未來戰斗航空系統(FCAS)時說,"與意大利和瑞典等國際盟友合作,我們正在采取一種革命性的方法。我們正在研究改變游戲規則的蜂群式無人機和無機組人員作戰飛機的混合編隊,以及像 "暴風雪 "這樣的下一代駕駛飛機,"這為與上述國家和其他國際盟友開展無機組人員作戰飛機和無人機的潛在共同計劃開辟了道路。
圖:2021年1月,由Spirit AeroSystems公司領導的一個工業團隊獲得了一份3000萬英鎊的合同,以快速設計和制造英國第一個無機組人員的戰斗航空系統的技術演示器,該系統是在 "蚊子 "三年全尺寸飛行測試計劃下的。
圖:"蚊子"將從機場、空客A400M "母艦 "或航空母艦上發射,計劃到2023年底在英國領空飛行。"蚊子"UCAV和Alvina蜂群無人機將支持新一代的 "暴風 "作戰空中平臺。
作為 "蚊子 "項目第二階段的一部分,2021年1月,由英國Spirit AeroSystems公司作為主承包商和機身設計者領導的工業團隊與諾斯羅普-格魯曼英國公司(人工智能、網絡、人機界面)和Intrepid Minds公司(航空電子和動力)一起獲得了一份3000萬英鎊的合同,在為期三年的全尺寸飛行測試計劃中快速設計和制造英國首個無機組人員作戰航空系統(UCAS)的技術演示機,作為目前F-35、臺風和下一代 "暴風 "平臺的補充。無人駕駛作戰飛機主要是為了增加軍方作戰航空部隊的數量,它被設計為與戰斗機一起高速飛行,配備導彈、監視和電子戰技術,以瞄準和擊落敵方飛機,并能抵御地對空導彈。蚊子 "將從機場、空客A400M "母艦 "或航空母艦上發射,計劃在2023年底前在英國領空飛行,但沒有說明實際的首次飛行是否會提前在外國天空進行。2021年,當時的英國國防參謀長尼克-卡特爵士將軍在一次國際戰略研究所的虛擬活動中說,到2030年,今天由8架臺風戰斗機組成的皇家空軍(RAF)戰術編隊將由2架臺風戰斗機、10架蚊式無機組人員戰斗機和100架阿爾維娜蜂群無機組人員飛行器組成,"因為這是產生大量的方式,你可以看到這在陸地和海洋領域也會上演。" 未來的皇家空軍預計將由暴風雪、F-35、蚊子、阿爾維納和保護者組成,其中80%將是無人駕駛或遙控平臺。2021年,空軍總司令邁克-維格斯頓爵士宣布,皇家空軍無人機測試中隊 "已經毫無疑問地證明了我們的阿爾維娜計劃下蜂群無人機的顛覆性和創新性效用"。在英國Alvina計劃的前兩個階段之后,2019年1月授予了第三階段250萬英鎊的合同,用于綜合概念評估活動,以探索協作運行的無人機群的技術可行性和軍事效用,2021年1月成功測試了涉及英國20架蜂群無人機的最大的協作性軍事重點評估。據報道,與正在為皇家空軍開發的 "蚊子 "分開,皇家海軍正在推進其名為 "維克斯 "的忠誠僚機。
法國、德國和西班牙,未來戰斗航空系統/未來戰斗系統(FCAS/SCAF)的伙伴國,以及它們各自的產業,正在開發遠程載具(RC)元件,它與可選擇駕駛的新一代戰斗機(NGF)和聯網的戰斗云(CC)一起構成下一代武器系統(NGWS)。RCs的開發是由空中客車防務和空間公司作為主體,法國MBDA公司、德國MBDA公司和西班牙SATNUS技術公司組成的合資公司Sener Aeroespacial、GMV和Tecnobit-Grupo Oesia公司進行的。該工業團隊正在開發一個蜂群和網絡化的飛行器系列,其尺寸從數百公斤的消耗性飛行器到數噸的更復雜和可重復使用的忠誠僚機類型。根據空中客車公司和MBDA之間的合作協議,前者專注于開發可重復使用的遙控飛行器,而后者則致力于開發消耗性的。正在開發的關鍵技術包括人工智能支持的合作算法、穩健和故障安全的數據通信、小型化傳感器、新的驅動技術、獨立于GPS的導航、可擴展的行動手段、低觀測性解決方案和蜂群技術。如果達索航空公司和空中客車公司將很快簽署各國已經達成的協議,遙控飛機技術演示器可能在2027-2028年飛行,但這將取決于發展路徑和時間。遙控飛機的初始作戰能力可以在2030年代達到,以初步補充第四代戰斗機,但這將取決于國家要求和對平臺及其任務套件的修改。FCAS的MUM-T作戰概念(CONOPS)和相關要求,定義了對遙控飛機機體和控制系統能力的要求,正在調查作為發展路徑的一部分,直到技術演示飛行階段。正如在2019年布爾歇航展和隨后的活動中所展示的那樣,RCs被設想為支持載人平臺的空對空和空對地任務,包括海軍領域,以及情報、監視和偵察(ISR)以及電子戰斗序列的繪制,還有干擾/欺騙、壓制和摧毀敵人的防空。MBDA正在利用其所有的經驗和技術,開發更深入的打擊武器系統,如 "風暴之影 "和 "金牛座",以及基于國家計劃的新系列 "長矛"、"智能滑翔機 "和 "智能巡洋艦 "的智能連接武器,以進一步發展這些概念的RCs,其發展取決于MUM-T平臺的選定類型。迄今為止,MBDA已經在2019年公布了其RC100和RC200遠程運載工具的概念,但最終的RC可能會有所不同,并且可以設想更大的一攬子解決方案,包括已經公布的用于攔截針對受保護平臺發射的空對空導彈的短程導彈。空中客車公司正在開發的更大的RC,在2019年提出了早期模擬,需要由運輸機(如A400M)進行空中發射,或從跑道起飛。目前還沒有提供關于忠誠的僚機型UCAV的信息。
圖:法國、德國和西班牙,FCAS/SCAF的伙伴國,以及它們各自的工業界,正在開發遠程載具(RC)元素,這些元素與可選擇駕駛的新一代戰斗機(NGF)和聯網的戰斗云(CC)一起構成了下一代武器系統(NGWS)。
圖:根據空客防務與航天公司和MBDA之間的合作協議,后者專注于開發消耗性遠程運載工具,而空客DS則專注于可重復使用的運載工具。
土耳其Baykar技術公司在2021年7月公布了其UCAV設計。據制造商稱,該平臺最初以土耳其語縮寫MIUS(無人駕駛作戰飛機系統)聞名,2022年3月改名為Kizilelma(土耳其語中的紅蘋果),預計將于2023年飛行。Baykar技術公司公布的概念和模型顯示,單渦輪風扇發動機驅動的CUAV具有隱形設計,其特點是三角翼和鴨翼配置,機身能夠容納一個武器艙。雖然沒有提供關于平臺尺寸的官方數據,但制造商提供了關于主要能力的信息。Kizilelma最大起飛重量為6,000公斤,不僅能夠從短的陸地跑道上起飛和降落,而且還能從甲板上的海軍平臺,如土耳其海軍未來的旗艦LHD Anadolu上起飛和降落,據稱它具有全自動起飛和降落的功能,以及包括主動電子掃描陣列雷達、先進的光電攝像機和電子戰系統在內的任務套件,以及視線內和視線外通信套件。Kizilelma的最大有效載荷容量為1500公斤,據稱能夠達到0.6馬赫的巡航速度和11550米的工作高度,續航時間為5小時,任務半徑為926公里,但沒有公布任務有效載荷。
圖:土耳其Baykar技術公司的UCAV Kizilelma(土耳其語中的紅蘋果),據制造商稱,預計將于2023年飛行。
Baykar技術公司公布的Kizilelma UCAV的概念和模型顯示了一個以單渦輪風扇發動機為動力的平臺,其隱身設計的特點是三角翼和鴨翼配置,其機身能夠容納一個武器艙。
這項研究試圖確定目前的武力使用模式是否適用于沒有人類行為者的情況下對自主平臺的攔截。該項目包括對使用武力政策的歷史概述和對專業執法組織當前使用武力建議的定性分析。該項目還分析了執法部門和自主系統之間的互動記錄,特別是焦點小組的反應,以獲得執法部門對自主系統使用武力的看法。最終,該項目發現,目前的武力使用模式不適合在沒有人的情況下使用。目前缺乏對一線官員的指導,可能會導致延遲和不一致的反應,不當使用武力,或不采取行動,這可能會導致生命損失。報告建議為攔截自主系統建立一個單獨的決策框架,以填補目前使用武力模式的空白。這個新的決策框架需要一個持續的評估過程,以解決潛在的二階效應,并在決策過程中考慮到這類變量。
人工智能(AI)在國防領域的使用帶來了重大的倫理問題和風險。隨著人工智能系統的開發和部署,澳國防部將需要解決這些問題,以維護澳大利亞國防軍的聲譽,維護澳大利亞的國內和國際法律義務,并支持國際人工智能制度的發展。
這份報告《案例研究:國防中的倫理人工智能方法應用于戰術指揮和控制系統》是總理與內閣部(PM&C)、澳國防部和澳大利亞國立大學(ANU)3A研究所之間的科技(S&T)合作的產物。它使用《國防中的倫理人工智能方法》[1]來探討設想中的人工智能戰術指揮和控制(C2)系統的倫理風險,該系統整合了各種自主功能,以協助單個人類操作員同時管理多個無人駕駛車輛。
使用 "國防中的倫理人工智能方法 "對這一設想的C2系統進行分析,為三個利益相關者群體提供了關鍵的發現:澳國防部;人工智能技術開發者,以及那些尋求使用或迭代 "國防中的倫理人工智能方法 "的人。
對于澳國防部,該報告確定了關鍵的政策差距,并建議在以下方面采取行動。
對人工智能所做的決定和使用人工智能所做的決定制定一個問責框架
對操作員、指揮和系統開發人員的教育和培訓
管理支撐許多人工智能應用的數據,包括其收集、轉換、存儲和使用。
如果不采取行動,這些差距使澳國防部容易受到重大的聲譽和業務損害。
對人工智能技術開發者的其他關鍵發現涉及到有效性、整合、授權途徑、信心和復原力等主題。總的來說,這些發現鼓勵開發者考慮最有效的系統或算法(例如,在速度或準確性方面),是否一定是為決策者提供幫助的最佳選擇。在某些情況下,與規范性決策更一致的效率較低的算法可能更合適。此外,顯然需要研究哪些信息是做出好的判斷所必需的(特別是在問題復雜、背景重要的情況下);以及應該如何快速傳達這些信息。通過考慮作為分析的一部分而開發的七種假設的道德風險情景,可以進一步探討這些關鍵的發現。
對于那些尋求應用或迭代《國防倫理人工智能方法》的人來說,報告建議開發更多的工具,以幫助從業者確定對其特定需求具有最大相關性和效用的領域;以及一套全面的定義,以幫助應用該方法。
斯考克羅夫特戰略與安全中心致力于制定可持續的、無黨派的戰略,以應對美國及其盟友和伙伴面臨的最重要的安全挑戰。該中心支持美國在與盟國、伙伴的合作中發揮領導作用,以及對培養下一代領導人提供指導。
在過去的幾年里,世界各地的軍隊對發展人工智能(AI)的興趣和投資有所增加,以支持一系列多樣化的國防和國家安全目標。然而,對于什么是人工智能,它如何影響美國和中國之間的戰略競爭,以及如何為這個部署軍事人工智能的新時代優化國防工業基礎,仍然缺乏普遍的理解。現在已經到了在人工智能方面見仁見智的時候了,在政策界和技術界之間建立對現代人工智能的共同理解,并在國防部(DoD)和其工業伙伴之間統一觀點和優先事項。因此,本文討論了以下核心問題。
人工智能的能力有可能為美國國家安全和國防帶來改變游戲規則的優勢,包括
對人工智能作為威懾和贏得未來戰斗所必需的關鍵能力,在美國防部內部得到了重視,美國防部在過去五年里對人工智能進行了顯著的投資。但是,五角大樓以外的政策制定者,以及公眾和正在開發人工智能技術的公司,都需要更好地了解當今人工智能的能力和局限性,并清楚地認識到人工智能對國家安全的積極影響和潛在的破壞性影響。
五角大樓對人工智能的興趣也必須從與中國--以及在較小程度上與俄羅斯--的戰略競爭加劇的角度來看待,人們越來越理解在人工智能和相關新興技術方面的落后可能會損害美國軍隊自冷戰結束以來所保持的戰略、技術和行動優勢。一些國防領導人甚至認為,美國已經在軍事技術競爭中輸給了中國。
雖然本文不贊同這種宿命論的觀點,但本文認為軍事人工智能競爭的賭注很大,而且時間很短。
五角大樓臭名昭著的官僚主義、陳舊的采購和合同制度以及規避風險的組織文化,繼續抑制著美國防部引進外部創新和更快地走向廣泛的人工智能整合和采用的能力。解決這種系統性問題是一個很高的要求。但是,為促進美國防部與商業技術部門和創新初創企業的接觸,已經在進行重要的變革,而且似乎有一種共同的緊迫感,即鞏固這些公私伙伴關系,以確保美國持續的技術和軍事優勢。然而,在統一美國防部及其行業伙伴對人工智能發展最具影響力領域的看法,以及闡明和實施共同的技術標準和測試機制以實現可信賴和負責任的人工智能方面,仍有許多工作要做。
國防部必須迅速行動起來,從對人工智能重要性的廣泛認可過渡到創建路徑、流程、實踐和原則,以加速采用人工智能技術所帶來的能力。如果沒有有意的、協調的和立即的行動,美國有可能在利用主導未來動能和非動能戰場的制勝技術方面落后于競爭對手。本報告為美國防部確定了三個行動方案,這些方案可以幫助確保美國軍隊保持其在人工智能領域的全球領先地位,促進更迅速地采用人工智能所需的內部變革,并利用充滿活力和多樣化的美國創新生態系統,包括
本報告是在美國防部采用人工智能努力過程中和全球地緣政治的未來軌跡方面既合適又充滿不確定性的時候發表的。正在進行的烏克蘭沖突使限制獨裁者控制領土、人口、標準和言論的重要性變得非常明顯,而致力于維護長期國際行為規范的聯盟可以在這一努力中發揮作用。因此,作者敦促美國防部在政府層面,并在可能的情況下在工業層面與美國的盟友和可信賴的伙伴進行接觸和整合,以更好地實施本文的三項主要建議。
人工智能為國防政策制定者提供了一個重要的機會。人工智能處理和融合信息的能力,以及將數據提煉為增強決策的能力,可以在一個混亂的、有爭議的環境中撥開 "戰爭的迷霧",在這個環境中,速度是王道。人工智能還可以釋放出新型可損耗和一次性無人系統的可能性,從而增強威懾力。例如,它可以幫助保障美國軍人的生命,為指導沖突地區自主補給卡車的導航軟件提供動力。雖然人類仍然負責對目標做出最終決定,但人工智能算法在幫助情報專業人員識別和追蹤惡意行為者方面正日益發揮作用,目的是 "縮短殺戮鏈,加快決策速度"。
由于美國所處的更廣泛的地緣戰略背景,特別是與中國的戰略競爭,人工智能的發展和整合也勢在必行。中國人民解放軍(PLA)在人工智能方面的預算似乎與美國軍隊相當,而且解放軍正在為同樣廣泛的應用和能力開發人工智能技術,包括訓練和模擬、蜂群自主系統和信息操作,以及其他許多方面,所有這些都可能取代美國的軍事技術優勢。
正如美國國防部長勞埃德-奧斯汀在2021年7月指出的那樣,"中國的領導人已經明確表示,他們打算在2030年之前在人工智能方面成為全球主導。北京已經談及將人工智能用于一系列任務,從監視到網絡攻擊到自主武器"。美國不能落后于中國或其他競爭對手。
為了加快人工智能的采用,五角大樓必須面對它的弊端:一個孤立的官僚機構,它阻礙了有效的數據管理努力,并阻礙了大規模利用美國防部數據所需的技術基礎設施;陳舊的采購和合同流程,抑制了國防部引進外部創新和將成功的人工智能技術原型過渡到生產和部署;以及一種規避風險的文化,與已知的促進創新的開放、實驗和容忍失敗的類型不一致。
目前正在進行一些努力來解決其中的一些問題。直接向美國防部副部長報告的首席數據和人工智能官(CDAO)角色最近被宣布,以合并首席數據官辦公室、聯合人工智能中心(JAIC)和國防數字服務(DDS)。這一重組將美國防部的數據和人工智能工作置于一個屋檐下,以消除重疊的權力,原來的這種權力重疊性使得人工智能項目的規劃和執行變得困難。擴大使用替代性收購方法,像國防創新單位(DIU)和空軍的AFWERX正在彌合與商業技術部門的差距,特別是初創企業和非傳統供應商。盡管如此,一些技術領導人認為這些努力還不夠,警告說 "時間不多了"。
隨著美國國防部轉向大規模采用人工智能,本報告試圖提供有關現代人工智能未解決問題的見解,總結中國、俄羅斯在軍事人工智能發展方面的關鍵進展,并強調整個美國防部一些最引人注目的人工智能使用案例。報告還簡要評估了美國防部與其行業伙伴之間的不協調,這些不協調繼續阻礙五角大樓獲得美國軍隊所需的改變游戲規則的技術,以阻止對手的侵略并主導未來的戰場。
然而,競爭的緊迫性決不能掩蓋對指導美國軍隊進入人工智能時代的道德準則。因此,報告重申,有必要將美國防部的人工智能道德準則有效地轉化為評估可信度的共同技術標準和評估指標,并加強與國防部的行業合作伙伴--特別是初創企業和非傳統供應商在這些關鍵問題上的合作和協調。
在本報告的最后,為政策制定者和整個國家安全生態系統的其他人工智能利益相關者提出了一些考慮。具體而言,敦促美國防部優先考慮安全、可靠、可信和負責任的人工智能開發和部署,調整國防部和行業之間的人工智能發展的關鍵優先事項,以幫助縮小美國防部的人工智能能力差距,并促進領先的國防技術公司和非傳統供應商之間的協調,以加快國防部的人工智能采用進程。
推動美國防部人工智能開發和采用工作的緊迫性在很大程度上源于確保美國及其盟國在軍事技術競爭中超過中國,這種競爭已經主導了兩國之間的關系。俄羅斯的技術能力遠沒有那么發達,但其侵略行為破壞了全球安全,并威脅到美國和北約的利益。
中國已將對人工智能的投資優先用于國防和國家安全,作為其努力成為 "世界級軍隊"的一部分,并在未來的 "智能化"戰爭中獲得優勢--人工智能(與其他新興技術一起)通過 "網絡化、智能化和自主系統和設備 "更完全地融入軍事系統和行動。
雖然中國人工智能相關活動的全部范圍并不廣為人知,但美國安全與新興技術中心(CSET)在2021年10月對343份與人工智能相關的中國軍事合同的審查估計,解放軍 "每年在人工智能相關的系統和設備上花費超過16億美元"。美國國家人工智能安全委員會(NSCAI)的最終報告評估說,"中國的計劃、資源和進展應該引起所有美國人的關注。它在人工智能的許多應用領域處于全球同等水平,而在一些應用領域是人工智能的領導者"。
CSET的審查和其他開源評估顯示,中國的人工智能發展的重點領域,就像美國的一樣廣泛,包括:
這些領域中的每一個進展都對美國在與中國的軍事技術競爭中保持同步的能力構成了挑戰。然而,值得研究的是,中國在兩個領域的進步能力可能對軍事平衡產生特別有力的影響。
(1)整合
首先,人工智能可以通過人為地加強軍事整合和跨域作戰,幫助解放軍彌補作戰準備方面的差距。許多觀察家指出,解放軍缺乏沖突中的作戰經驗是一個關鍵的弱點。盡管從技術角度來看,中國不斷推進的軍事現代化令人印象深刻,但在過去二十年里,解放軍的人員都沒有像美國軍隊那樣在高端沖突中接受過火力考驗。解放軍繼續努力從組織和理論的角度提高其"聯合性",這也是剛剛起步,沒有經過測試。
使用人工智能來提高模擬和兵棋推演的質量、保真度和復雜性,是解放軍糾正這一關切領域的一種方式。新美國安全中心2019年的一份報告指出,"對中國軍事戰略家來說,從AlphaGo的勝利中學到的教訓之一是,人工智能可以在一場可以比作兵棋推演的游戲中創造出優于人類玩家的戰術和策略。"這可以更艱巨地考驗解放軍的決策者,改善指揮決策。事實上,CSET報告發現,在所調查的343份合同中,有百分之六是在模擬和訓練中使用人工智能,包括使用人工智能系統對臺灣突發事件進行戰爭演練。
圖:在美國國防部高級研究計劃局(DAPRA)的AlphaDogfight試驗中,一名作戰的F-16飛行員在虛擬現實模擬器中與Heron系統公司開發的冠軍F-16人工智能代理進行飛行。Heron人工智能代理在連續五場斗狗比賽中擊敗了人類飛行員,結束了試驗。資料來源:DARPA, //www.darpa.mil/news-events/2020-08-26
注重人工智能整合以減少經驗中的感知漏洞也適用于作戰和戰術訓練。2021年7月,中國出版物《環球時報》報道說,解放軍空軍(PLAAF)已經開始在飛行員的空戰訓練中部署人工智能作為模擬對手,以 "磨練他們的決策和戰斗技能,對抗快速計算的計算機"。
除了虛擬模擬,中國還旨在利用人工智能來支持飛行員在真實世界飛機上的訓練。在2020年11月播出的中國中央電視臺(CCTV)節目中,中國L-15教練機的總設計師張弘指出,訓練飛機上的人工智能可以 "識別每個飛行員在飛行中的不同習慣。通過管理它們,我們將讓飛行員更安全地成長,在未來獲得更多的戰斗能力"。
值得注意的是,解放軍空軍2021年7月的人工智能與人類的斗狗類似于美國國防部高級研究計劃局(DARPA)2020年9月的AlphaDogFight挑戰賽,在一系列五次模擬斗狗中,一個人工智能代理擊敗了人類飛行員。 同樣,美國在2021年9月宣布與訓練和模擬公司Red 6簽訂合同,將該公司的機載戰術增強現實系統(ATARS)--該系統允許飛行員駕駛真實世界的飛機,使用增強現實耳機與人工智能生成的虛擬飛機進行訓練--整合到T-38 "塔隆"訓練器中,并計劃最終在第四代飛機上安裝該系統。由于中國軍隊正在利用人工智能來提高戰備水平,美國防部不能落后。
(2)自主性
中國人工智能發展的第二個重點領域是自主系統,特別是蜂群技術,其中幾個系統將獨立運行或相互配合,以混淆和壓倒對手的防衛系統。中國對發展蜂群技術的興趣和能力已經得到了很好的證明,包括2017年6月創紀錄地發射了118架小型無人機組成的互聯蜂群。
據報道,2020年9月,中國電子信息研究院(CAEIT)從一輛改裝的東風猛士輕型戰術車上發射了200枚固定翼CH901徘徊彈藥群。2022年2月在阿布扎比舉行的2022年無人駕駛展的調查顯示,不僅中國的參展陣容強大--中國航空技術進出口總公司(CATIC)和中國北方工業公司(NORINCO)都有大型展館,而且還將重點放在 "協作"行動和智能蜂群。
圖:2月在阿布扎比舉行的UMEX 2022展會上展示的協作式蜂群無人機的一個例子。
對蜂群的興趣并不限于無人駕駛飛行器(UAVs)。據《環球時報》報道,中國也在發展部署自主無機組人員水面飛行器(USVs)群的能力,以"攔截、圍攻和驅逐入侵目標"。 2021年11月,中國公司云洲科技--它在2018年進行了一個由56個USV組成的蜂群的演示--發布了一段視頻,顯示六個USV進行了 "合作對抗",作為將一艘有船員的船只從中國水域移走的一部分。不難想象,這種合作對抗可以如何針對美國或盟國的海軍船只,甚至商業船只進行部署,以發展或維持海上控制。這種能力在灰色地帶的突發事件中尤為強大,在這種情況下,升級的擔憂可能會限制反應的選擇。
在人工智能的投資和能力方面,俄羅斯落后于美國和中國。因烏克蘭戰爭而實施的制裁也可能給俄羅斯的科技部門帶來巨大損失。盡管如此,美國國家決策者不應低估俄羅斯以不對稱的方式使用人工智能技術來破壞美國和北約利益的潛力。俄羅斯國防部有許多自主性和人工智能相關的項目,處于不同的開發和實驗階段,涉及軍事機器人、無人系統、蜂群技術、預警和防空系統、ISR、C2、后勤、電子戰和信息操作。
俄羅斯軍事戰略家認為,在未來的戰場上,更大的自主權和人工智能具有巨大的潛力,可以加快信息處理,增強決策,提高態勢感知,并保障俄羅斯軍事人員的生命安全。自主和人工智能系統的發展和使用也在俄羅斯軍事理論的更廣泛背景下進行討論。其理論重點是利用這些技術來擾亂和破壞對手的指揮和控制系統以及通信能力,并利用非軍事手段在戰爭初期建立信息優勢,從俄羅斯的角度來看,這包括與美國和北約等對手的非軍事沖突時期。
俄羅斯人工智能的發展軌跡是不確定的。但是,由于持續的制裁,俄羅斯很可能會在微電子方面越來越依賴中國,并在與美國的技術競爭中進一步落后。
五角大樓對人工智能的興趣和緊迫性既是由于技術發展的速度加快,也是由于它所能帶來的變革性能力越來越強。事實上,人工智能正準備從根本上改變軍隊思考、準備、執行和維持行動的方式。根據大西洋理事會以前的報告大綱,"五次革命 "框架對人工智能在五個廣泛的能力領域的潛在影響進行了分類,下面的圖3說明了人工智能可以通過不同的方式增強人類的認知和身體能力,融合網絡和系統以獲得最佳效率和性能,并在信息空間中迎來一個網絡沖突和混亂的新時代,以及其他影響。
圖3:跨越未來軍事能力發展的五個廣泛目標的人工智能優先發展項目概述。
邁向完美的態勢感知:感知、處理和認知
即將到來的設計時代:制造、供應鏈和物流
超能力平臺和人員:人機性能增強
連接性、致命性和靈活性:通信、導航、目標定位和打擊
監控、操縱和武器化:網絡和信息作戰
美國防部目前有六百多項與人工智能相關的工作正在進行中,其愿景是將人工智能融入國防部任務的每一個要素--從作戰行動到支持和維持功能,再到支撐龐大的國防部企業的商業運作和流程。美國政府問責局(GAO)2022年2月的一份報告發現,國防部正在追求人工智能的作戰能力,主要集中在"(1)通過情報和監視分析識別目標,(2)向戰場上的作戰人員提供建議(如在哪里移動部隊或哪種武器最適合應對威脅),以及(3)增加無人駕駛系統的自主性。 "國防部的大多數人工智能能力,特別是與作戰有關的努力,仍處于開發階段,尚未與具體的系統接軌或整合。而且,盡管在實驗中取得了明顯的進展,并在作戰行動中部署人工智能能力方面取得了一些經驗,但在廣泛采用方面仍然存在著重大挑戰。
2021年9月,空軍第一任首席軟件官尼古拉-沙伊蘭辭職,以抗議官僚主義和文化挑戰,這些挑戰減緩了技術的采用,阻礙了美國防部以足夠快的速度與中國有效競爭。在沙伊蘭看來,20年后,美國及其盟友 "將沒有機會在一個中國擁有巨大人口優勢的世界中競爭。"后來,他補充說,中國基本上已經贏了,他說,"現在,這已經是一筆交易了。"
沙伊蘭關于美國與中國進行無用競爭的評估肯定不是整個美國防部都認同的,但它反映了許多人認為在該部門規避風險和深思熟慮的文化中缺乏緊迫感。
JAIC的負責人Michael Groen中將同意,"在國防部內部,必須發生文化變革。"然而,他也吹捧了美國的創新能力,并強調建立了一個人工智能加速器,并最終確定了一個聯合共同基金會(JCF),用于人工智能的開發、測試和在國防部各實體之間共享人工智能工具。"支持云的JCF是向前邁出的重要一步,將允許基于共同標準和架構的人工智能開發。這應有助于鼓勵各軍種和國防部各部門之間的共享,并且根據JAIC的說法,確保 "國防部一個人工智能倡議的進展將在整個國防部企業中形成勢頭。"
雖然取得的進展值得贊揚,但仍然存在障礙,這些障礙延緩了人工智能能力的采用,而這種能力對于在不久的將來遏制威脅,以及應對中國在這十年及以后的競爭挑戰至關重要。
下面的三個案例研究提供了美國防部人工智能工作中出現的技術、官僚主義和采用方面的進步的例子。這些案例還強調了阻礙美國在與中國以及在較小程度上與俄羅斯的軍事技術競爭加劇的情況下,充分運用其國家創新生態系統的能力的持久性問題。
圖4:聯合人工智能中心(JAIC)的人工智能采用階段。
五角大樓最重要的現代化優先事項之一是聯合全域指揮與控制(JADC2)計劃,該計劃被描述為 "將所有軍種的傳感器連接到一個單一網絡的概念。"根據美國國會研究服務部的說法,"JADC2打算通過從眾多傳感器收集數據,使用人工智能算法處理數據以識別目標,然后推薦最佳武器(包括動能和非動能武器)來對付目標,使指揮官能夠做出更好的決策。 "如果成功的話,JADC2有可能消除各軍種C2網絡之間的孤島,這些孤島以前減緩了整個部隊的相關信息傳輸。因此,產生更全面的態勢感知,指揮官可以據此做出更好和更快的決定。
2021年12月,有報道稱JADC2跨職能小組(CTF)將成立一個 "AI for C2 "工作組,該工作組將研究如何利用負責任的AI來加強和加速指揮和控制,這加強了負責任的AI對該項目的核心作用。
2022年3月,美國防部發布了其JADC2實施計劃的非保密版本,用參謀長聯席會議主席馬克-米利將軍的話說,此舉代表了實施JADC2 "不可逆轉的勢頭"。
然而,觀察家們強調,在按照保持(或恢復)感知、處理和認知方面的優勢所需的緊迫時間表實施JADC2方面,有幾個持續的挑戰。特別是相對于中國而言。
圖5. JADC2的邏輯圖反映了與國防部JADC2實施計劃相關的復雜性和雄心。資料來源:美國國防部。
數據安全和網絡安全、數據管理和共享問題、與盟友的互操作性以及與軍方網絡整合相關的問題,都被認為是認識到JADC2方法的宏偉前景所面臨的挑戰。一些人還強調,這種包羅萬象的雄心也是一種挑戰。哈德遜研究所的布萊恩-克拉克和丹-帕特認為,"當今威脅的緊迫性和新技術帶來的機遇要求五角大樓領導人將JADC2的重點從美國軍事部門的需求轉向作戰人員的需求。
可以肯定的是,在人工智能開發和整合項目中,不一定要避免宏偉的野心。然而,采用的途徑將需要在難以實現的、官僚主義的、耗時的和昂貴的目標與開發能夠在美國部隊面臨的更直接的威脅時限內提供能力和優勢的系統之間取得平衡。
2021年9月,空軍部長弗蘭克-肯德爾宣布,空軍已經 "首次將人工智能算法部署到實際作戰的殺傷鏈中,這表明部署人工智能的時代確實已經到來。"根據肯德爾的說法,將人工智能納入目標定位過程的目的是 "大大減少人工識別目標的人力密集型任務--縮短殺傷鏈并加快決策速度。" 成功使用人工智能支持目標定位是人工智能發展的一個里程碑,盡管在更全面地采用人工智能的作用方面仍然存在道德、安全和技術挑戰。
例如,2021年美國防部的一項測試強調了人工智能的脆弱性問題。根據Defense One的報道,測試中使用的人工智能目標定位在人工智能不得不從不同角度破譯數據的環境中只有大約25%的時間是準確的,盡管它認為它有90%的時間是準確的,這表明缺乏 "適應一套狹窄的假設之外條件"的能力。"這些結果說明了今天的人工智能技術在安全關鍵環境中的局限性,并加強了在一系列條件下對人工智能進行積極和廣泛的現實世界和數字世界測試和評估的必要性。
人工智能目標定位的道德和安全也可能構成對進一步采用的挑戰,特別是隨著對人工智能算法的信心增加。空軍的行動涉及自動目標識別的輔助作用,協助 "情報專家"--即人類決策者。當然,國防部有一個嚴格的目標定位程序,人工智能的目標定位算法將是其中的一部分,再往前想,自主系統將必須通過這一程序。然而,即使它們是這一程序的一部分,并被設計用來支持人類的決定,高錯誤率加上對人工智能輸出的高度信任,有可能導致不理想或嚴重的結果。
與中國和俄羅斯日益激烈的競爭正在信息和網絡領域上演,對美國安全以及美國經濟、社會和政體具有真實、持久和破壞性的影響。
對于網絡和信息行動來說,人工智能技術和技能是未來進攻和防御行動的核心,突出了人工智能在信息領域的危險性和前景。
人們對智能機器人、合成媒體的威脅越來越關注,例如描述沒有發生過的事件或聲明的逼真視頻或音頻制品,以及能夠創造出令人信服的散文和文本的大型語言模型。雖然虛假信息是一個需要社會和整個政府應對的挑戰,但國防部無疑將在管理和應對這一威脅方面發揮關鍵作用--由于其在美國政治和社會中的突出地位,其職能作用的性質,以及其持續活動的影響。
人工智能在五角大樓和其他美國政府檢測機器人和合成媒體的努力中處于領先地位。例如,DARPA的MediaForensics(MediFor)項目正在使用人工智能算法來 "自動量化圖像或視頻的完整性"。
然而,鑒于合成媒體通過社交媒體的傳播速度,人們對這種檢測的速度表示擔憂。正如聯合參謀部首席信息官丹尼斯-克拉爾中將所觀察到的,"機器和人工智能贏得其中一些信息運動的速度改變了我們的游戲......數字化轉型、預測分析、ML、人工智能,它們正在改變游戲......如果我們不匹配這種速度,我們將使其達到正確的答案,而這種正確的答案將完全不相關。"
正如上面的討論所示,美國防部在成功部署人工智能信息管理和決策支持工具的基礎上,有一系列廣泛的人工智能相關舉措,處于不同的發展和實驗階段。隨著重點轉向整合和擴展,加快這些采用工作對于保持美國在與中國的戰略競爭中的優勢以及有效遏制俄羅斯至關重要。
在這一節中,本文強調了美國防部與其工業伙伴之間關系的一些不協調,這些不協調可能會導致失去創新和有影響力的人工智能項目的機會,擴大使用替代采購方法的積極影響,以及日益緊迫的調整過程和時間表,以確保美國軍隊能夠獲得未來戰爭的高水準技術能力。此外,本節還討論了國防部實施道德人工智能原則的方法,以及與可信和負責任系統的標準和測試有關的問題。
盡管國防部已經發布了一些高級別文件,概述了人工智能發展和部署的優先領域,但市場滿足,甚至理解這些需求的能力還遠遠不夠。最近,IBM對來自全球國防組織的250名技術領導人進行了調查,揭示了國防技術領導人和國防部如何看待人工智能對組織和任務的價值的一些重要差異。例如,只有約三分之一的受訪技術領導人表示,他們認為人工智能對軍事后勤、醫療和健康服務以及信息操作和深層假想有重大的潛在價值。當被問及人工智能支持的解決方案對商業和其他非戰斗應用的潛在價值時,不到三分之一的人提到了維護、采購和人力資源。
這些觀點與國防部在人工智能方面的目標有些不一致。例如,包括設備維護和采購在內的軍事后勤和維持職能是國防部實施人工智能的首要任務之一。Leidos與退伍軍人事務部的合作也說明了人工智能在醫療和健康服務方面的潛力。最后,隨著人工智能在虛假信息運動中的使用已經開始,正如上一節的討論所強調的那樣,迫切需要開發技術措施和人工智能支持的工具,以檢測和反擊人工智能驅動的信息行動。
國防部及其行業伙伴基于各自的問題集和任務,有不同的優先事項和激勵措施。但是,對人工智能發展的有價值和關鍵領域的不同觀點可能會導致失去有影響力的人工智能項目的機會。也就是說,即使五角大樓和它的工業伙伴在人工智能方面意見一致,有效的合作也常常被一個笨拙的官僚機構所阻撓,這個機構常常被傳統的流程、結構和文化束縛。
國防部的預算規劃、采購、收購和簽約流程,總的來說,不是為購買軟件而設計的。這些 這些體制上的障礙,再加上復雜而冗長的軟件開發和合規條例,對小型初創企業和非傳統供應商來說尤其困難,因為他們缺乏資源、人員和事先的知識,無法像國防部的主要部門那樣駕馭這個系統。
國防部清楚地意識到這些挑戰。自2015年以來,國防部長辦公室和各軍種已經建立了幾個實體,如DIU、AFWERX、NavalX和陸軍應用實驗室,與商業技術部門,特別是初創企業和非傳統供應商對接,目的是加速提供同類最佳的技術解決方案。同時,國防部還采取了其他值得注意的措施,以促進使用替代性的采購和合同,這為構建和執行協議提供了比傳統采購更大的靈活性。這些包括 "其他交易授權、中間層采購、快速原型設計和快速投入使用以及軟件采購的專門途徑"。
DIU一直處于使用其中一些替代性采購途徑的前沿,從商業技術部門采購人工智能解決方案。空軍的AFWERX還與空軍研究實驗室和國家安全創新網絡合作,創新地利用小企業創新研究(SBIR)和小企業技術轉讓(STTR)資金,以 "提高項目的效率、有效性和過渡率"。例如,在2021年6月,美國空軍SBIR/STTR人工智能投標日向關于 "可信人工智能,這表明系統是安全、可靠、強大、有能力和有效的 "主題的提案提供了超過1800萬美元。
這些都是朝著正確的方向邁出的步伐,而且確實變得更容易獲得國防部的研究、開發和原型制作資金。然而,及時獲得生產資金仍然是一個重大挑戰。這個 "死亡之谷 "的問題--研究和開發階段與一個既定的、有資金記錄的項目之間的差距--對于非傳統的國防公司尤其嚴重,因為風險資本對初創企業的資助周期與將一個項目納入國防部預算所需的時間之間存在差異。
五角大樓明白,彌合 "死亡之谷 "對于推進和擴大創新至關重要,并在最近啟動了快速國防實驗儲備,以處理這些問題。然而,使預算規劃、采購和簽約流程與私人資本的步伐相一致所需的系統性變化,需要國會采取行動,并可能需要數年時間來實施。在實施這些改革方面的延誤正在損害國防部獲得尖端技術的能力,而這些技術在未來的戰場上可能是至關重要的。
確保美國軍隊能夠使用安全可信的人工智能和自主系統,并按照國際人道主義法律使用這些系統,將有助于美國保持其競爭優勢,以對抗俄羅斯等對人工智能的道德使用承諾較少的專制國家。強調值得信賴的人工智能也是至關重要的,因為國防部的大多數人工智能項目都需要人機合作和協作的元素,它們的成功實施在很大程度上取決于操作者對系統的足夠信任和使用。最后,國防部和行業伙伴之間就可信和負責任的人工智能的共享標準和測試要求進行更密切的協調,對于推進國防部人工智能的采用至關重要。
除了國防部現有的武器審查和目標程序,包括自主武器系統的協議,該部門還在尋求解決倫理、法律和政策的模糊性,以及人工智能更具體的風險。2020年2月,五角大樓通過了五項道德原則來指導人工智能的發展和使用,呼吁人工智能是負責任的、公平的、可追溯的、可靠的和可治理的。為了將這些原則付諸實踐,國防部副部長凱瑟琳-希克斯發布了一份備忘錄,指示采取一種 "整體的、綜合的和有原則的方法 "來整合負責任的人工智能(RAI),包括六個原則:管理、作戰人員的信任、產品和采購生命周期、需求驗證、負責任的人工智能生態系統和人工智能勞動力。
同時,2021年11月,DIU發布了其負責任的人工智能指導方針,響應了備忘錄中對 "工具、政策、流程、系統和指導 "的呼吁,將道德的人工智能原則納入該部門的采購政策。這些指導方針是在國防部人工智能項目中操作和實施道德的具體步驟,建立在DIU在預測健康、水下自主、預測性維護和供應鏈分析等領域的人工智能解決方案的經驗上。它們的目的是可操作的、自適應的和有用的,同時確保人工智能供應商、國防部利益相關者和DIU項目經理在人工智能系統生命周期的規劃、開發和部署階段考慮到公平、問責和透明度。
國防部人工智能項目的成功將在很大程度上取決于確保人類發展并保持對其智能機器隊友的適當信任。因此,國防部對可信人工智能的強調越來越多地體現在其一些旗艦人工智能項目中。例如,2020年8月,DARPA的空戰進化(ACE)項目吸引了大量的關注,因為一個人工智能系統在模擬的空中斗犬比賽中擊敗了空軍的一名頂級F-16戰斗機飛行員。 ACE的一個關鍵問題是 "如何讓飛行員足夠信任人工智能并使用它",而不是讓人類與機器對決。ACE選擇了斗狗場景,很大程度上是因為這種類型的空對空戰斗包含了許多成為戰斗機飛行員群體中值得信賴的伙伴所必需的基本飛行動作。讓人工智能掌握作為更復雜任務基礎的基本飛行動作,如壓制敵方防空系統或護送友軍飛機。根據ACE項目經理的說法,AlphaDogfight試驗是 "關于增加對人工智能的信任"。
人工智能的發展速度很快,因此很難設計和實施一個足夠靈活的監管結構,以保持相關性,同時又不至于限制性太強而扼殺創新。與國防部合作的公司正在尋求符合國防部人工智能道德原則的人工智能系統的開發、部署、使用和維護的指導方針。這些行業伙伴中的許多人已經采用了他們自己的可信和負責任的人工智能解決方案的框架,強調了安全、安保、穩健、彈性、問責制、透明度、可追溯性、可審計性、可解釋性、公平性和其他相關質量等屬性。
圖:2021年10月19日,在亞利桑那州尤馬試驗場,一名美國陸軍士兵使用戰術機器人控制器來控制遠征模塊化自主車輛,作為準備 "聚合項目 "的練習活動。在 "聚合項目21 "期間,士兵們試驗了使用這種車輛進行半自主偵察和再補給。無論是在戰場上還是在戰場之外,對自主和半自主車輛等人工智能能力的信任對于成功至關重要。
目前,對于什么是道德或值得信賴的人工智能系統,沒有共同的技術標準,這可能會使非傳統的人工智能供應商難以設定預期,并在官僚機構中穿梭。國防部不直接負責制定標準。相反,2021年國防授權法案(NDAA)擴大了國家標準與技術研究所(NIST)的任務,"包括推進人工智能的合作框架、標準、指導方針,支持開發人工智能系統的風險緩解框架,并支持開發技術標準和指導方針,以促進值得信賴的人工智能系統"。2021年7月,NIST在制定其人工智能風險管理框架時,向利益相關者發出了信息請求,旨在幫助組織 "將可信性考慮納入人工智能產品、服務和系統的設計、開發、使用和評估"。
對這一挑戰沒有簡單的解決方案。但是,讓政府、行業、學術界和民間社會的利益相關者參與進來的合作過程可以幫助防止人工智能的發展走上社交媒體的道路,在社交媒體上,公共政策未能預測到虛假信息和其他惡意活動在這些平臺上造成的風險和損失,而且反應緩慢。
與標準相關的是與測試、評估、驗證和確認(TEVV)相關的挑戰。測試和驗證過程是為了 "幫助決策者和操作者了解和管理開發、生產、操作和維持人工智能系統的風險",對于建立對人工智能的信任至關重要。國防部目前的TEVV協議和基礎設施主要是針對主要的國防采購項目,如船舶、飛機或坦克;它是線性的、順序的,而且一旦項目過渡到生產和部署,最終是有限的。然而,對于人工智能系統,"開發從未真正完成,所以測試也是如此。"因此,像人工智能這樣的適應性強、不斷學習的新興技術需要一個更加敏捷和迭代的開發和測試方法,正如NSCAI建議的那樣,"將測試作為需求規范、開發、部署、培訓和維護的持續部分,包括運行時監測操作行為。"
建立在開發、安全和運營(DevSecOps)的商業最佳實踐基礎上的綜合和自動化的開發和測試方法,更適合于人工智能/ML系統。雖然JAIC的聯合基金有可能實現真正的人工智能DevSecOps方法,但在整個國防部擴大這種努力是一個重大挑戰,因為它需要對當前的測試基礎設施進行重大改變,以及更多的資源,如帶寬、計算支持和技術人員。也就是說,如果不開發更適合人工智能的新測試方法,不調整當前的測試基礎設施以支持迭代測試,將阻礙大規模整合和采用可信和負責任的人工智能的努力。
上述關于標準和TEVV的討論概括了現代人工智能系統對現有國防部框架和流程的獨特挑戰,以及商業技術公司和國防部對人工智能開發、部署、使用和維護的不同方法。為了加速人工智能的采用,國防部及其行業伙伴需要在具體的、現實的、與操作相關的標準和性能要求、測試過程和評估指標上更好地保持一致,并納入道德的人工智能原則。一個以可信和負責任的人工智能為導向的國防技術生態系統可以促進最佳做法的相互交流,并降低非傳統供應商和初創公司所面臨的官僚主義和程序性障礙。
充分發揮人工智能推動成本和時間效率的能力,支持人類決策者,并實現自主性,將需要更多的技術進步或開發新的作戰概念。下面,我們概述了優先努力的三個關鍵領域,以更成功地將人工智能納入整個國防部事業,并確保美國能夠阻止威脅,并保持對其競爭對手和潛在對手的戰略、戰役和戰術優勢。
與中國日益激烈的戰略競爭,精湛的技術和強有力作戰能力,以及與私營部門快速的技術開發和整合速度的比較,都給國防部帶來了壓力,使其更快地走向人工智能系統的實戰。在人工智能發展中鼓勵更大的風險容忍度,以便在大規模采用人工智能方面取得進展,這有很多好處。但是,僅僅為了 "超越 "中國而匆忙部署容易受到一系列對手攻擊的人工智能系統,并且很可能在作戰環境中失敗,這將被證明是適得其反。
指導美國軍隊的道德準則反映了對遵守戰爭法則的基本承諾,而此時,一些獨裁國家對人權和人道主義原則很不重視。同時,國防部對新能力的測試和保證采取了嚴格的方法,旨在確保新武器的使用是負責任的和適當的,并盡量減少事故、誤用和濫用系統和能力的風險,因為這可能會產生危險,甚至是災難性的影響。美國與許多盟友和伙伴共享的這些價值觀和原則,在與專制國家競爭時是一種戰略資產,因為它們正在部署人工智能軍事系統。為了鞏固國防部在這個領域的優勢,我們建議采取以下步驟。
美國防部應將DIU的“負責任的人工智能指南”納入相關的提案請求、招標和其他材料中,要求承包商展示他們的人工智能產品和解決方案是如何實施國防部的人工智能道德原則。這將設定一套共同和明確的期望,幫助非傳統的人工智能供應商和初創公司在五角大樓的提案過程中游刃有余。最近有國防部為項目制定收購類別的先例,要求工業界調整其開發過程,以滿足不斷變化的國防部標準。例如,在2020年9月,美國空軍為所有采購工作制定了e系列采購指定,要求供應商使用數字工程實踐--而不是原型--作為他們激勵行業接受數字工程的一部分。
美國防部的行業合作伙伴,特別是非傳統的人工智能供應商,應積極與NIST合作,因為該機構繼續努力制定標準和指導方針,以促進可信賴的人工智能系統,以確保他們的觀點為后續框架提供信息。
本文提到的有效采用人工智能的挑戰包括人工智能的脆弱性和對手旨在破壞人工智能算法的網絡攻擊可能性。克服這些挑戰將需要國防部繼續致力于提高國防部人工智能系統測試和評估的速度、種類和能力,以確保這些系統在更廣泛的不同環境下發揮預期功能。其中一些測試需要在真實世界的環境中進行,但基于模型的模擬的進步可以使人工智能系統的性能在數字/虛擬世界中得到越來越多的驗證,減少與這種測試相關的成本和時間。
圖:人工智能可以極大地重塑未來的戰場。為了實現這一愿景,美國防部必須采取關鍵步驟,有效利用人工智能。資料來源:美國陸軍。
此外,美國防部還應該利用國防部研究與工程副部長(USDR&E)的測試實踐和優先事項,以確保計劃和部署的人工智能系統能夠抵御對手的攻擊,包括數據污染和算法損壞。
美國防部應利用盟友和外國合作伙伴來開發、部署和采用可信的人工智能。這種性質的參與對于協調人工智能發展和使用的共同規范至關重要,這些規范遏制并對抗中國和俄羅斯的獨裁技術模式。擴大現有合作模式和建立新的伙伴關系的途徑可以包括以下內容:
i. 加強對道德、安全和負責任的人工智能的重視,將其作為全日空防務伙伴關系的一部分,通過評估成員方法的共同點和差異,確定未來聯合項目和合作的具體機會。
ii. 與 "五眼"、北約和AUKUS伙伴交叉分享和實施聯合道德項目。除了支持互操作性,這將增加視角和經驗的多樣性,并有助于確保人工智能發展工作限制各種形式的偏見。正如本項目所采訪的一位前將軍所指出的,"多樣性是我們確保可靠性的方式。它是必不可少的。"
iii. 擴大與不同能力和地域的盟友和合作伙伴的聯系,包括印度、南非、越南,以探索雙邊和多邊研發工作和技術共享計劃的機會,解決可信和負責任的人工智能的技術屬性。
如果不與廣泛的技術公司建立密切的伙伴關系,國防部將無法實現其在人工智能方面的雄心壯志,并與中國通過軍民融合采購技術創新的模式進行有效競爭。這包括與五角大樓有長期聯系的國防工業領導人,處于全球創新前沿的技術巨頭,尋求擴大其政府投資組合的商業技術參與者,以及處于人工智能發展前沿的初創企業。但是,國防部的預算規劃、采購、收購、簽約和合規流程可能需要從根本上進行重組,以有效地與這個充滿活力和多樣化的技術生態系統的整體接觸。
系統性變革是一個緩慢而艱巨的過程。但是,拖延這一過渡有可能使美國軍隊在利用人工智能承諾提供的優勢方面落后,從作戰速度到決策主導權。同時,以下行動可以幫助改善與行業伙伴的協調,以加快國防部采用人工智能的努力。
國防部應評估其溝通和外聯戰略,以澄清和精簡圍繞該部門在人工智能方面的優先事項的信息。
國防部應與技術公司合作,重新審查他們對某些類別的人工智能解決方案的潛在價值的評估,包括但不限于后勤、醫療和健康服務以及信息操作。
國防部應實施NSCAI的建議,加快對采購專業人員的培訓,使其了解采購和簽約的全部可用選擇,并激勵他們使用人工智能和數字技術。" 此外,這種采購人員培訓舉措應確保采購專業人員充分了解國防部的人工智能倫理原則以及可信和負責任的人工智能的技術層面。國防部的道德準則可以作為這種培訓的基礎。
在中短期內,美國防部將不會建立全新的人工智能系統,而是將人工智能整合到一系列現有的軟件和硬件系統中--從網絡防御架構到戰斗機到C2。因此,實施人工智能的進展也將取決于簡化國防部一直在爭取的創新和尖端技術的初創公司和非傳統人工智能供應商與負責將新能力整合到傳統系統的國防部門之間的合作。
NSCAI建議確定 "國防部門與非傳統公司合作的新機會,以便在現有平臺上更快地采用人工智能能力。"我們贊同這一建議:改進國防部門與非傳統公司之間的協調可以幫助確保人工智能解決方案是強大的,有彈性的,與作戰相關的,以及引導有前途的原型穿過 "死亡之谷"。
毫無疑問,從概念到實踐可能是很棘手的。本文的研究顯示,在將創新的新技術從實驗室轉移到記錄項目中采用的主要挑戰在哪里,人們的觀點存在著很大的分歧。初創企業傾向于認為系統集成商抗拒參與,而初創企業可能被認為缺乏對收購過程的理解,以及開發的技術難以整合到記錄項目中,或難以擴大規模。
彌補這一差距將需要政府采取新的方法來解決非傳統供應商對知識產權的擔憂。大多數人不愿意放棄敏感技術的所有權,這些技術主要是賣給國防市場以外的客戶。這也將涉及到國防部幫助小企業通過加快網絡認證和運營授權(ATO)過程等步驟來瀏覽聯邦采購流程,以及幫助有興趣的公司為國防部的不同組成部分開發使用案例。這種積極的促進作用將幫助那些通過研究和開發撥款與國防部合作的非傳統供應商更有準備地與系統集成商達成合作。
最重要的是,優化大型系統集成商和小型創新者的利益,將需要國防部在連接小型公司和那些正在運行的項目方面發揮更積極的對話者作用。目前,國防部在要求公司合作方面存在一些可以理解的猶豫,主要是擔心觸犯聯邦采購條例(FAR)。但是,正如本項目采訪的一位行業專家所認為的,國防部可以更積極地了解《聯邦采購條例》所允許的內容,并幫助公司建立聯系,特別是為了滿足特定的采購優先權或計劃。
在過去的幾年里,對人工智能的興趣和投資已經獲得了動力。這在國家安全和國防界尤其如此,因為戰略家、政策制定者和行政人員在不斷上升的地緣戰略競爭中尋求決定性的優勢,并為以復雜性、不確定性和最重要的速度為特征的未來操作環境做準備。人工智能現在是美國和中國之間軍事技術競爭的中心,這兩個國家以及世界上其他國家的軍隊都已經在部署人工智能系統,目的是為了主導未來的戰場。
美國不能冒落后于中國的風險--在人工智能的創新方面,在人工智能的采用方面,在人工智能全面融入國防事業方面,都不能。迫切需要解決一系列技術和官僚程序以及文化問題,迄今為止,這些問題已經抑制了國防部采用人工智能的步伐。具體來說,國防部應優先考慮以下問題。
建立對人工智能的信任:國防部的人工智能努力主要集中在增強人類理解、決策和效能的技術上,而不是取代人類。因此,在人類和他們的智能機器隊友之間建立信任和信心是成功開發和部署軍事人工智能的一個關鍵方面。
制定和實施可信和負責任的人工智能標準:目前,對于什么是可信和負責任的人工智能,還沒有共同的標準或系統性能要求。因此,五角大樓及其行業伙伴必須與NIST等機構合作,制定和實施與作戰相關的標準、測試流程和評估指標,其中包括道德的、可信賴的和負責任的人工智能原則。這將有助于將成功的人工智能研究原型推進到可投入生產的解決方案中。
促進美國創新生態系統和國防工業基地的優化。將尖端的人工智能技術引入國防部還需要五角大樓減少國防部采購過程中經常出現的官僚主義挑戰,特別是對于那些在傳統國防工業基地之外的創新公司。開發新的手段來支持和激勵這些公司的參與,并促進領先的國防技術公司與初創公司和非傳統供應商之間的行業內伙伴關系將是至關重要的。
吸引盟友和合作伙伴。正如本文開頭所述,烏克蘭戰爭加強了盟友和合作伙伴在執行地緣政治規范和標準方面的重要性。未來人工智能的發展和采用也可能是如此。國防部不僅將受益于工業界和國家安全界的合作,還將受益于與盟友和外國伙伴的合作,以確保建立和頒布規范和標準,從而實現可信、負責和可互操作的人工智能開發和部署。
本報告是在對人工智能的國家安全和國防影響進行為期八個月的研究項目的最終成果。
瑪格麗特-科納耶夫(Margarita Konaev)是大西洋理事會斯考克羅夫特戰略與安全中心前沿防御業務的非常駐高級研究員。此外,她還擔任喬治敦安全與新興技術中心(CSET)的分析副主任和研究員,對人工智能的軍事應用和俄羅斯軍事創新感興趣。她也是新美國安全中心的兼職高級研究員。在此之前,她是西點軍校現代戰爭研究所的非駐地研究員,弗萊徹法律和外交學院的博士后研究員,以及賓夕法尼亞大學佩里世界之家的博士后研究員。在加入CSET之前,她曾在Gartner公司的營銷和溝通部門擔任高級負責人。
科納耶夫博士對國際安全、武裝沖突、非國家行為者和中東、俄羅斯和歐亞大陸的城市戰爭的研究已經在《戰略研究雜志》、《全球安全研究雜志》、《沖突管理與和平科學》、法國國際關系研究所、《原子科學家公報》、《法律戰》、《巖石上的戰爭》、現代戰爭研究所、外交政策研究所以及其他一系列機構和組織發表。她擁有圣母大學的政治學博士學位,喬治敦大學的沖突解決碩士學位,以及布蘭代斯大學的學士學位。
泰特-努爾金(Tate Nurkin)是OTH情報集團的創始人,也是大西洋理事會斯考克羅夫特戰略與安全中心的高級研究員。
在2018年3月建立OTH情報集團之前,努爾金在IHS Markit的簡氏公司工作了12年,擔任各種職務,包括管理簡氏國防、風險和安全咨詢業務。從2013年到他離開,他擔任戰略評估和未來研究(SAFS)中心的創始執行主任,該中心提供有關地緣政治、未來軍事能力和全球國防工業的全球競爭的思想領導和定制分析。
實質上,努爾金的研究和分析特別關注中美競爭、國防技術、未來軍事能力和全球國防工業及其市場問題。他還擅長設計和提供替代性未來分析活動,如情景規劃、紅色團隊和兵棋推演。
他曾在聯合管理服務公司、SAIC的戰略評估中心以及博思艾倫公司的建模、模擬、兵棋推演和分析團隊工作。2014-2018年,他在世界經濟論壇的核安全全球議程委員會和國際安全未來委員會連續任職兩年,該委員會的成立是為了診斷和評估第四次工業革命的安全和防御影響。
努爾金擁有佐治亞理工學院薩姆-納恩國際事務學院的國際事務科學碩士學位,以及杜克大學的歷史和政治學學士學位。