亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Tensor Graph Convolutional Networks for Text Classification

摘要: 文本分類是自然語言處理中一個重要而經典的問題。已有許多研究將卷積神經網絡(如規則網格上的卷積,序列)應用于分類。然而,只有有限數量的研究已經探索了更靈活的圖卷積神經網絡(卷積在非網格上,例如,任意圖)的任務。在這項工作中,我們建議使用圖卷積網絡進行文本分類。基于詞的共現關系和文檔詞之間的關系,我們為一個語料庫建立一個文本圖,然后學習一個文本圖卷積網絡(text GCN)。我們的文本GCN使用word和document的一個熱表示進行初始化,然后在已知文檔類標簽的監督下,共同學習word和document的嵌入。我們在多個基準數據集上的實驗結果表明,沒有任何外部單詞嵌入或知識的普通文本GCN優于最新的文本分類方法。另一方面,文本GCN還學習預測詞和文檔嵌入。此外,實驗結果表明,隨著訓練數據百分比的降低,文本GCN相對于現有比較方法的改進變得更加突出,這表明文本GCN對文本分類中較少的訓練數據具有魯棒性。

付費5元查看完整內容

相關內容

自然語言處理(NLP)是語言學,計算機科學,信息工程和人工智能的一個子領域,與計算機和人類(自然)語言之間的相互作用有關,尤其是如何對計算機進行編程以處理和分析大量自然語言數據 。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

題目: Hyperbolic Graph Attention Network

摘要: 圖神經網絡(GNN)在圖處理方面表現出了優越的性能,近年來引起了人們的廣泛關注。然而,大多數現有的GNN模型主要是為歐幾里得空間中的圖設計的。最近的研究已經證明,圖數據顯示非歐幾里得潛在的解剖學。不幸的是,到目前為止,很少有研究GNN在非歐幾里得的設置。為了彌補這一缺陷,本文首次對雙曲空間中具有注意機制的GNN進行了研究。雙曲GNN的研究有一些獨特的挑戰:由于雙曲空間不是向量空間,不能進行向量操作(如向量的加法、減法和標量乘法)。為了解決這個問題,我們使用回旋向量空間,它提供了一個優雅的代數形式的雙曲幾何,以轉換圖的特征;在此基礎上,我們提出了基于雙曲接近的注意力聚合機制。此外,由于雙曲空間中的數學運算比歐幾里得空間中的更為復雜,我們進一步設計了一種新的利用對數和指數映射的加速策略來提高模型的效率。通過與其他最先進的基線方法的比較,發現在四個真實數據集上的綜合實驗結果證明了我們提出的雙曲圖注意力網絡模型的性能。

付費5元查看完整內容

題目: Graph Random Neural Networks

摘要:

圖神經網絡(GNNs)將深度學習方法推廣到圖結構數據中,在圖形挖掘任務中表現良好。然而,現有的GNN常常遇到具有標記節點的復雜圖結構,并受到非魯棒性、過度平滑和過擬合的限制。為了解決這些問題,本文提出了一個簡單而有效的GNN框架——圖隨機神經網絡(Grand)。與現有GNNs中的確定性傳播不同,Grand采用隨機傳播策略來增強模型的魯棒性。這種策略也很自然地使Grand能夠將傳播從特征轉換中分離出來,減少了過度平滑和過度擬合的風險。此外,隨機傳播是圖數據擴充的一種有效方法。在此基礎上,利用無標記節點在多個擴展中的分布一致性,提高模型的泛化能力,提出了Grand的一致性正則化方法。在圖形基準數據集上的大量實驗表明,Grand在半監督的圖形學習任務上顯著優于最先進的GNN基線。最后,證明了它可以顯著減輕過度平滑和過度擬合的問題,并且它的性能與魯棒性相結合。

付費5元查看完整內容

題目: Composition-Based Multi-Relational Graph Convolutional Networks

摘要: 圖卷積網絡(GCNs)最近被證明在對圖結構數據建模方面是非常成功的。然而,主要的重點是處理簡單的無向圖。多關系圖是一種更為普遍和流行的圖,其中每條邊都有一個與之相關的標簽和方向。現有的大多數處理此類圖的方法都存在參數過多的問題,并且僅限于學習節點的表示形式。在本文中,我們提出了一種新的圖卷積框架COMP-GCN,它將節點和關系共同嵌入到一個關系圖中。COMP-GCN利用知識圖譜嵌入技術中的各種實體關系組合操作,并根據關系的數量進行擴展。它還概括了幾種現有的多關系GCN方法。我們評估了我們提出的方法在多個任務,如節點分類,鏈接預測,和圖分類,并取得了明顯的結果。

付費5元查看完整內容

題目: Correspondence Networks with Adaptive Neighbourhood Consensus

摘要:

在這篇論文中,我們處理的任務是在包含相同類別物體的圖像之間建立緊密的視覺對應。這是一個具有挑戰性的任務,因為類內部變化很大,并且缺乏密集的像素級注釋。我們提出了一種卷積神經網絡結構,稱為鄰域自適應一致網絡(ANC-Net),它可以通過稀疏的關鍵點注釋進行端到端的訓練來應對這一挑戰。該算法的核心是非各向同性的四維卷積核,構成了鄰域自適應一致的魯棒匹配模塊。為了使所學習的特征對類內變化具有魯棒性,我們還引入了一個簡單有效的多尺度自相似模型。此外,我們提出了一種新的正交損失來加強一對一匹配的約束。我們徹底地評估了我們的方法在各種基準上的有效性,在這些基準上,它的性能大大優于最先進的方法。

付費5元查看完整內容

簡介:

短文本分類是一種使用預定義標簽對短句子進行分類的方法。 但是,短文本的長度短受到限制,這導致特征稀疏的挑戰性問題。 現有的大多數方法都將每個短句子視為獨立且均勻分布的(IID),僅在句子本身中集中了局部上下文,并且丟失了句子之間的關系信息。 為了克服這些限制,我們提出了一個PathWalk模型,該模型結合了圖網絡和短句子的強度來解決短文本的稀疏性。 在四個不同的可用數據集上的實驗結果表明,我們的PathWalk方法達到了最新的結果,證明了圖形網絡在短文本分類中的效率和魯棒性。

付費5元查看完整內容

論文摘要

圖無處不在,從引文和社交網絡到知識圖譜(KGs)。它們是最富表現力的數據結構之一,已被用于建模各種問題。知識圖譜是圖中事實的結構化表示,其中節點表示實體,邊表示實體之間的關系。最近的研究已經開發出幾種大型知識圖譜;例如DBpedia、YAGO、NELL和Freebase。然而,它們都是稀疏的,每個實體只有很少的事實。例如,每個實體只包含1.34個事實。在論文的第一部分,我們提出了緩解這一問題的三個解決方案:(1)KG規范化,即(2)關聯提取,它涉及到從非結構化文本中提取實體之間的語義關系的自動化過程;(3)鏈接預測,它包括基于KG中的已知事實推斷缺失的事實。KG的規范化,我們建議CESI(規范化使用嵌入和邊信息),一個新穎的方法執行規范化學習嵌入開放KG。KG嵌入的方法擴展了最新進展將相關NP和關系詞信息原則的方式。對于關系提取,我們提出了一種遠程監督神經關系提取方法,該方法利用KGs中的附加邊信息來改進關系提取。最后,對于鏈路預測,我們提出了擴展ConvE的InteractE,這是一種基于卷積神經網絡的鏈路預測方法,通過三個關鍵思想:特征置換、新穎的特征重塑和循環卷積來增加特征交互的次數。通過對多個數據集的大量實驗,驗證了所提方法的有效性。

傳統的神經網絡如卷積網絡和遞歸神經網絡在處理歐幾里得數據時受到限制。然而,在自然語言處理(NLP)中圖形是很突出的。最近,圖卷積網絡(Graph Convolutional Networks, GCNs)被提出來解決這一缺點,并成功地應用于多個問題。在論文的第二部分,我們利用GCNs來解決文檔時間戳問題,它是文檔檢索和摘要等任務的重要組成部分。

為此,我們提出利用GCNs聯合開發文檔語法和時態圖結構的NeuralDater,以獲得該問題的最新性能。提出了一種靈活的基于圖卷積的詞嵌入學習方法——SynGCN,該方法利用詞的依賴上下文而不是線性上下文來學習更有意義的詞嵌入。在論文的第三部分,我們討論了現有GCN模型的兩個局限性,即(1)標準的鄰域聚合方案對影響目標節點表示的節點數量沒有限制。這導致了中心節點的噪聲表示,中心節點在幾個躍點中幾乎覆蓋了整個圖。為了解決這個缺點,我們提出了ConfGCN(基于信任的GCN),它通過估計信任來確定聚合過程中一個節點對另一個節點的重要性,從而限制其影響鄰居。(2)現有的GCN模型大多局限于處理無向圖。然而,更一般和更普遍的一類圖是關系圖,其中每條邊都有與之關聯的標簽和方向。現有的處理此類圖的方法存在參數過多的問題,并且僅限于學習節點的表示。我們提出了一種新的圖卷積框架CompGCN,它將實體和關系共同嵌入到一個關系圖中。CompGCN是參數有效的,并且可以根據關系的數量進行擴展。它利用了來自KG嵌入技術的各種實體-關系組合操作,并在節點分類、鏈接預測和圖分類任務上取得了明顯的優勢結果。

付費5元查看完整內容

Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (e.g., convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

北京阿比特科技有限公司