亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

斯坦福經典自然語言處理課程CS224N《自然語言處理未來與深度學習》,包括:大型語言模型如GPT3,組合表示與泛化、NLP模型評估、擴展到其他模態、與深度學習交叉研究。

//web.stanford.edu/class/cs224n/index.html#schedule

付費5元查看完整內容

相關內容

自然語言處理(NLP)是語言學,計算機科學,信息工程和人工智能的一個子領域,與計算機和人類(自然)語言之間的相互作用有關,尤其是如何對計算機進行編程以處理和分析大量自然語言數據 。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

斯坦福大學 CS224N 深度學習自然語言處理 2021 冬季課程即將開課!

自然語言處理(NLP)或者計算語言學是信息時代最重要的技術之一。從網絡搜索、廣告、電子郵件到客戶服務、語言翻譯、虛擬代理、醫療報告等,NLP 的應用幾乎無處不在。近年來,深度學習(或神經網絡)在許多 NLP 任務上達到了非常高的性能,使用單個端到端神經模型就能完成許多任務,不再需要特定于任務的特征工程。

而提及入門自然語言處理,想必大家都非常熟悉斯坦福大學的公開課 CS224N,它與計算機視覺方面的課程 CS231n 堪稱絕配。CS224N 是一門關于自然語言處理的專項課程,非常系統地介紹自然語言處理任務等相關知識。

機器之心介紹過 CS224N 2019 冬季課程,重點講解了 Transformer 和預訓練表征。今日,斯坦福 NLP Group 宣布 CS224N 深度學習自然語言處理 2021 冬季課程將于當地時間 1 月 12 日開課,授課講師為斯坦福大學教授 Christopher Manning 以及他的三年級博士生 John Hewitt。

課程鏈接://web.stanford.edu/class/cs224n/

該課程全面介紹了 NLP 深度學習的前沿研究。通過講座、作業和結課項目,學生將學到設計、實現和理解各自的神經網絡模型等必要技能。本年度的 CS224n 課程依然使用 PyTorch 授課。

不過遺憾的是,CS224N 2021 冬季課程視頻只對注冊學生開放,課程 PPT 和作業會在網上實時更新。

付費5元查看完整內容

以ELMO (Peters et al., 2018)、GPT (Radford et al., 2018)和BERT (Devlin et al., 2019)為代表的預訓練語言模型受到了廣泛關注,并提出了大量的變體模型。在這些研究中,一些研究人員致力于將知識引入語言模型(Levine et al., 2019; Lauscher et al., 2019; Liu et al., 2019; Zhang et al., 2019b)。ERNIE-Baidu (Sun et al., 2019)引入新的掩蔽單元,如短語和實體,在這些掩蔽單元中學習知識信息。作為獎勵,來自短語和實體的語法和語義信息被隱式地集成到語言模型中。此外,ERNIE-Tsinghua (Zhang et al., 2019a)探索了一種不同的知識信息,將知識圖譜整合到BERT中,同時學習詞匯、句法和知識信息。Xiong et al. (2019) 將實體替換檢查任務引入到預先訓練的語言模型中,并改進若干與實體相關的下游任務,如問答和實體類型。Wang et al.(2020)提出了一種將知識注入語言模型的插件方式,他們的方法將不同種類的知識保存在不同的適配器中。這些方法所引入的知識信息并沒有很重視KG中圖表化的知識。

//web.stanford.edu/class/cs224n/index.html#schedule

付費5元查看完整內容

問答(QA)是自然語言處理中最早的核心問題之一,并且在許多現實世界的應用(例如搜索引擎和個人助理)中發揮了重要作用。開放域問答在最近幾年重獲關注,它通常基于大量非結構化文檔的收集,旨在自動回答人類以自然語言形式提出的問題。

//web.stanford.edu/class/cs224n/index.html#schedule

付費5元查看完整內容

注意力(Attention)機制[2]由Bengio團隊與2014年提出并在近年廣泛的應用在深度學習中的各個領域,例如在計算機視覺方向用于捕捉圖像上的感受野,或者NLP中用于定位關鍵token或者特征。谷歌團隊近期提出的用于生成詞向量的BERT[3]算法在NLP的11項任務中取得了效果的大幅提升,堪稱2018年深度學習領域最振奮人心的消息。而BERT算法的最重要的部分便是本文中提出的Transformer的概念。

正如論文的題目所說的,Transformer中拋棄了傳統的CNN和RNN,整個網絡結構完全是由Attention機制組成。更準確地講,Transformer由且僅由self-Attenion和Feed Forward Neural Network組成。一個基于Transformer的可訓練的神經網絡可以通過堆疊Transformer的形式進行搭建,作者的實驗是通過搭建編碼器和解碼器各6層,總共12層的Encoder-Decoder,并在機器翻譯中取得了BLEU值得新高。

//web.stanford.edu/class/cs224n/index.html#schedule

付費5元查看完整內容

【導讀】本文為大家帶來了一份斯坦福大學的最新課程CS224n——自然語言處理與深度學習,主講人是斯坦福大學Chris Manning,他是斯坦福大學機器學習教授,語言學和計算機科學教授,斯坦福人工智能實驗室(SAIL)主任,以人為本的人工智能研究所副所長。

近年來,深度學習方法在許多不同的NLP任務中獲得了非常高的性能,使用不需要傳統的、特定于任務的特征工程的單個端到端神經模型。在本課程中,學生將深入了解NLP深度學習的前沿研究。通過講座、作業和期末專題,學生將學習設計、實施和理解自己的神經網絡模型所需的必要技能。本課程使用Pytorch 進行教學。

1. 課程介紹(Description)

自然語言處理(NLP)是信息時代最重要的技術之一,也是人工智能的重要組成部分。NLP的應用無處不在,因為人們幾乎用語言交流一切:網絡搜索、廣告、電子郵件、客戶服務、語言翻譯、虛擬代理、醫療報告等。近年來,深度學習方法在許多不同的NLP任務中獲得了非常高的性能,使用不需要傳統的、特定于任務的特征工程的單個端到端神經模型。在本課程中,學生將深入了解NLP深度學習的前沿研究。通過講座、作業和期末專題,學生將學習設計、實施和理解自己的神經網絡模型所需的必要技能。作為去年的試點,CS224n將在今年使用Pytorch進行教學。

課程鏈接://web.stanford.edu/class/cs224n/

2. 之前的課程(Previous offerings)

本課程于2017年由早期的CS224n(自然語言處理)和CS224d(自然語言處理與深度學習)課程合并而成。下面你可以找到存檔的網站和學生項目報告。

CS224n Websites: Winter 2019 / Winter 2018 / Winter 2017 / Autumn 2015 / Autumn 2014 / Autumn 2013 / Autumn 2012 / Autumn 2011 / Winter 2011 / Spring 2010 / Spring 2009 / Spring 2008 / Spring 2007 / Spring 2006 / Spring 2005 / Spring 2004 / Spring 2003 / Spring 2002 / Spring 2000

CS224n Lecture Videos: Winter 2019 / Winter 2017 CS224n Reports: Winter 2019 / Winter 2018 / Winter 2017 / Autumn 2015 and earlier

CS224d Reports: Spring 2016 / Spring 2015

3. 預備知識(Prerequisites)

1)精通Python

所有的課堂作業都將使用Python(使用NumPy和PyTorch)。如果您需要提醒自己使用Python,或者您對NumPy不是很熟悉,則可以參加第1周的Python復習(在時間表中列出)。如果你有豐富的編程經驗,但使用不同的語言(如C/ c++ /Matlab/Java/Javascript),你可能會很好。

2)大學微積分,線性代數(如MATH 51, CME 100)

你應該能夠熟練地進行(多變量)求導,理解矩陣/向量符號和運算。

3)基本概率及統計(例如CS 109 或同等課程)

你應該了解基本的概率,高斯分布,均值,標準差等。

4)機器學習的基礎(例如CS 221或CS 229)

我們將闡述成本函數,求導數,用梯度下降法進行優化。如果你已經有了基本的機器學習和/或深度學習的知識,課程將會更容易;但是,沒有它也可以使用CS224n。在網頁、書籍和視頻形式中,有很多關于ML的介紹。哈爾·道姆(Hal Daume)正在開設的機器學習課程是一種很好的入門方式。閱讀那本書的前5章將是很好的背景知識。知道前7章會更好!

4. 參考書籍(Reference Texts)

所有這些都可以在網上免費閱讀:

  • Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft)

  • Jacob Eisenstein. Natural Language Processing

  • Yoav Goldberg. A Primer on Neural Network Models for Natural Language Processing

  • Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning

  • Delip Rao and Brian McMahan. Natural Language Processing with PyTorch. (requires Stanford login)

如果你沒有神經網絡方面的背景知識,但無論如何還是想要學習這門課程,你可能會發現這些書中的一本對你提供更多的背景知識很有幫助:

  • Michael A. Nielsen. Neural Networks and Deep Learning

  • Eugene Charniak. Introduction to Deep Learning

5. 主講:Christopher Manning

克里斯托弗·曼寧(Christopher Manning)是斯坦福大學(Stanford University)計算機科學和語言學系機器學習教授,斯坦福大學人工智能實驗室(SAIL)主任。他的研究目標是能夠智能處理、理解和生成人類語言材料的計算機。曼寧是將深度學習應用于自然語言處理領域的領軍人物,在樹遞歸神經網絡、詞向量手套模型、情感分析、神經網絡依賴分析、神經機器翻譯、問答和深度語言理解等領域都有著名的研究成果。他還專注于解析、自然語言推理和多語言處理的計算語言方法,包括斯坦福依賴關系和通用依賴關系的主要開發者。曼寧與人合著了《自然語言處理的統計方法》(Manning and Schütze 1999)和《信息檢索》(Manning,Raghavan and Schütze,2008)兩本領先的教科書,還合著了關于能性和復雜謂詞的語言學專著。他是ACM Fellow,AAAI Fellow,ACL Fellow,也是前ACL主席(2015)。他的研究曾獲得ACL、Coling、EMNLP和CHI最佳論文獎。1994年,他在澳大利亞國立大學獲得學士學位,在斯坦福大學獲得博士學位。在回到斯坦福大學之前,他曾在卡內基梅隆大學和悉尼大學擔任教職。他是斯坦福NLP小組的創始人,負責斯坦福大學CoreNLP軟件的開發。

個人主頁:

6. 課程安排

01: 介紹和詞向量(Introduction and Word Vectors)

 Gensim字矢量示例(Gensim word vectors example)

02:單詞向量2和單詞意義(Word Vectors 2 and Word Senses)

03:Python復習課(Python review session)

04:詞窗口分類、神經網絡和矩陣演算(Word Window Classification, Neural Networks, and Matrix Calculus)

05:反向傳播和計算圖(Backpropagation and Computation Graphs)

06:語言結構:依存分析(Linguistic Structure: Dependency Parsing)

07:一個句子的概率?遞歸神經網絡和語言模型(The probability of a sentence? Recurrent Neural Networks and Language Models)

08:消失的梯度和花哨的RNNs (Vanishing Gradients and Fancy RNNs)

09:機器翻譯,Seq2Seq and Attention (Machine Translation, Seq2Seq and Attention)

10:最終項目的實用技巧(Practical Tips for Final Projects)

11:問答和默認的最終項目(Question Answering and the Default Final Project)

12:NLP的ConvNets(ConvNets for NLP)

13:部分單詞(子單詞模型)和轉換器結構的信息(部分單詞(子單詞模型)和轉換器結構的信息)

14:上下文單詞表示(Contextual Word Representations)

15:使用的建模上下文:上下文表示和預訓練(Modeling contexts of use: Contextual Representations and Pretraining)

16:自然語言生成(Natural Language Generation)

17:語言參考和共指解析(Reference in Language and Coreference Resolution)

18:AI中的公平和包容(Fairness and Inclusion in AI)

19:選區解析和樹遞歸神經網絡(Constituency Parsing and Tree Recursive Neural Networks)

20:NLP以及深度學習的未來(NLP+深度學習的未來)

PPT下載鏈接: 提取碼:re2l

付費5元查看完整內容
北京阿比特科技有限公司