摘要
預訓練語言模型(Pretrained Language Models, PLM)通過在大規模文本語料庫上學習信息語境化表示,建立了一種新的范式。這種新的范式已經徹底改變了整個自然語言處理領域,并為各種NLP任務設置了新的最先進的性能。然而,盡管PLM可以從訓練語料庫中存儲一定的知識/事實,但它們的知識意識還遠遠不能令人滿意。為了解決這個問題,將知識集成到PLM中已經成為一個非常活躍的研究領域,并且已經開發了各種各樣的方法。在本文中,我們對這一新興和快速發展的領域-知識增強的預訓練語言模型(KE-PLMs)提供了一個全面的文獻綜述。我們引入三種分類法來對現有工作進行分類。此外,我們還調研了各種NLU和NLG應用,在這些應用上,KE-PLM表現出了優于普通PLM的性能。最后,討論了KE-PLMs面臨的挑戰和未來的研究方向。
引言
近年來,大規模預訓練語言模型(大規模預訓練語言模型,簡稱PLM)給自然語言處理領域帶來了革命性的變化。預先訓練的模型如BERT [16], RoBERTa [50], GPT2/3[68][7]和T5[69]獲得了巨大的成功,極大地提升了各種NLP應用的最先進性能[67]。前訓練在NLP中的廣泛成功也啟發了自我監督前訓練在其他領域的應用,如圖表示學習[30][31]和推薦系統[81][98]。對大量文本數據的訓練也使這些plm能夠記住訓練語料庫中包含的某些事實和知識。最近的研究表明,這些經過訓練的語言模型可以擁有相當數量的詞匯知識[48][92]和事實知識[63][71][95]。然而,進一步的研究發現,PLM在知識意識方面也存在以下局限性:
對于NLU來說,最近的研究發現PLM傾向于依賴于表面信號/統計線索[62][55][58],并且很容易被否定的信息(例如,“Birds can [MASK]”vs .“Birds cannot [MASK]”)和錯誤啟動的探針[35]所愚弄。此外,已有研究發現,PLM在推理任務中往往會失敗[84]。
對于NLG,盡管PLM能夠生成語法正確的句子,但生成的文本可能不符合邏輯或不合理。例如,在[46]中提到,給定一組概念{dog, frisbee, catch, throw}, GPT2生成“a dog throw a frisbee at a football player”和T5生成“dog catch a frisbee and throw it to a dog”,這兩者都不符合人類的常識。
這些觀察結果促使人們設計更有知識意識的預訓練模型。最近,越來越多的研究致力于明確地將知識納入PLMs[100][108][61][90][96][49][33]。他們利用百科知識、常識知識和語言知識等多種來源,采用不同的注入策略。這種知識集成機制成功地增強了現有PLM的知識意識,提高了包括但不限于實體輸入[100]、問題回答[101][45]、故事生成[22]和知識圖完成[102]在內的各種任務的性能。
本文旨在對這一新興領域的知識增強預訓練語言模型(KE-PLMs)進行全面綜述。現有的KE-PLMs工作已經開發了一套不同的技術,用于在不同的知識來源上進行知識集成。為了深入了解這些模型并促進未來的研究,我們構建了三種分類法來對現有的KE-PLMs進行分類。圖1說明了我們提出的關于知識增強預訓練語言模型(KE-PLMs)的分類法。在現有的KE-PLMs中,已經探索了不同類型的知識來源(如語言學、常識、百科全書、特定應用),以增強PLMs在不同方面的能力。第一種分類法幫助我們理解在構建KE-PLMs時考慮了哪些知識來源。在第二種分類法中,我們認識到一個知識源可以被不同程度地利用,并基于知識粒度對已有的工作進行分類: 基于文本塊、基于實體、基于關系三元和基于子圖。最后,我們介紹了第三種分類法,它根據方法的應用領域對它們進行分組。這種分類法展示了現有的KE-PLMs在知識集成的幫助下旨在改進的一系列應用。通過認識到哪些應用領域已經被KE-PLMs很好地解決了,我們相信這將為未來將KE-PLMs應用于未解決領域的研究機會提供支持。
【導讀】Transformer系列的算法模型是當下研究的熱點之一。基于Transformer的模型在自然語言處理、計算機視覺等領域得到了廣泛的應用,最具代表性的就是作為預訓練模型的核心構件,如BERT等。之前已經有相關系列Transformer綜述。來自中科院計算所的研究人員從計算機視覺三個基本任務(分類、檢測和分割)的角度對一百多種不同的視覺變換器進行了綜述,值得關注。
摘要
Transformer 是一種基于注意力的編碼器-解碼器架構,徹底改變了自然語言處理領域。受這一重大成就的啟發,最近在將類似 Transformer 的體系結構應用于計算機視覺 (CV) 領域方面進行了一些開創性工作,這些工作已經證明了它們在各種 CV 任務上的有效性。與現代卷積神經網絡 (CNN) 相比,visual Transformers 依靠有競爭力的建模能力,在 ImageNet、COCO 和 ADE20k 等多個基準測試中取得了令人印象深刻的性能。在本文中,我們全面回顧了針對三個基本 CV 任務(分類、檢測和分割)的一百多種不同的視覺變換器,其中提出了一種分類法來根據它們的動機、結構和使用場景來組織這些方法. 由于訓練設置和面向任務的差異,我們還在不同的配置上評估了這些方法,以方便直觀地進行比較,而不僅僅是各種基準測試。此外,我們揭示了一系列基本但未開發的方面,這些方面可能使 Transformer 從眾多架構中脫穎而出,例如,松弛的高級語義嵌入以彌合視覺和順序 Transformer 之間的差距。最后,提出了三個有前景的未來研究方向,以供進一步研究。
//www.zhuanzhi.ai/paper/81663beebc3e71dadb416550ed549c65
引言
Transformer [1]作為一種基于注意力的結構,首次在序列建模和機器翻譯任務中顯示出巨大的力量。如圖1所示,Transformer已經逐漸成為自然語言處理(NLP)的主要深度學習模型。最新的主流模型是一些自監督的變形金剛,預先從足夠的數據集訓練,然后在小而具體的下游任務[2]-[9]上進行微調。生成預訓練Transformer (GPT)族[2]-[4]利用Transformer解碼器執行自回歸語言建模任務,而Transformer的雙向編碼器表示(BERT)[5]及其變體[6]、[7]作為構建在Transformer編碼器上的自動編碼器語言模型。
在計算機視覺(CV)領域,在視覺轉換器模型之前,卷積神經網絡(CNN)已經成為一個主導范式[10]-[12]。受NLP[1]和[13]中自注意力機制的巨大成功啟發,一些基于CNN的模型試圖通過一個額外的空間[14]-[16]或通道級別[17]-[19]的自注意力層來捕捉長期依賴。而另一些人則試圖用全局[20]或局部自注意力塊[21]-[25]來完全替代傳統的卷積。雖然Cordonnier等人從理論上證明了自注意力塊[26]的有效性和效率,但在主流基準上,這些純注意力模型仍然不如當前最先進的(SOTA) CNN模型。
如上所述,基于注意力的模型在視覺識別領域受到了極大的關注,而vanilla Transformer在NLP領域取得了巨大的成功。受到這些啟發,最近有許多作品將Transformer移植到CV任務中,并取得了可比性的結果。例如Dosovitskiy等人[27]提出了一種使用圖像patch作為圖像分類輸入的純Transformer,在許多圖像分類基準上已經實現了SOTA。此外,visual transformer在其他CV任務中也取得了良好的性能,如檢測[28]、分割[29]、跟蹤[30]、圖像生成[31]、增強[32]。如圖1所示,在[27]、[28]之后,在過去的一年中,針對各個領域提出了數百種基于transformer的模型。因此,我們迫切需要一個系統的文獻調研來識別、分類和批判性地評估這些新出現的視覺Transformer的表現。考慮到讀者可能來自不同的領域,我們針對這些現有的視覺變形金剛進行三個基本的CV任務,包括分類、檢測和分割。如圖2所示,本綜述將所有這些現有方法根據其任務、動機和結構特征分為多個組。其中一些可能部分重疊。例如,一些改進不僅提高了骨干在圖像分類中的性能,而且還提高了密集預測任務(即檢測和分割)的性能,許多深度和層次的方法也通過改進CNN和attention來實現。
去年發表了幾篇關于Transformer的綜述,Tay等[86]綜述了Transformer在NLP中的效率,Khan等[87]和Han等[88]總結了早期的視覺變形和先前的注意力模型,以及一些沒有系統方法的語言模型。Lin等人介紹了Transformer的最新綜述,對Transformer的各種變體進行了系統的綜述,并簡要地提到了可視化應用[89]。基于這些觀察,本文旨在對近期的視覺Transformer進行全面的回顧,并對現有的方法進行系統的分類:
(1)全面性和可讀性。本文全面回顧了100多個視覺Transformers的三個基本任務:分類、檢測和分割。我們選取并分析了50多個具有代表性的模型,如圖2所示。我們不僅從單一的角度對每個模型進行詳盡的分析,而且還通過遞進、對比和多視角分析等意義來建立它們之間的內在聯系。
(2)直觀的比較。由于這些Transformers在不同的任務中遵循不同的訓練方案和超參數設置,本綜述通過將它們在不同的數據集和限制下分離,呈現了多個橫向比較。在此基礎上,我們總結了針對每個任務設計的一系列有前途的組件,包括: 基于層次結構的主干淺局部卷積,基于稀疏注意的空間先驗加速,以及用于分割的通用掩模預測方案。
(3) 深入分析。我們進一步提供了以下方面的重要見解: 從順序任務到視覺任務的轉換過程,Transformer與其他視覺網絡之間的對應關系,以及不同任務中可學習嵌入(即類標記、對象查詢、掩碼嵌入)的相關性。最后,展望了未來的研究方向。例如,編碼器-解碼器Transformer骨干可以通過學習嵌入來統一三個子任務。
本文的其余部分組織如下。第2節介紹了原始Transformer的概述架構和關鍵組件。第三章總結了Transformer 主干的綜合分類,并簡要討論了圖像分類。然后我們回顧了當代的Transformer檢測器,包括第四節中的Transformer neck和backbone。第五節根據嵌入的形式(即patch embedding和query embedding),闡明了在分割領域中主流的Transformer變體。此外,第二章-第四章還簡要分析了其相應領域的績效評價的具體方面。第六章從三個方面進行了進一步的探討,并指出了未來進一步研究的方向。
總結
在上述比較和討論的基礎上,我們現就以下三項基本任務近期的改進情況作一簡要總結。
對于分類,一個深度層次的Transformer主干可以有效地降低計算復雜度[39],并在深度避免特征過平滑[35],[40],[59],[60]。同時,早期卷積[37]足以捕獲低級特征,可以顯著增強淺層的魯棒性,降低計算復雜度。卷積投影[46]、[47]和局部注意力機制[33]、[42]都可以改善Transformer的局部性。[48]、[49]也可能是一種用位置編碼替代的新方法。
在檢測方面,Transformer骨干得益于編碼器-解碼器結構,比僅使用編碼器的Transformer檢測器計算更少[73]。因此,解碼器是必要的,但由于其收斂速度慢[72],需要的堆棧很少[70]。此外,稀疏注意力[67]有利于降低計算復雜度,加速Transformer的收斂,而空間先驗[67]、[69]、[71]則有利于Transformer的性能,收斂速度稍快。
對于分割,編碼器-解碼器Transformer模型可以通過一系列可學習的掩碼嵌入[29],[84],[137],將三個分割子任務統一為一個掩碼預測問題。這種無箱方法在多個基準上實現了最新的SOTA[137]。此外,還證明了基于box-based Transformer的特定混合任務級聯模型[81]在實例分割任務中獲得了更高的性能。
大型的、預訓練的基于Transformer的語言模型,如BERT,已經極大地改變了自然語言處理(NLP)領域。我們對最近的研究進行了調研,這些研究使用了大型語言模型來解決NLP任務,通過預訓練、微調、提示或文本生成方法。我們還提出了使用預訓練語言模型生成數據的方法,用于訓練增強或其他目的。最后,我們討論了局限性,并提出了未來研究的方向。
引言
近年來,大型預訓練的基于Transformer的語言模型(PLMs),如BERT (Devlin et al., 2019)和GPT (Radford et al., 2018)系列模型席卷了自然語言處理(NLP),在許多任務中實現了最先進的性能。
這些大型PLM推動了NLP的范式轉變。以分類任務p(y|x)(將文本輸入x分類為標簽y)為例:傳統統計NLP方法通常設計手工特征來表示x,然后應用機器學習模型(如SVM (Cortes and Vapnik, 1995)、邏輯回歸)來學習分類函數。深度學習模型通過深度神經網絡(LeCun et al., 2015)。注意,每個新的NLP任務都需要重新學習潛在特征表示,而且在許多情況下,訓練數據的大小限制了潛在特征表示的質量。考慮到語言的細微差別對所有NLP任務來說都是共同的,我們可以假設我們可以從一些通用任務中學習一個通用的潛在特征表示,然后在所有NLP任務中共享它。語言建模需要學習如何在給定前一個單詞的情況下預測下一個單詞,這是一項具有大量自然出現的文本的通用任務,可以預訓練這樣一個模型(因此得名預訓練語言模型)。事實上,最新的、正在進行的范式轉換從引入PLMs開始: 對于大量的NLP任務,研究人員現在來利用現有的PLMs通過對感興趣的任務進行微調,提示PLMs執行期望的任務,或者將任務重新構造為文本生成問題,并應用PLMs來解決相應的問題。這三種基于PLM的范式的進步不斷地建立了新的最先進的性能。
本文調研了最近利用PLM進行NLP的工作。我們將這些工作組織成以下三種范式:
先進行預訓練,然后進行微調(§2): 先對大量未標記語料庫進行通用預訓練,然后對感興趣的任務進行少量的任務特定微調。
基于提示的學習(§3):提示一個PLM,這樣解決NLP任務就會減少到類似于PLM的訓練前任務(如預測一個遺漏的單詞),或一個更簡單的代理任務(如文本包含)。提示通常可以更有效地利用PLM中編碼的知識,從而產生“少樣本”的方法。
NLP作為文本生成(§4): 將NLP任務重新定義為文本生成,以充分利用生成語言模型(如GPT-2 (Radford et al., 2019)和T5 (Raffel et al., 2020)中編碼的知識。
生成式PLMs也可以用于文本生成任務。我們向讀者推薦關于文本生成的優秀調研,如Li et al. (2021b) 和Yu et al. (2021b)。除非另有說明,本文主要關注非生成性任務(如分類、序列標注和結構預測),這些任務仍然涵蓋廣泛的NLP任務,包括文本的語法或語義解析、信息抽取(IE)、問答(QA)、文本蘊涵(TE)、情感分析、等等。除了這三種范式之外,還有另一種互補的方法:間接使用上述任何一種PLM范式來改善目標NLP任務的結果:
數據生成(§5): 運行PLM自動生成NLP任務的數據。生成的數據可以是銀色標記的數據,通常生成的PLM是針對任務進行微調的,或者是一些輔助數據,如反例、澄清、上下文或其他。在第一種情況下,銀色標記數據可以添加到現有的標記數據中。在第二種情況下,輔助數據以某種方式支持目標任務。
論文組織如下: 第2節提供了PLM的背景,并描述了第一種范式,即預訓練然后微調。第三節討論第二種范式,即基于提示的學習。第4節總結了第三種范式,即作為文本生成的NLP。在第5節中,我們將描述通過PLM為廣泛的NLP任務生成數據的方法。我們將在第6節討論局限性并提供未來研究的方向,并在第7節進行總結。
范式1: 先訓練,然后微調
傳統統計NLP的工作重點是在標記數據集上訓練特定任務的模型,而這種模式轉變為在一個共享的、“基本”的預訓練任務上訓練一個大型模型,然后在第二步中將其調整(“微調”)到各種任務。預訓練任務幾乎總是一種語言建模任務,它可以利用大量的未標記數據來學習有利于一系列NLP任務的表示(Rogers et al., 2020)。在本節中,我們首先提供關于預訓練的大型語言模型(PLMs)的入門知識,然后描述使用凍結或微調PLM進行NLP任務的方法。
范式2: 基于提示的學習
我們使用提示指的是在輸入或輸出中添加自然語言文本(通常是短語)的做法,以鼓勵預訓練的模型執行特定任務(Yuan et al., 2021)。使用提示符有幾個優點。提示,特別是上下文學習(例如Brown et al., 2020),可能不需要更新PLM的參數,與微調方法相比,或在2.4.4中描述的基礎上,減少了計算需求。提示還能促使新任務的制定與預訓練的目標更好地結合,從而更好地利用預訓練獲得的知識。更緊密的匹配還支持少樣本方法(Liu et al., 2021b),特別是對于具有小訓練數據集的任務;一個好的提示可以值幾百個標簽數據點(Le Scao and Rush, 2021)。最后,提示允許以一種不受監督的方式探索PLM,以評估PLM對特定任務所獲得的知識(如Petroni et al., 2019)。
下面我們討論三種基于提示的學習方法:從指令和演示中學習、基于模板的學習和從代理任務中學習。圖3顯示了這三種方法的說明。
范式3 NLP即文本生成
基于生成式Transformer的PLMs10(如GPT、BART和T5)的成功,最近激發了人們對利用生成式PLM解決各種非生成式NLP任務的興趣。這些任務包括但不限于傳統的判別任務,如分類和結構預測。例如,圖4說明了Raffel等人(2020)所描述的這種“文本到文本”方法。與傳統的NLP任務判別模型不同,這些任務被重新表述為文本生成問題,從而可以直接用生成式PLM解決。生成的輸出序列通常包括給定任務所需的標簽或其他輔助信息,從而能夠準確地重構預期的類標簽(即避免映射中的歧義),并促進生成/解碼過程(即為預測提供足夠的上下文)。
總結
在這篇文章中,我們介紹了三種使用預訓練語言模型進行自然語言處理的趨勢。我們對每一種方法都進行了深入的描述,并對其應用前景進行了總結。此外,我們還描述了使用預先訓練過的語言模型來自動生成用于提高NLP任務性能的數據。我們希望這一調研將為讀者提供關鍵的基本概念和對范式轉變的全面看法。
導讀:本文將參考上述綜述論文,從預訓練語言模型應用于文本生成任務的三個挑戰出發:
如何對輸入數據進行編碼并保持語義,使其與預訓練語言模型進行融合; 如何設計通用且合適的預訓練語言模型架構,使其作為生成函數; 如何優化生成函數,并保證生成文本滿足特殊屬性。 并詳細列舉目前每個挑戰下的研究進展。
文本生成是目前自然語言處理領域一項非常重要但具有挑戰性的任務,它的目的是希望生成可讀的自然語言文本,比較有代表性的應用,例如對話系統、文本摘要和機器翻譯等。
目前,深度神經模型在文本生成研究中已取得重大進展,其優勢在于深度神經網絡可以端到端地學習輸入數據到輸出文本的語義映射,而不需要人工參與進行特征工程。但是,深度神經模型往往具有大量的參數,而大部分文本生成任務數據集都非常小,因此深度神經網絡非常容易在這些數據集上過擬合,導致其無法在實際應用中進行泛化。
隨著預訓練語言模型(Pretrained Language Models, PLMs)范式的蓬勃發展,越來越多的研究將其運用到各種自然語言處理任務中以取得SOTA效果,例如BERT解決語言理解和GPT解決語言生成。通過在大規模語料集上進行預訓練,預訓練語言模型可以準確地理解自然語言并以自然語言的形式流暢表達,這兩項都是完成文本生成任務的重要能力。
摘要 預訓練技術當前在自然語言處理領域占有舉足輕重的位置。尤其近兩年提出的ELMo、GTP、BERT、XLNet、T5、GTP-3等預訓練模型的成功,進一步將預訓練技術推向了研究高潮。該文從語言模型、特征抽取器、上下文表征、詞表征四個方面對現存的主要預訓練技術進行了分析和分類,并分析了當前自然語言處理中的預訓練技術面臨的主要問題和發展趨勢。
預訓練模型通過自監督學習方法在大規模文本語料庫上學習上下文化的詞表示,該方法經過微調后取得了良好的性能。然而,這些模型的健壯性差,且缺乏可解釋性。帶有知識注入的預訓練模型(knowledge enhanced pre- training model, KEPTMs)具有深刻的理解和邏輯推理能力,并在一定程度上引入了可解釋性。在這個綜述中,我們提供了自然語言處理的KEPTMs的全面概述。首先介紹了預訓練模型和知識表示學習的研究進展。然后我們從三個不同的角度對現有KEPTMs進行了系統的分類。最后,對KEPTMs的未來研究方向進行了展望。
//www.zhuanzhi.ai/paper/2e6a280b91bab87be5075bc650650678
引言
數據和知識是人工智能的核心。深度學習[1],[2],[3]借助神經網絡的分布式表示和層次結構泛化,可以充分利用大規模數據。基于深度學習的預訓練模型[4]、[5]、[6]、[7]、[8]、[9]、[10]、[11]、[12]、[13]、[14]、[15]、[16]、[17]、[18]有了質的飛躍,促進了下游自然語言處理(NLP)的廣泛應用。雖然它們可以從大規模的無監督語料庫中獲取詞匯、句法和淺層語義信息,但它們是統計模型,受重尾數據分布的限制,導致無法深入理解和因果推理和反事實推理。此外,盡管深度學習在學習數據背后的關鍵因素方面很強大,但由于糾纏表示,預先訓練的模型失去了可解釋性。知識為模型提供了全面而豐富的實體特征和關系,克服了數據分布的影響,增強了模型的魯棒性。此外,知識為模型引入了顯式語義的可解釋性。因此,利用不同的知識來實現預先訓練的具有深度理解和邏輯推理的模型是必不可少的。為了更好地集成知識和文本特征,將符號知識投影到一個密集的、低維的語義空間中,并通過分布式向量通過學習[19]的知識表示來表示。在此背景下,研究人員探索了通過注入知識來概括知識驅動和語義理解所需場景的方法來改進預先訓練的模型。
這項綜述的貢獻可以總結如下:
全面綜述。本文對自然語言處理的預訓練模型和知識表示學習進行了綜述。 新分類法。我們提出了一種面向自然語言處理的KEPTMs分類法,根據注入知識的類型將現有KEPTMs分為三組,并根據知識與語料庫的耦合關系和知識注入方法進一步劃分不同組對應的模型。 未來的發展方向。討論分析了現有KEPTMs的局限性,并提出了未來可能的研究方向。
近年來,預訓練模型的逐步發展引起了研究者的廣泛關注。然而,盡管他們在創作上付出了巨大的努力,但卻無法理解文本的深層語義和邏輯推理。此外,從模型中學習到的知識存在于參數中,是無法解釋的。通過注入KGs的實體特征和事實知識,可以極大地緩解魯棒性差和可解釋性不足的問題。本文介紹的預訓練模型大多側重于語言知識和世界知識的利用,這些知識屬于2.2.1節中定義的事實知識或概念知識。這類知識為預訓練模型提供了豐富的實體和關系信息,極大地提高了預訓練模型的深度理解和推理能力。
為了比較和分析現有的KEPTMs,我們首先根據注入知識的類型將其分為三類: 實體增強的預訓練模型、三元組增強的預訓練模型和其他知識增強的預訓練模型。對于實體增強的預訓練模型,所有這些模型都將知識和語言信息存儲在預訓練模型的參數中,屬于基于耦合的KEPTMs。根據實體注入的方法,進一步將其分為實體特征融合模型和知識圖譜監督預訓練模型。對于三聯體增強的訓練前模型,我們根據三聯體與語料是否耦合,將其分為基于耦合和基于解耦的KEPTMs。基于耦合的KEPTMs在訓練前將單詞嵌入和知識嵌入糾纏在一起,無法保持符號知識的可解釋性。根據三聯體輸注方法,將基于耦合的KEPTMs分為三組: 嵌入聯合KEPTMs、數據結構統一KEPTMs和聯合訓練KEPTMs。而基于解耦的KEPTMs則分別保留了知識和語言的嵌入,從而引入了符號知識的可解釋性。我們將其劃分為基于檢索的KEPTMs,因為它通過檢索相關信息來利用知識。其他知識增強模型也可分為基于耦合和基于解耦的KEPTMs。我們進一步將其分為聯合訓練和基于檢索的KEPTMs。
自然語言生成(NLG)技術利用人工智能和語言學的方法來自動地生成可理解的自然語言文本。NLG降低了人類和計算機之間溝通的難度,被廣泛應用于機器新聞寫作、聊天機器人等領域,已經成為人工智能的研究熱點之一。首先,列舉了當前主流的NLG的方法和模型,并詳細對比了這些方法和模型的優缺點;然后,分別針對文本到文本、數據到文本和圖像到文本等三種NLG技術,總結并分析了應用領域、存在的問題和當前的研究進展;進而,闡述了上述生成技術的常用評價方法及其適用范圍;最后,給出了當前NLG技術的發展趨勢和研究難點。
我們研究事實核查問題,它的目的是確定一個給定的主張的真實性。具體來說,我們關注的是事實提取和驗證(FEVER)及其伴隨數據集的任務。該任務由從Wikipedia檢索相關文檔(和句子)以及驗證文檔中的信息是否支持或駁斥給定的聲明的子任務組成。這項任務至關重要,可以成為假新聞檢測和醫療索賠核實等應用程序的基石。在本文中,我們旨在通過結構化和全面的方式呈現文獻來更好地理解這項任務的挑戰。此外,我們通過分析不同方法的技術視角和討論了在FEVER數據集上的性能結果來描述所提出的方法。FEVER數據集是在事實提取和驗證任務上研究最充分、結構最正式的數據集。我們還進行了迄今為止最大的實驗研究,以確定有益的損失功能的句子檢索成分。分析表明,對否定句進行采樣對于提高性能和降低計算復雜度具有重要意義。最后,我們描述了有待解決的問題和未來的挑戰,并對未來的研究提出了展望。
我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1
近年來,隨著深度學習的飛速發展,深度神經網絡受到了越來越多的關注,在許多應用領域取得了顯著效果。通常,在較高的計算量下,深度神經網絡的學習能力隨著網絡層深度的增加而不斷提高,因此深度神經網絡在大型數據集上的表現非常卓越。然而,由于其計算量大、存儲成本高、模型復雜等特性,使得深度學習無法有效地應用于輕量級移動便攜設備。因此,壓縮、優化深度學習模型成為目前研究的熱點,當前主要的模型壓縮方法有模型裁剪、輕量級網絡設計、知識蒸餾、量化、體系結構搜索等。通過對以上方法的性能、優缺點和最新研究成果進行分析總結,對未來研究方向進行了展望。