亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國仍然是世界上最突出的軍事和技術力量。在過去十年中,美國認識到人工智能作為力量倍增器的潛力,越來越多地將人工智能(AI)的熟練程度視為美國重要利益和保證美國軍事和經濟實力的機制。特別是,在過去十年中,人工智能已成為美國國防的一項關鍵能力,特別是考慮到2022年美國國防戰略對印度-太平洋地區的關注。

因此,美國國防部(DoD)(以及美國政府和國防機構總體上)對人工智能和相關新興技術表現出越來越大的熱情。然而,雖然美國目前在學術界和私營部門的人工智能研究和開發方面取得了巨大進展,但國防部尚未在廣泛范圍內成功地將商業人工智能的發展轉化為真正的軍事能力。

美國政府在利用國防人工智能和人工智能支持的系統方面通常處于有利地位。然而,在過去的幾年里,各種官僚主義、組織和程序上的障礙減緩了國防部在國防人工智能采用和基于技術的創新方面的進展。最關鍵的是,國防部遭受了復雜的收購過程和廣泛的數據、STEM和AI人才和培訓的短缺。從事人工智能和人工智能相關技術和項目的組織往往是孤立的,而且還存在必要的數據和其他資源相互分離。在美國防部內部存在一種傾向于可靠方法和系統的文化,有時趨向于勒德主義。所有這些因素都導致了人工智能采用的速度出奇的緩慢。美國家安全委員會2021年提交給國會的最終報告總結說,"盡管有令人興奮的實驗和一些小型的人工智能項目,但美國政府離人工智能就緒還有很長的路要走"。

因此,盡管人工智能有可能增強美國的國家安全并成為一個優勢領域,而且鑒于美國在軍事、創新和技術領導方面的長期傳統,人工智能有可能成為一個薄弱點,擴大 "美國已經進入的脆弱窗口"。 如果美國不加快創新步伐,達到負責任的速度,并奠定必要的制度基礎,以支持一支精通人工智能的軍隊,人工智能將繼續成為一個不安全點。

去年,美國防部在這些挑戰中的一些方面取得了進展,調整了國防人工智能的方法。2022年6月,美國防部發布了《負責任人工智能戰略和實施途徑》,將更有數據依據的、負責任的、可操作的人工智能工作列為優先事項,此后開始執行。最重要的是,美國防部已經啟動了對其人工智能組織結構的重大改革,創建了一個新的首席數字和人工智能辦公室(CDAO),以整合其不同的人工智能項目和利益相關者,并使其與該部門的數據流更好地協調。值得注意的是,美國國防部目前正在對其國防人工智能的整體方法進行重大變革和振興。然而,這些新的人工智能努力是否足以讓美國彌補失去的時間,還有待觀察。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

即使在俄烏戰爭肆虐之際,北約正在尋求整合戰場上的經驗教訓,以調整其防御規劃,以適應一個快速變化的世界。已經有一個教訓是明確的:在一個有爭議的歐洲,盟友需要對行動環境有更好的認識。決策和執行的速度和質量必須提高。北約的有效和道德的決策必須轉化為行動效果。北約必須優先考慮其指揮、控制、通信、計算機、情報、監視和偵察(C4ISR)架構的現代化和整合,以跟上快速變化的作戰環境。

雖然是一個復雜的概念,但C4ISR最容易被理解為軍隊的 "神經系統"。它對日常運作、自動反應和大型企業固有的復雜流程至關重要。安全環境發生了迅速而根本的變化--包括歐洲大規模戰爭的回歸、氣候變化以及新興技術的變革潛力--要求立即對北約的C4ISR架構進行嚴格審查。C4ISR的現代化是保持競爭優勢的必要條件,以應對基于國家的對手、其他系統性挑戰和尚未實現的威脅--所有這些都可能顛覆北約致力于維護的基于規則的國際秩序。

北約的新戰略概念為加強防御和威懾提供了平臺,同時利用新興和顛覆性技術,為跨大西洋的決策者提供了一個獨特的機會窗口。正是北約的C4ISR能力將使一個相關的、可信的北約 "神經系統 "能夠應對未來的挑戰。

為此,大西洋理事會的這項研究--北約負責國防投資的前副秘書長助理一年來的研究和采訪的最終成果--提供了一個實現這一目標的詳細路線圖。這份全面的報告對C4ISR現代化這一主題進行了專業處理,以幫助跨大西洋的決策者、作戰部隊、專家和政策界以及軍事技術觀察家更好地理解北約C4ISR架構所固有的挑戰和機遇。重要的是,它通過一系列深思熟慮的建議來想象C4ISR現代化的可能性

歸根結底,問題不在于北約是否需要進化和發展其C4ISR能力,而在于它是否能及時做到這一點,以應對聯盟所面臨的不斷增長的威脅。相信這項廣泛的研究巧妙地提出了北約C4ISR架構必要的現代化路徑。

C4ISR五步發展路徑

1.加強數據和情報共享

共享數據、信息和情報是C4ISR的燃料。然而,現實表明,數據和情報共享水平并未達到預期。這意味著由于信息未被共享,可能會產生巨大的機會成本。在具備正確的政治意愿和適當的安全措施下,北約及其成員國收集到的海量數據和情報可以更好地用于集體安全和防御。

2.數字化轉型

數字化轉型旨在解決數字化、連通性、數據架構和數據管理問題,為提高安全和防御能力、提高彈性提供基礎。數字革命與C4ISR架構密切相關,因為先進的C4ISR技術可以幫助聯盟在指揮、控制、通信、數據和情報分析、決策、操作和互操作性等方面實現顯著的提速、更高的安全性和效用。在這方面取得進展尤為重要,特別是當盟國試圖轉向新的作戰概念和有效的多領域作戰時,后者要求在所有作戰領域實現動能和非動能力量的整合和快速擴展。

3.通過新概念、政策和計劃明確C4ISR要求

為了超越潛在對手,北約必須立即行動,制定未來C4ISR架構需求。一些已經展開的工作,如新的北約部隊模型、多域作戰概念、盟軍作戰指揮與控制評估和《北約聯合情報監視和偵察2030+》的遠景規劃,將直接影響未來北約C4ISR的需求。北約需要為盟國提供一個明確的C4ISR定義,促使成員國達成共識,并確保計劃、能力和概念開發方面的一致性。

4.通過現代化增強和形成能力,以滿足C4ISR新需求

北約應采取一些實際措施,以在未來保持其技術和軍事優勢。這包括改變現有的C4ISR部隊結構,提高北約接收國家和商業空間信息的能力,縮小集成空中和導彈防御的差距,發展更強大的電子戰能力,并投資于以及推廣人工智能、自主性、空中能力和量子計算等新興和顛覆性技術的創新和應用。

5.持續投資C4ISR互操作性、戰備、彈性、創新和適應性

北約的實力在于其集體決策和行動、組織和互操作能力。北約的C4ISR力量和能力為盟國提供可互操作的結構和數字骨干,有助于盟國集體意識、決策和行動。投資于C4ISR準備性、彈性和能力,直接為聯盟本身的潛力做出貢獻。

目錄

  • 前言
  • 塑造北約C4ISR的威脅和挑戰
  • 俄烏戰爭給北約C4ISR帶來的教訓和未來需求
    • 多域作戰
    • 零天準備就緒
    • 北約情報機構(NIE)
    • 持久性和生存能力
    • 多學科的情報和融合
    • 任務分配、收集、處理、開發和傳播(TCPED)
    • 網絡
    • 私營企業的作用
    • 數字化、連接性和大數據
  • 影響北約C4ISR的決策和正在進行的工作
    • 多域作戰
    • 數字化轉型
    • 強化威懾和防御態勢
    • 健全的、有彈性的、一體化的指揮結構和加強C2安排
    • 全球感知
    • 創新和EDTs
    • 國防投資
  • 建議:共享、轉型、實施、現代化和投資
    • 1.分享更多的數據和情報
    • 2.數字化轉型
    • 3.實施新的概念、政策和計劃,明確對北約C4ISR的要求
    • 4.實現現代化,增強和獲取能力,以滿足新的C4ISR要求。
    • 5.繼續投資于北約C4ISR的互操作性、準備性、復原力、創新和適應性。
  • 結論
付費5元查看完整內容

自主系統將塑造戰爭的未來。因此,土耳其的國防人工智能(AI)發展主要側重于提高自主系統、傳感器和決策支持系統的能力。提高自主系統的情報收集和作戰能力,以及實現蜂群作戰,是發展國防人工智能的優先事項。雖然土耳其加強了自主系統的能力,但在可預見的未來,人類仍將是決策的關鍵。

人類參與決策過程提出了一個重要問題:如何有效確保人機互動?目前,自主系統的快速發展和部署使人機互動的問題更加惡化。正如土耳其國防工業代表所爭論的那樣,讓機器相互交談比較容易,但將人類加入其中卻非常困難,因為現有的結構并不適合有效的人機互動。此外,人們認為,人工智能對決策系統的增強將有助于人類做出更快的決定,并緩解人機互動。

土耳其發展人工智能的意圖和計劃可以從官方戰略文件以及研發焦點小組報告中找到。突出的文件包括以下內容:

  • 第11個發展計劃,其中規定了土耳其的經濟發展目標和關鍵技術投資。

  • 《2021-2025年國家人工智能戰略》,它為土耳其的人工智能發展制定了框架。

  • 焦點技術網絡(Odak Teknoloji A??,OTA?)報告,為特定的國防技術制定了技術路線圖。這些文件提供了關于土耳其如何對待人工智能、國防人工智能和相關技術的見解。

土耳其特別關注人工智能相關技術,如機器學習、計算機視覺和自然語言處理,其應用重點是自主車輛和機器人技術。自2011年以來,自主系統,主要是無人駕駛飛行器(UAV),仍然是土耳其人工智能發展的重點。此后,這已擴大到包括所有類型的無機組人員的車輛。同時,用人工智能來增強這些車輛的能力也越來越受到重視。人工智能和相關技術的交織發展構成了土耳其人工智能生態系統的核心。

土耳其的人工智能生態系統剛剛起步,但正在成長。截至2022年10月,有254家人工智能初創企業被列入土耳其人工智能倡議(TRAI)數據庫。土耳其旨在通過各種生態系統倡議在其國防和民用產業、學術機構和政府之間創造協同效應。由于許多組織都參與其中,這些倡議導致了重復和冗余。冗余也來自于人工智能技術本身的性質。由于人工智能是一種通用技術,可以應用于不同的環境,各種公司都有用于民用和國防部門的產品;因此相同的公司參與了不同的生態系統倡議。此外,民用公司與國防公司合作,在國防人工智能研究中合作,并提供產品,這是司空見慣的。

土耳其鼓勵國際人工智能在民用領域的合作,但不鼓勵在國防領域的合作。然而,由于技能是可轉移的,國防人工智能間接地從這種合作中受益。

土耳其非常關注自主系統發展中的互操作性問題,特別是那些具有群集能力的系統。除了蜂群,北約盟國的互操作性也是一個重要問題。因此,土耳其認為北約標準在發展自主系統和基礎技術方面至關重要。

土耳其目前對人工智能采取了分布式的組織方式。每個政府機構都設立了自己的人工智能組織,職責重疊。目前,盡管國防工業局(Savunma Sanayi Ba?kanl???,SSB)還沒有建立專門的人工智能組織,但SSB的研發部管理一些人工智能項目,而SSB的無人駕駛和智能系統部管理平臺級項目。目前,根據現有信息,還不清楚這些組織結構如何實現國防創新或組織改革。

土耳其尋求增加其在人工智能方面的研發支出,旨在增加就業和發展生態系統。SSB將在未來授予更多基于人工智能的項目,并愿意購買更多的自主系統,鼓勵研發支出的上升趨勢。然而,盡管土耳其希望增加支出,但金融危機可能會阻礙目前的努力。

培訓和管理一支熟練的勞動力對于建立土耳其正在尋找的本土人工智能開發能力至關重要。這包括兩個部分。首先是培養能夠開發和生產國防人工智能的人力資源。因此,土耳其正在投資于新的大學課程、研究人員培訓、開源平臺和就業,同時支持技術競賽。第二是培訓將使用國防人工智能的軍事人員。國防人工智能也正在慢慢成為土耳其武裝部隊(Türk Silahl? Kuvvetleri,TSK)培訓活動的一部分。目前,關于土耳其打算如何培訓軍事人員使用國防人工智能的公開信息非常少。

付費5元查看完整內容

在過去的幾年里,人工智能(AI)的采用非常迅速,其使用也很廣泛。公共和私人部門的組織正在將人工智能用于廣泛的應用。在國防部門,對人工智能對國家安全的潛在影響的認識正在通過對后勤、半自動和自主武器、ISR(情報、監視和偵察)、指揮和控制以及網絡和信息行動的大量投資得到加強。畢竟,人工智能將戰爭的性質從信息化的方式轉變為智能化的戰爭方式。像美國和中國這樣的國家已經在其現有的防御框架中實施了一些形式的智能化戰爭。印度現在正以其新興和顛覆性的技術進步,向強大的軍民融合過渡。這篇背景文章探討了可能通過人工智能及其應用進行的智能化戰爭的所有方面,以及人工智能為國防帶來的挑戰和機遇。

印度的人工智能實施及其路線圖

印度的人工智能在軍事領域的實施處于起步階段;然而,其商業化的建立正以其在醫療保健、農業、教育、智能城市和基礎設施以及智能移動和交通等各個領域的不同應用而發展壯大。NITI Aayog在2018年發布了關于人工智能的國家戰略,主要關注這些領域。2021年,它進一步提出了一份關于負責任的人工智能第一部分和第二部分的報告,其中討論了印度人工智能的發展、采用和人工智能生態系統的培育。它的重點是促進研究、勞動力的技能培訓和再培訓,促進采用人工智能解決方案和發展準則。該報告還提出了對負責任的人工智能管理的問責制、安全、隱私和數據安全的關注。Niti Aayog的人工智能卓越研究中心(COREs)將作為國際轉型人工智能中心(ICTAIs)的技術供給者,旨在為社會領域創造基于人工智能的應用。

  • 印度在國防方面的人工智能研究由國防研究與發展組織(DRDO)領導,由人工智能和機器人中心(CAIR)負責。它的主要重點領域是人工神經網絡、深度學習、計算機視覺和態勢感知,包括以網絡為中心的行動和在龐大的戰場數據知識庫上運作的AIenabled系統。2019年,印國防部成立了一個高級別的國防人工智能委員會(DAIC),負責為國防中的人工智能應用提供戰略方向。其職能是在政府和行業之間建立伙伴關系,以部署這種基于人工智能的創新。一個由政府、軍方、學術界、工業界專業人士和初創企業代表組成的多利益攸關方工作隊,從國家安全的角度和全球范圍內研究人工智能的戰略影響。該報告闡述了印度在國防需求方面的人工智能發展,并就航空、海軍、陸地、網絡、核戰爭和生物戰等領域的國防人工智能能力提出了建議。鑒于這些發展,DAIC和國防人工智能項目局(DAIPA)獲得了1000億盧比的年度預算,專門用于人工智能支持的項目。它將包括開發一個數據管理框架,擴大數據中心的現有能力,建立一個便利的測試床網絡,并在所有國防培訓中心組織人工智能培訓課程。此外,它將與政府機構和行業合作準備政策,對社會和技術的濫用形成威懾。國防部的人工智能路線圖包括國防公共部門企業(PSU)承擔61個國防專用項目。國家任務組已經確定了12個人工智能領域,包括在印度軍隊中采用人工智能進行C4ISR。印度軍方已經與工業界和新技術創業公司合作開展了人工智能項目。

印度的人工智能能力

印度正在帶頭進行人工智能開發和采購,以加強其軍事基礎設施。印度人工智能軍事能力的一些例子包括用于ISR行動的人工智能機器人RoboSen,用于后勤支持的小型化便攜式行走機器人,具有認知能力的機器人,用于維護和維修部件,像黑黃蜂這樣的微型無人機,智能輪椅,以及CAIR的網絡流量分析(NETRA)系統,用于實時監控互聯網流量。印度的無人機能力包括Botlab Dynamics公司的蜂群無人機,HAL和NRT公司的空中發射靈活資產蜂群(ALFA-S),蜂群無人機,DRDO的Rustom 1。 印度海軍還計劃在關鍵任務領域整合基于人工智能的技術,并將INS Valsura作為大數據領域的卓越中心和關于人工智能和大數據分析的最先進實驗室。最近,2022年7月10日,在UDAAN(數字化、自動化、人工智能和應用網絡單位)的支持下,IAF在新德里的空軍站啟動了人工智能(AI)卓越中心。該中心配備了大數據和人工智能平臺,用于處理分析的所有方面,包括機器學習、NLP、神經網絡和深度學習。IIT-Hyderabad已經建立了一個關于自主導航和數據采集系統(TiHAN)的技術創新中心。DRDO的移動自主機器人系統(MARS)UGV和基于Arjun MK 1A戰斗坦克的UGV是正在籌備中的無人駕駛地面車輛,它們將配備120毫米火炮和本土地理信息系統(INDIGIS)。 印度國防部最近在GenNext人工智能解決方案的活動中展示了在過去三年中采取的人工智能舉措。為了促進國防部門的增長和發展,展示了iDEX初創企業技術,今年開始了第六屆國防初創企業挑戰。

付費5元查看完整內容

2020年11月,英國首相宣布在四年內增加165億英鎊的國防開支。多年期預算解決方案為英國防部提供了中期的確定性,并支持更好的規劃和決策。

本報告反映了資金增加和政府綜合審查的結果,這為英國防部的戰略和政策目標提供了參考。因此,裝備計劃反映了對能力的重大新投資計劃,但也反映了對與戰略方向不太一致的領域的削減。

英國防部正在開展一項激進的計劃,以使其部隊現代化并發展應對未來威脅的能力。

英國防部有一個平衡成本和預算的裝備計劃。從21/22年起的十年間,計劃在裝備采購和支持上花費2380億英鎊,比去年的報告增加了480億英鎊。截至2021年4月,評估設備計劃在十年內有43億英鎊的余額,而上一次報告中的缺口為73億英鎊。

裝備計劃仍在不斷發展。在一個有許多大型計劃的復雜計劃中,預測將隨著交付時間表和成本估算的發展而改變。這對于新的計劃來說尤其如此,因為這些計劃的承包商可能還沒有被選中,或者是那些依賴新技術的計劃。該計劃的交付還存在其他風險,包括該部實現本報告所述效率和節約目標的能力。

因此,英國防部需要有能力管理變革,而不訴諸于較差的性價比措施或削減能力。本報告的第二部分闡述了戰略和杠桿。例如,今年是自2018年以來,第一次在進入新的財政年度時,為設備計劃提供了資金應急措施,而且該部在以后幾年預留了資金,以便在不必削減其他計劃支出的情況下引入新能力。

雖然該計劃的可負擔性存在風險,但議會年度支出框架內的支出不足也是一個現實的風險,英國防部正在制定應急計劃以減輕風險。資本支出的大幅增加和大量新項目的實施將是一個挑戰。我們的工業伙伴的表現將是至關重要的。

在改善該部的財務、商業和項目交付技能和能力方面繼續取得進展,包括改善分析和預測支出的工具,努力提高財務數據的質量,以及建立一支更合格的員工隊伍。進一步的工作正在進行中,以解決該部目前規劃流程中剩余的需要改進的地方。本報告的第三部分介紹了這項工作。

本報告的第四部分,即部門分析,顯示了每個軍事指揮部和管理裝備計劃的組織的主要變化。

付費5元查看完整內容

想象力和對物理原理不斷發展的理解是未來技術能力的唯一界限,當美國陸軍將自己轉變為一支能夠在多域作戰(MDO)中占主導地位的部隊時,技術在建立和保持對敵手的優勢方面的作用就會增加。美國的政府機構包含了一些組織,負責資助、研究、開發并在新技術增長時將其納入部隊。本專著描述了目前正在開發的能力,這些能力將作為下一代概念的基礎,目前只存在于科幻小說中,但現實中卻有可能實現。它概述了這些進展中的技術所提供的潛在機會,以及它們如何能夠融入所有領域的未來作戰環境。

引言

隨著美國國防部(DoD)從大規模戰斗行動概念向多域作戰(MDO)和聯合全域作戰過渡,對跨領域技術整合的重視程度繼續提高。公共和私營部門的研究和開發組織已經從關注具體的能力轉向提供基本概念的創新,正如陸軍優先研究領域中所概述的那樣(見圖1)。雖然這些優先事項是陸軍特有的,但國防部的其他部門也在為技術創新投入大量資源。

圖 1. 美陸軍優先研究領域。美國陸軍,“2019 年陸軍現代化戰略:投資未來”。

2019年正式成立的美國太空部隊(USSF),在其預算撥款中包括89億美元用于發展天基系統技術。 作為領導將新技術納入空間領域當前和未來擬議戰爭概念的軍事機構,USSF占據了一個不斷發展以滿足作戰環境變化的角色。在短期內,其余領域的更多能力將依賴于空間領域的資產,并推動對技術能力和效率的要求呈指數級增長。美國防部或整個美國政府的任何作戰組織都沒有智力或財政能力來單獨管理這一巨大的任務。與私營企業的緊密合作提供了美國所需的優勢,以保持對其對手的相對優勢。

民用技術的軍事應用和軍用技術的民用應用通過連接兩個平行的研究軌道和匯集關鍵資源如突破、設施和資金來加速發展進程。美國的幾家私營公司已經有專門的部門與政府合作,使雙方受益。作為洛克希德-馬丁公司的一部分,臭鼬工廠負責開發標志性的軍用飛機,如F-117夜鷹和SR-71黑鳥,而雷神技術實驗室創造了愛國者導彈,至今仍是國家防空計劃的基石。私營企業和軍方官員之間的持續合作也改善了技術預測,使規劃者有能力建立起納入仍在開發管道中的概念的途徑,甚至在它們準備投入使用之前。

在本專著中,對未來軍事規劃者來說,最后也是最關鍵的難題是如何在中期和長期將預測能力整合到作戰方法中。等到概念經歷了研究、開發、測試、原型設計和規模生產的完整周期后再考慮其效果,會使美國部隊落后于曲線,并處于持續的反應狀態,特別是在與俄羅斯和中國這樣的全球技術大國競爭時。未來的鑄造過程必須是連續的和迭代的。適應性強的計劃,具有圍繞發展中的突然延遲或進展進行調整的靈活性,比依賴線性進展的概念保持優勢。將 "鞭打 "事件的可能性傳達給高級領導人和政治家,以緩和期望,并減少那些不熟悉技術的細微差別的人的摩擦。

研究問題

美國國防機構如何利用并迅速整合技術進步,以在多域作戰框架內獲得并保持競爭優勢?

論題

負責開發下一代全域聯合作戰概念的戰地級規劃人員需要采用一個反復的、持續的規劃過程,考慮到理論上可能的、但目前還沒有的、與所有領域相互依賴的技術,以集中資源分配和從目前到未來作戰環境的未來預測路徑。

方法論

本專著包括四個不同的研究和思考階段,大致遵循軍隊設計方法學的概念。因此,第一部分試圖了解創新技術的現狀,從而了解軌道和軌道外競爭的技術作戰環境。發展存在于整個美國戰爭機器從概念到原型生產的連續過程中,一些進步來自非軍事應用,如通信、金融和體育產業。第二,研究哪些非保密技術有待于相對迫切的實施。即使在起步階段,新概念的簡單應用也會在多領域的戰場上帶來作戰優勢,而來自真實世界的反饋和數據支持進一步的完善。

在已知的物理學和應用科學的限制下,對現在和可能的空間進行了略微緩和但雄心勃勃的介紹,為未來三十年設定了目標桿。計算能力、材料科學和效率的線性增長阻礙了這些崇高目標的實現。然而,如果能力的增長保持過去幾十年的指數增長(見圖2),本專著中所探討的所有概念都是可以掌握的。最后,本研究以一個簡短的未來戰爭的虛構場景作為結束,該場景展示了戰略和作戰能力在戰術領域的整合,加強了它們與未來戰士在MDO的五個現有領域以及未來可能存在的地外領域的相關性。該方案提出了一個可能的理論終結狀態,以在10到15年的規劃范圍內建立一個作戰方法。然而,這很可能只是物理學和想象力極限競賽中的一個快照。

圖2. 隨著時間的推移,技術能力呈指數增長。

本專著主要關注軌道和軌道外的競爭,包括對所探討的能力有重大影響的地面節點和系統。最終的勝利或失敗,即使是在未來的沖突中,也將極大地影響地面人口,即交戰國的公民。他們將掙扎著在戰爭的附帶影響下生存,同時也會受到氣候變化、人口過剩、食物和水匱乏的日益嚴重的影響。

付費5元查看完整內容

2022 年 10 月 11 日,美國陸軍發布了一份綜合數據計劃(ADP),這是一種全軍范圍內改進數據管理以確保陸軍成為以數據為中心的組織的方法。

該計劃是一項為期三年的工作,將改善整個陸軍的數據管理、數據治理和數據分析。作戰任務是陸軍數據計劃的當前重點。ADP 在該任務領域的成果是通過進行必要的更改來確保作戰人員的數據得到正確管理和使用,從而為作戰人員提供優勢。陸軍已經開始對數據管理能力、工具和模型進行原型設計,以實現這一目標。

陸軍首席信息官 Raj Iyer 博士說:“數據以及如何在所有梯隊中整合這些數據以實現真正快速、敏捷的決策,才是真正為陸軍提供其在未來戰爭中所需的競爭優勢的關鍵。”

數據和數據分析將為 2030 年的陸軍提供動力。士兵將需要在正確的時間和正確的地點獲得正確的數據,以便在每個梯隊做出更快、更好的決策——以超越任何對手的思維和步伐。

與早期的軍事行動相比,現在的戰爭范圍更大且范圍不斷擴大。作為聯合全域作戰的一部分,多域作戰是陸軍必須準備并贏得下一場戰斗的地方。這是一個數據豐富的環境。

每個領域都有自己的信息和數據流,一些信息來自開源情報,一些來自天基傳感器,還有一些來自網絡空間。今天的士兵和指揮官需要跨領域的綜合來主宰戰場。

ADP 概述了工作的組織并提供了總體戰略目標。它側重于中期努力,未來將被另一個更新所取代。

通過陸軍數據計劃實現這一決策優勢是陸軍的關鍵目標。

付費5元查看完整內容

美國人工智能國家安全委員會在2021年1月提交給國會的最終報告中建議國防部在2025年前做好人工智能準備。這一建議源于美國同行之間的人工智能軍備競賽,以及近年來在開發用于持續監視、指揮和控制以及武器化代碼的算法方面所取得的進展。雖然美國防部內有旨在利用各部門人工智能的戰略舉措,但戰術能力的發展和部署之間存在嚴重的脫節。作為美國防部的領導機構,聯合人工智能中心負責為美國防部的所有部門創造可行的解決方案,因此,如果所有單位都試圖在2025年之前做好人工智能準備,將不堪重負。本文強調了人工智能發展過程中的一個主要缺陷,并認為應將能力發展授權給空軍機群,并提供必要的資金和資源以真正將人工智能作為一種武器。此外,本文確定了通過基因操縱、智能灰塵納米技術和COVID-19機器學習過程發現成功的人工智能概念,以幫助戰術領導人了解人工智能革命如何幫助他們的特定任務領域,并激勵他們進行自我教育

當涉及到利用人工智能(AI)時,美國空軍還沒有準備好與同行對手作戰,而且美國處于一場未宣布的軍備競賽中,可能會看到對手在未來十年內占據領先地位,因此需要迅速采取行動以扭轉局勢。更令人不安的是,這一威脅并沒有被該領域的戰術專家完全理解,或者即使他們理解,他們也可能沒有意識到(或在官僚上沒有能力)提供競爭所需的能力。對手在人工智能的研究和開發工作中正在取得進展。情報界的專業人士可以做些什么來解決這個問題。本文將嘗試定義中隊可以解決的戰術相關問題,并確定高層行動的不足之處。

人工智能國家安全委員會在其最終報告中建議美國防部采取行動,以便各部門為十年后的競爭做好準備。委員會的核心建議是美國防部遵循兩條努力路線:在2025年前為廣泛的人工智能整合奠定基礎,在2025年前實現軍事人工智能的準備狀態。這些項目在委員會報告發表前幾年就已經在進行了,這表明了對我們為有效競爭而需要的未來現實的戰略理解和承諾。然而,如前所述,開發人工智能支持的能力需要多年時間。為了有廣泛的人工智能整合,各級領導人需要了解人工智能的基本復雜性,以及如何在他們的任務空間內納入人工智能能力,以便他們能夠在2025年之前迎來人工智能革命。所提到的三大舉措從戰略角度縮短了傳感器和射手之間的差距,但處于邊緣的元素如何為這些努力作出貢獻?此外,如何授權給前線,讓他們根據任務的具體需要進行必要的組織、訓練和裝備?本文的目的是介紹人工智能的基本概念,并闡明應采取的行動,以推動空軍進入由人工智能驅動的持久性監視狀態。以下段落將討論智能能力、經過驗證的分析概念,以及展示未來的需求

有幾個定義需要提到,以便在本文的其余部分提供背景,并幫助教育下級領導了解基礎概念。首先,人工智能需要三樣東西:數據集、算法和函數。數據集是一個數值表,算法是計算機用來解析數據的過程,而函數是 "從一組輸入值到一個或多個輸出值的確定性映射 "這些構成人工智能的基礎。總的來說,我們可以把人工智能看作是一類努力,它試圖采用計算機算法,并允許人類以合乎邏輯的方式解釋其結果。作為人工智能類別的一個子集,"機器學習(ML)涉及開發和評估使計算機能夠從數據集中提取(或學習)的算法。DL "專注于創建能夠做出準確的數據驅動決策的大型神經網絡模型",而DL的重點舉措是圍繞著從神經網絡的特定神經元中貢獻特定功能的想法。對DL的理解對指揮官使用人工智能的能力至關重要,因為科幻小說中的想象力會認為這是可能的。

從情報、監視和偵察(ISR)的角度來看,DL可以推動多種數據來源的綜合(例如,多情報融合和分析)。通俗地說,ML可以幫助將幾種情報功能以一種共同的形式結合起來。然而,鑒于適當的數據集、算法和功能(或指揮官的意圖),理論上DL有可能允許對收集的信息進行分析、理解、反駁為錯誤信息、接受為事實、重新分配任務進行額外的收集,或推動新的收集任務,就像人可以做的那樣,但在機器處理信息和得出關于可用數據的結論所需的幾秒鐘內,是自主的。雖然戰略和作戰指揮官正在努力實現一種反映類似于上述DL潛力的能力的最終狀態,但他們仍然必須考慮法律、道德和倫理困境,以及開發完整的人工智能基礎設施的安全性和可靠性。如果戰術領導人不與高級領導人同步利用這些機會,我們注定無法與當前的任務集進行任何形式的整合,并注定無法實現國家安全委員會對人工智能規定的 "到2025年人工智能就緒的軍隊 "的姿態。那么,我們的部隊如何才能變得更有人工智能效率?幸運的是,人工智能驅動的能力、分析技術以及政府和商業案例研究可供探索。

人類基因編輯曾經似乎是難以想象的事情,但通過使用機器學習,它正逐漸成為現實。有關規則間隔短回文重復群(CRISPR)的研究已經進行了多年。作為一種生物技術,人們可以推斷出CRISPR技術的意圖是讓科學家有能力 "改變基因或創造DNA以改變植物、動物或人類。"此外,很難像前國家情報局局長詹姆斯-克拉珀在2016年所做的那樣,將基因編輯作為一種強大的大規模殺傷性武器來爭論。由于基因編輯為裝備精良的對手提供了機會,情報專業人員應該了解有關基因操縱的指標如何通過機器學習表現出來,以達到與美國戰略利益相悖的目的,并幫助指揮官了解他們如何能夠迅速打擊這些威脅。這一現實離所需的科學并不遙遠,如果分析人員知道如何識別必要的因素,他們可以將其納入計算。

如果分析員不能通過DL技術獲得分析所需的數據,也有一些創造性的解決方案來獲得信息。一個提供巨大潛力的創新是被稱為微電子機械系統的微小無線網絡的出現,被親切地稱為智能灰塵。"智能灰塵的大小為立方毫米,包含電源、通信和計算。"這是整個傳感器網絡的一個單一節點。研究還表明,智能灰塵粒子將能夠達到微觀水平,能夠作為傳統醫療護理方法的替代品進行注射。比隱身的尺寸更令人敬畏的是這個設備子集預計能提供的能力。它們可以容納攝像頭、環境傳感器和通信機制,以傳輸數據,并進一步處理。與ML工作、與存儲設備甚至互聯網的連接相結合,人們可以設想出一種檢測概率很低的收集資產,一種維護需求很低的系統,如果計劃得當,這種系統能夠降低前沿部署資產的風險,并限制其進入目標收集區域。

到此為止,本文已經討論了分析師如何將人工智能視為一種威脅,如何將其視為一種收集資產,但分析的過程呢?不妨看看COVID-19大流行病。雖然2020年的大流行病充滿了不確定性,但在大約一年的時間里,病毒被相對快速地分析、追蹤和抗擊。醫學界與DL專家合作,開發了COVID篩查和診斷方法、藥物發現以及最終的疫苗創新。這需要大量的數據輸入,這些數據來自社交媒體、基于文本的數據、病人數據、被稱為omics的科學數據的集合,以及圖像和視頻數據。這個分析系統是一個里程碑,表明人類可以與機器合作,在一個非常有效的時間窗口內從獨特的數據集中創建一個解決方案。應用于多源數據融合和分析的標準情報實踐中,如果有資源,沒有理由相信分析師不能利用DL的能力來制定準確的評估。

正如人們所看到的,人工智能在多個國家安全問題上具有巨大的潛力,如果戰術分析員有能力的話,他們可以將其應用于自己的任務領域。美國防部在人工智能方面最重要的代理人是聯合人工智能中心(JAIC),該中心于2019年2月12日根據行政命令13859的要求啟動,作為國防部人工智能戰略的執行者。有一個組織負責確保人工智能的需求得到滿足是一個有價值的目標,但如果各部門要在2025年之前做好人工智能準備,他們就不可能處理整個國防部的能力發展需求量。各級指揮部需要有一個共同的承諾,以避免因優先事項不一致而錯過機會。就目前的人工智能能力發展進程而言,戰術解決方案是不可用的。

自身的官僚主義阻礙了快速、分散的能力發展。為了確保人工智能驅動的能力,人們必須證明有足夠大的需求需要使用人工智能(如僅用五名分析師對數百萬個數據點進行排序),并通過多層官僚機構提交所謂的 "緊急行動需求",以達到主要司令部的要求。一旦獲得批準,該請求將被轉發到JAIC進行裁決。一旦被裁定并在國防部的其他要求中被優先考慮,可能需要幾個月的時間才能找到一個開發者,并開始解決這個問題。在最好的情況下,這個過程可能會看到從需求提交到開發的6個月周轉期,這是不令人滿意的,如果服務要在2025年之前做好人工智能準備。這不是JAIC的錯,因為他們應該向國防部領導人和國會倡導人工智能,所以各部門有資金從外部尋求人工智能,同時學習如何在人工智能、ML和DL能力發展方面變得靈巧。筆者建議領導們認真考慮賦予機翼必要的預算、培訓要求,并與經批準的開發者名單(由全軍委員會批準)協調,以追求人工智能的努力。這項建議并沒有將JAIC完全從流程和能力發展中移除,因為該組織將繼續承擔正式的領導地位,制定政策并獲取最佳實踐,以便在整個國防部共享。

人工智能革命就在這里。本文確定了人工智能為部隊的每項任務提供的機會的縮影。人工智能、ML和DL為可能的事情打開了大門,并且應該讓ISR分析員以不同的方式思考問題及其解決方案。從基因突變到自動分析再到自主武器,可能性只限于可用的數據--或如何解釋可用數據。美國的對手已經具有威脅性,并且很可能在未來十年內增加。國家安全不僅需要提高對人工智能的認識,還需要開發和整合基于人工智能的武器系統。依靠簽約組織來開發機器算法,在未來是不可持續的。必須根據任務的需要調整任務算法,否則就會在一系列的能力中遭受失敗。

付費5元查看完整內容

小型無人駕駛飛機系統(sUAS)的指數式增長為美國防部帶來了新的風險。技術趨勢正極大地改變著小型無人機系統的合法應用,同時也使它們成為國家行為者、非國家行為者和犯罪分子手中日益強大的武器。如果被疏忽或魯莽的操作者控制,小型無人機系統也可能對美國防部在空中、陸地和海洋領域的行動構成危害。越來越多的 sUAS 將與美國防部飛機共享天空,此外美國對手可能在美國防部設施上空運行,在此環境下美國防部必須保護和保衛人員、設施和資產。

為了應對這一挑戰,美國防部最初強調部署和使用政府和商業建造的物資,以解決無人機系統帶來的直接風險;然而,這導致了許多非整合的、多余的解決方案。雖然最初的方法解決了近期的需求,但它也帶來了挑戰,使美國防部跟上不斷變化問題的能力變得復雜。為了應對這些挑戰,美國防部需要一個全局性的戰略來應對無人機系統的危害和威脅。

2019年11月,美國防部長指定陸軍部長(SECARMY)為國防部反小型無人機系統(C-sUAS,無人機1、2、3組)的執行機構(EA)。作為執行機構,SECARMY建立了C-sUAS聯合辦公室(JCO),該辦公室將領導、同步和指導C-sUAS活動,以促進整個部門的統一努力。

美國防部的C-sUAS戰略提供了一個框架,以解決國土、東道國和應急地點的sUAS從危險到威脅的全過程。國防部的利益相關者將合作實現三個戰略目標:(1)通過創新和合作加強聯合部隊,以保護國土、東道國和應急地點的國防部人員、資產和設施;(2)開發物資和非物資解決方案,以促進國防部任務的安全和可靠執行,并剝奪對手阻礙實現目標的能力;以及(3)建立和擴大美國與盟友和合作伙伴的關系,保護其在國內外的利益。

美國防部將通過重點關注三個方面的工作來實現這些目標:準備好部隊;保衛部隊;和建立團隊。為了準備好部隊,國防部將最大限度地提高現有的C-sUAS能力,并使用基于風險的方法來指導高效和快速地開發一套物質和非物質解決方案,以滿足新的需求。為了保衛部隊,國防部將協調以DOTMLPF-P考慮為基礎的聯合能力的交付,并同步發展作戰概念和理論。最后,作為全球首選的軍事伙伴,國防部將通過利用其現有的關系來建設團隊,建立新的伙伴關系,并擴大信息共享,以應對新的挑戰

通過實施這一戰略,美國防部將成功地應對在美國本土、東道國和應急地點出現的無人機系統威脅所帶來的挑戰。在這些不同操作環境中的指揮官將擁有他們需要的解決方案,以保護國防部人員、設施、資產和任務免受當前和未來的無人機系統威脅。

付費5元查看完整內容

2022年6月15日,英國國防部在倫敦科技周人工智能峰會上發布了《國防人工智能戰略》,旨在“雄心勃勃、安全和負責任地”使用人工智能的戰略和相關政策。本戰略支持創建新的國防人工智能中心(DAIC),以提供前沿技術樞紐,支撐英軍使用和創新相關技術。本戰略概述了以下內容:一是在國防中使用人工智能的新倫理原則;二是人工智能在國防部加強安全和現代化的地位和應用;三是考慮通過人工智能研究、開發和實驗,通過新概念和尖端技術徹底改變武裝技術能力,并有效、高效、可信地向戰場交付最新裝備。該戰略將將成為英國人工智能戰略的關鍵要素,并加強國防在政府層面通過科學和技術獲取戰略優勢的核心地位。

圖 英國國防部發布《國防人工智能戰略》

(本文根據原文編譯整理,僅供交流參考,觀點不代表本機構立場。)

英國國防部人工智能戰略的愿景是:以英國規模為標準,成為世界上最有效、最高效、最可信和最具影響的國防組織:

有效——提供戰場制勝能力和支持,以及英國與盟友關于人工智能生態系統合作的能力;

高效——通過創新使用技術交付能力,進行作戰并實現生產力效應;

可信——基于人工智能系統的安全性和可靠性受到公眾、盟友和人民的信任,根據英國核心價值觀合法合規地使用人工智能;

影響——積極參與合作和引領人工智能技術的全球發展和管理趨勢;

**、背景和必要性******

英國國防部《綜合評估(2021)》強調指出,國家在人工智能領域的卓越表現是確保英國在2030年前成為“科技超級大國”的核心。英國國防部《國家人工智能戰略(2021年)》指出,人工智能在改寫整個行業的規則、推動經濟大幅增長和改變生活的所有領域方面具有巨大潛力。英國國防部《綜合作戰概念 (2020年) 》描述了無處不在的信息和快速的技術變革如何改變了戰爭的性質。在軍事作戰的各個領域,沖突正變得愈發復雜。新技術產生大量數據,解鎖新的威脅和漏洞,并通過如蜂群無人機、高速武器和先進網絡攻擊等下一代先進能力擴大潛在攻擊的規模。

人工智能技術以及其影響可能會極大地縮短決策時間,使人類理解負擔加重,而且這些在現代戰場中需要快速做出反應。正如《國防司令部文件(2021)》所指出的,“未來沖突的勝負可能取決于所采用人工智能解決方案的速度和效率”。因此信息作戰變得越來越重要。簡而言之,當代國防正在發生一場根本性的劇變,與人工智能相關的戰略競爭正在加劇,因此必須迅速、主動和全面應對。

本戰略闡述了英國將如何應對這一重大戰略挑戰,其應該引起英國國防部的重視,并參與部隊發展和國防轉型,英國國防部需要明確其機構與人工智能相關的要素并采取相應行動,以在后續執行和交付方面發揮關鍵作用。

三、發展途徑

**一是英國國防部需要轉變為“人工智能就緒”的組織。**具體措施是:1)推動文化、技能和政策變革,培訓領導人,提高人員技能,并加強國防人工智能和自主部門的組織能力;2)創建國防人工智能技能框架和新的人工智能職業發展和晉升路徑;3)將數據視為關鍵戰略資產進行管理和應用,建設新的數字主干網絡和國防人工智能中心。

**二是在速度和規模上采用和利用人工智能,以獲得防御優勢。**具體措施是:1)將人工智能視為能力戰略和部隊發展過程中戰略優勢的關鍵來源;2)短期路線采用成熟的數據科學、機器學習和先進的計算統計技術提升效果和生產力,長期路線進行尖端人工智能技術研發;3)采用多學科多技術將人類認知、創造力和責任與機器速度分析能力相結合以評估人工智能系統的脆弱性和威脅;4)與盟友和伙伴密切合作開發創新能力解決方案以應對共同的挑戰。

**三是推動和支持英國國防和安全人工智能生態系統。**具體措施是:1)通過英國工業和學術人工智能的雄厚基礎以及政府的支持建立信心并明確要求;2)視人工智能生態系統為戰略資產,消除行業壁壘,建立更具活力和一體化的伙伴關系;3)促進行業聯系建立新的國防和國家安全人工智能網絡,促進人才交流和共創,鼓勵業界投資國防相關的人工智能研發,并簡化國防數據和資產的獲取。4)促進中小企業,使監管方法現代化,支持業務增長并最大限度地利用國防人工智能相關知識產權促進相關技術商業化。

**四是塑造全球人工智能發展,以促進安全、穩定和民主價值觀。**具體措施是:1)按照英國的目標和價值觀塑造人工智能的發展,促進倫理方法,并影響符合民主價值觀的全球規范和標準;2)促進安全與穩定,確保英國的技術進步得到適當保護,同時探索建立信心和將軍事人工智能使用風險降至最低的機制;3)考慮可能出現的極端甚至事關生存的風險,并積極與盟友和合作伙伴接觸,制定未來的安全政策,尋求建立對話,以降低戰略錯誤、誤解和誤判的風險。

四、優先效果

通過采用人工智能技術實現本戰略目標,使英國武裝部隊實現現代化,并迅速從工業時代的聯合部隊過渡到敏捷信息時代的綜合部隊,國防部將受益于效率和生產率的提高,其期望的優先效果如下:

決策優勢:通過更充足、更分散的決策制定和基于威脅的機器快速響應,提高作戰節奏和靈活性。

效能:通過智能自主提高靈活性、效能和可用性。

解鎖新能力:通過開發新的作戰方式確保作戰優勢,增強軍事效果,保護人民免受傷害。

武裝部隊:減輕部隊負擔,并將人類決策集中在基于獨創性、背景思維和判斷力的高價值職能上。

五、戰略綜述總結****

**六、**結束語

人工智能必須成為未來必不可少的技術,其也促使著英國國防部改變對現代技術的看法,調整其技術方向和戰略需求,全面擁抱世界領先的人工智能解決方案和能力,推進其國防業務中觀念、文化、規劃和交付方面的持久變化,并將其作為國防戰略融入國防領域,以確保英國軍隊成為敏捷信息時代的綜合部隊。

編譯:船の心

END

世界軍事電子領域2021年度十大進展

軍事電子領域

付費5元查看完整內容
北京阿比特科技有限公司