亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

圖神經網絡(GNNs)最近在圖學習方面取得了重大進展。盡管GNN具有豐富的表示能力,但對于大規模的社會建模應用來說,GNN的開發仍然相對不足。在線社交平臺中普遍存在的一種應用是好友推薦:平臺向用戶推薦其他候選用戶,以提高用戶的聯系性、留存率和參與度。然而,在大型社交平臺上建模這樣的用戶-用戶互動帶來了獨特的挑戰: 這些圖表通常有重尾度分布,其中很大一部分用戶是不活躍的,并且結構和參與信息有限。此外,用戶與不同的功能進行交互,與不同的組進行交流,并具有多方面的交互模式。我們研究了用于好友推薦的GNN應用,就我們所知,為這項任務提供了GNN設計的首次研究。為了充分利用平臺內異構用戶行為的豐富知識,我們將好友推薦設計為具有多模式用戶特征和鏈接傳播特征的多層面好友排名。我們提出了一個神經結構,GraFRank,它是精心設計的,從多種用戶特征形態和用戶-用戶交互中學習表達用戶表示。具體而言,GraFRank通過模態特定的鄰居聚合器處理模態同質性的異質性,并通過交叉模態關注學習非線性模態相關性。我們在兩個數百萬用戶的社交網絡數據集上進行了實驗,這些數據集來自領先和廣泛流行的移動社交平臺Snapchat,在候選檢索(30%的MRR)和排名(20%的MRR)任務上,GraFRank的表現優于一些最先進的方法。此外,我們的定性分析表明,低活躍度和低級別用戶的關鍵人群獲得了顯著收益。

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

雙曲空間提供了豐富的設置來學習具有優越屬性的嵌入,這些屬性在計算機視覺、自然語言處理和計算生物學等領域得到了利用。最近,有人提出了幾種雙曲線方法來學習推薦設置中的用戶和項目的魯棒表示。但是,這些方法不能捕獲推薦領域中通常存在的高階關系。另一方面,圖卷積神經網絡(GCNs)則擅長通過對局部表示應用多層聚合來捕獲更高階的信息。在本文中,我們提出了一個用于協同過濾的雙曲線GCN模型,以一種新穎的方式將這些框架結合起來。我們證明了我們的模型可以在邊緣損失的情況下有效學習,并證明了雙曲空間在邊緣設置下具有理想的性質。在測試時,我們的模型使用雙曲距離來進行推理,雙曲距離保留了學習空間的結構。我們對三個公共基準進行了廣泛的實證分析,并與一組大型基線進行比較。我們的方法實現了非常具有競爭力的結果,并超過領先的基線,包括歐幾里德GCN對等物。我們進一步研究了雙曲線嵌入的性質,并表明它們對數據提供了有意義的見解。該工作的完整代碼可以在這里://github.com/layer6ai-labs/HGCF。

付費5元查看完整內容

隨著新聞文章的信息爆炸,個性化的新聞推薦因為能夠讓用戶快速找到自己感興趣的文章,已經越來越受到業界和學術界的關注。現有的新聞推薦方法主要包括基于用戶-新聞直接交互的協同過濾方法和基于用戶歷史閱讀內容特征的基于內容的方法。雖然這些方法取得了良好的性能,但由于大多數方法無法廣泛利用新聞推薦系統中的高階結構信息(例如U-D-T-D-U隱含相似的用戶傾向于閱讀相似的新聞文章信息),存在數據稀疏問題。在本文中,我們提出構建一個異質圖來明確地建模用戶、新聞和潛在主題之間的交互。附加的主題信息將有助于捕捉用戶的興趣,并緩解用戶-新聞交互的稀疏性問題。然后我們設計一個新穎的異質圖神經網絡學習用戶和新聞表示,通過在圖上傳播特征表示來編碼高階結構信息。通過異質圖完整的用戶點擊歷史學習到的用戶嵌入能夠捕獲用戶的長期興趣。此外,我們還設計了融合注意力的LSTM模型使用最近的閱讀歷史來建模用戶最近的短期興趣。

付費5元查看完整內容

點擊率(CTR)預測在推薦系統和在線廣告中起著至關重要的作用。這些應用程序中使用的數據是多字段類別數據,其中每個特征屬于一個字段。字段信息被證明是重要的,在他們的模型中有一些考慮字段的工作。在本文中,我們提出了一種新的方法來有效和高效地建模場信息。該方法是對FwFM的直接改進,被稱為場矩陣分解機(FmFM,或FM2)。在FmFM框架下,我們對FM和FwFM提出了新的解釋,并與FFM進行了比較。除了對交叉項進行修剪外,我們的模型還支持特定領域的可變維度的嵌入向量,這是一種軟修剪。在保持模型性能的同時,我們還提出了一種有效的最小化維數的方法。FmFM模型還可以通過緩存中間向量來進一步優化,它只需要數千次浮點運算(FLOPs)就可以做出預測。實驗結果表明,該算法的性能優于復雜的FFM算法。FmFM模型的性能也可以與DNN模型相媲美,DNN模型在運行時需要更多FLOPs 。

//www.zhuanzhi.ai/paper/39df3ac3e3acb641f86294a4d6acb39f

付費5元查看完整內容

圖卷積網絡(GCNs)在推薦方面表現出巨大的潛力。這歸功于他們通過利用來自高階鄰居的協作信號來學習良好的用戶和項目嵌入的能力。與其他GCN模型一樣,基于GCN的推薦模型也存在著臭名昭著的過平滑問題——當疊加更多層時,節點嵌入變得更加相似,最終無法區分,導致性能下降。最近提出的LightGCN和LR-GCN在一定程度上緩解了這一問題,但是我們認為他們忽略了推薦中出現過平滑問題的一個重要因素,即在圖卷積操作中,用戶的嵌入學習也可以涉及到與用戶沒有共同興趣的高階鄰域用戶。因此,多層圖卷積會使不同興趣的用戶具有相似的嵌入性。在本文中,我們提出了一種新的興趣感知消息傳遞GCN (IMP-GCN)推薦模型,該模型在子圖中進行高階圖卷積。子圖由具有相似興趣的用戶及其交互項組成。為了形成子圖,我們設計了一個無監督的子圖生成模塊,該模塊利用用戶特征和圖結構來有效識別具有共同興趣的用戶。為此,我們的模型可以避免將高階鄰域的負面信息傳播到嵌入學習中。在三個大規模基準數據集上的實驗結果表明,我們的模型可以通過疊加更多的層來獲得性能的提高,顯著優于目前最先進的基于GCN的推薦模型。

付費5元查看完整內容

序列推薦(SR)是根據用戶當前訪問的物品向其準確推薦物品列表。當新用戶不斷地進入現實世界時,一個關鍵的任務是要有歸納SR,它可以在不需要再訓練的情況下產生用戶和物品的嵌入。鑒于用戶-項目交互可能非常稀疏,另一個關鍵任務是擁有可遷移的SR,它可以將從一個具有豐富數據的領域派生的知識遷移到另一個領域。在這項工作中,我們的目標是呈現整體SR,同時適應傳統、歸納和可遷移的設置。我們提出了一種新的基于深度學習的模型——關系時間注意力圖神經網絡(RetaGNN),用于整體SR。首先,為了具有歸納和可遷移的能力,我們在從用戶-物品對中提取的局部子圖上訓練一個關注關系的GNN,其中可學習權矩陣是關于用戶、物品和屬性之間的各種關系,而不是節點或邊。第二,長期和短期用戶偏好的時間模式被提出的序列自注意機制編碼。第三,為了更好地訓練RetaGNN,設計了一個關系感知的正則化項。在MovieLens、Instagram和Book-Crossing數據集上進行的實驗表明,RetaGNN可以在常規、歸納和可遷移的設置下優于最先進的方法。推導出的注意力權重也為模型帶來了可解釋性。

//www.zhuanzhi.ai/paper/7fd9c00d1088c2875ac0567445b5d604

付費5元查看完整內容

情感在發現網絡虛假新聞中扮演著重要的角色。在利用情感信號時,現有的方法主要是利用發布者所傳達的新聞內容的情感(即發布者情感)。然而,虛假新聞往往是為了喚起人們的高喚醒或激活人們的情緒,像病毒一樣傳播,因此,新聞評論引起的群眾情緒(即社會情緒)是不可忽視的。此外,還需要探索出版者情緒與社會情緒(即雙重情緒)之間是否存在關系,以及雙重情緒如何在假新聞中出現。在本文中,我們提出了雙重情感特征來挖掘雙重情感及其之間的關系,用于虛假新聞的檢測。我們設計了一個通用的范例,將它插入到任何現有的檢測器作為增強。在三個真實數據集上的實驗結果表明了該特征的有效性。

//www.zhuanzhi.ai/paper/acb14d78d2e77317043f18024f4c748c

付費5元查看完整內容

圖神經網絡具有很強的圖表示學習能力,在各種實際應用中取得了巨大的成功。GNN通過聚集和轉換節點鄰域內的信息來探索圖的結構和節點特征。但是,通過理論和實證分析,我們發現GNN的聚集過程會破壞原始特征空間中的節點相似性。在許多場景中,節點相似性起著關鍵作用。因此,本文提出的SimP-GCN框架可以在利用圖結構的同時有效地保持節點相似性。具體地說,為了平衡圖結構和節點特征信息,我們提出了一種自適應地集成圖結構和節點特征的特征相似性保持聚合。此外,我們使用自監督學習來顯式地捕捉復雜特征之間的相似性和差異性關系。在包括3個同選型圖和4個異選型圖的7個基準數據集上驗證了SimP-GCN的有效性。結果表明SimP-GCN優于代表性基線。進一步的研究顯示了所提議的框架的各種優點。

//arxiv.org/abs/2011.09643

付費5元查看完整內容
北京阿比特科技有限公司