基于激光的通信和武器系統是維持海軍作戰準備和主導地位的組成部分。也許對這些系統來說,最頑固的障礙之一就是大氣層。這在近海環境中尤其如此。大氣層的湍流干擾了激光束的傳播,因為它們會受到空氣折射率的波動。當光束穿過大氣層時,目標上的輻照度會有損失,光束擴散,光束漂移,以及傳播中的激光束的強度波動。折射率結構參數,是對沿途光學湍流強度的測量。如果
能在工作環境中容易和有效地確定,對激光器性能的預測就會大大加強。本研究的目標是利用圖像質量特征與機器學習技術相結合,準確預測折射率結構參數
。為了構建折射率結構參數的機器學習模型,對一系列的圖像質量特征進行了評估。選擇了七個圖像質量特征,并應用于34,000次單獨曝光的圖像數據集。這個數據集,以及來自閃爍儀的獨立測量的
值作為監督變量,然后被用來訓練各種機器學習模型。本研究特別關注的模型是廣義線性模型、袋式決策樹、提升決策樹以及隨機森林模型。雖然可用的訓練數據的數量對模型性能有很大影響,但研究結果表明,圖像質量可以用來協助預測
,而且機器學習模型的性能優于線性模型。
關鍵詞:光學湍流、機器學習、近海環境和無參照物成像
網絡威脅變得越來越普遍。最近備受矚目的入侵事件表明,秘密的的網絡空間效應如何能夠挑戰21世紀的國際安全戰略格局。每個經濟部門和人類生活的各個方面對數字技術的日益依賴強烈地表明,這一趨勢將繼續下去。北約盟國正以日益強大的網絡安全和防御來應對,特別是當它與軍事系統、平臺和任務相交時。
對提高復原力和穩健性的要求加速了對人工智能技術的探索和采用,即使計算機能夠模仿人類智能的技術,用于網絡防御。深度機器學習(DML)就是這樣一種最先進的技術,它在網絡安全以及許多其他應用領域都表現出了相當大的潛力。深度機器學習可以增強網絡彈性,其防御措施隨著時間的推移隨著威脅的變化而變化,并減少人類專家手動數據分析的總體負擔。深度機器學習可以促進更快的響應,特別是在充分和足夠的訓練下。一些可能的考慮包括在建立或生成數據模型開發中的對抗性樣本。
本技術報告在整合北約范圍內深度機器學習(DML)的網絡防御應用知識方面采取了初步措施。它進一步確定了目前的解決方案和軍事需求之間的差距,并相應地構建了DML在軍事領域有前途的網絡防御應用的追求。研究小組以技術報告的體現為核心,從惡意軟件檢測、事件管理、信息管理、漏洞管理、軟件保障、資產管理、許可證管理、網絡管理和配置管理的角度審查國家標準和技術研究所的安全準則。
該報告研究了DML的復雜效用、實際實施以及公開的挑戰。研究工作組由數據科學、機器學習、網絡防御、建模與仿真和系統工程等領域的專家組成。研究人員和從業人員考慮了數據的聚集、數據的特征、共享數據的需要以及數據模型的共享,或其生成者。這些因素,包括如何處理、訓練、訪問數據,以及相關的技術,如遷移或聯邦學習,也被考慮在內。
網絡威脅越來越先進,對手更具戰略性,可以從世界任何地方表現出威脅。今天的對手擁有資源和時間,只要有時間和資源,就可以輕松地發動破壞性攻擊。
不同格式的數據的可用性和豐富性也有助于為對手創造一種靈活性,如果沒有數據的涌入,這種靈活性是不存在的[1]。由于對手很容易獲得工具和技術,所有形式的大數據的可用性,網絡攻擊達到了前所未有的高度,北約國家必須通過緩解工具和技術來增強其戰略地位,以減輕對軍事系統、平臺和任務的網絡威脅[2]。
緩解技術將包括最新和最偉大的技術,以創造彈性,及時發現和應對攻擊,并在平臺發生任何損害或損害之前恢復。
世界正在變得更加數字化[3],軍隊也不例外。隨著先進工具的出現和技術的數字化,研究人員必須做好準備,研究防御性技術,以防止軍事系統和平臺的破壞和退化。
RTG計劃探索深度機器學習(DML)的應用,以實施和加強軍事戰略網絡地位,并創建一個防御,不僅要解決今天的威脅,還要解決未來可能出現的威脅,如增加的處理能力,先進的工具和數據操作技術。
擬議的 "IST 163 - 網絡防御深度機器學習"活動的主要目標是鞏固全北約在DML和網絡防御領域的知識,確定民用解決方案和軍事需求之間的差距,并與其他北約國家合作,使用數據處理,共享數據和模型,并追求將最有前途的技術和應用轉移到軍事領域,同時堅持標準,確保數據與所選技術相匹配。
RTG致力于發現北約各國的DML技術,揭示數據是如何處理和適合神經網絡的,并確定各國在這些技術中的差距,以比較最佳的解決方案,這些解決方案有可能被其他可能沒有潛力或技術不先進的國家采用。
這項研究為各國創造了一個機會,以全面審視DML在網絡防御方面的能力和差距,并研究以最先進的DML方法加強網絡防御的手段。
在為DML創建數據時,來自不同背景的研究人員將共同支持反映數據效用和模型的最佳情況的用例,并努力確保數據最適合于研究。考慮到來自多種背景的擬議數據的動態,對數據的整理和消毒以適應模型,將創造一個機會,看到不同類型的數據對DML模型的各方面作用。
將特別關注術語與北約其他倡議中的相關活動的一致性。因此,它將面向來自人工智能、機器學習、建模和模擬以及系統工程等領域的多學科受眾。
工作組的工作將集中在機器學習上,包括深度學習方面。
網絡防御影響軍事行動的所有領域,包括通信、行動和后勤。隨著威脅的復雜化和對手變得更加創新,傳統的基于簽名的檢測威脅的方法很容易被規避。現有的防御措施無法跟上新的漏洞、漏洞和攻擊載體出現的規模。顯然,有必要開發自動和數據驅動的防御系統,其模型適合于軍事系統和聯盟操作環境。
減少數據分析的負擔和擴展到多樣化和聯合環境的網絡防御技術,現在和將來都對軍事行動相當重要。在這一類別中,一個有前途的領域是機器學習(ML)的應用,即研究和開發沒有預編程指令的模式識別方法來解釋數據。Theobold[1]明確闡述了機器學習的效用:
在20世紀上半葉的20年里,美國的武裝部隊是數字計算機發展的唯一最重要的驅動力[2]。隨著商業計算機行業開始形成,武裝部隊和國防工業成為其主要市場。在其發展過程中,人類對所有的軟件進行編程,并作為計算和算法進步的主要驅動力。面向對象的編程使軟件可以重復使用,并擴大了其規模。后來,互聯網使軟件民主化。隨著深度機器學習(DML)的出現,這一格局正準備再次發生根本性的轉變,這是ML的一個子集。DML技術通過訓練描述輸入和輸出之間關系的模型,使計算機能夠 "編寫 "自己的軟件。這一突破已經在加速每個行業的進步。研究表明,深度學習將在未來20年內使全球股票市場增加近50%[3]。
網絡防御也不例外,這是個趨勢。20世紀后半葉,社會和軍事應用中越來越多地采用數字技術,而21世紀頭幾十年的常規數據泄露事件,說明了一個有彈性的網絡空間的重要性。人工智能(AI)的應用,包括用于網絡防御的ML和DML,已經在國防研究論壇上獲得了相當多的曝光[4]、[5]、[6]、[7]、[8]、[9]、[10]、[11]。這些應用具有相當大的軍事前景,特別是涉及到漏洞發現、威脅識別、態勢感知和彈性系統。
網絡防御是北約合作安全核心任務的組成部分[12]。2002年,盟國領導人首次公開承認需要加強防御網絡攻擊的能力[13]。此后不久,在2003年,他們建立了北約計算機事件響應能力(NCIRC),這是一個由 "第一響應者 "組成的團隊,負責預防、檢測和響應網絡事件。從那時起,網絡領域的重要性和關注度都在不斷增加。2008年,北約建立了合作網絡防御卓越中心,目前由25個贊助國組成,其任務是加強北約盟國和合作伙伴的能力、合作和信息共享[14]。2014年,盟國領導人宣布,網絡攻擊可能導致援引北約創始條約中的集體防御條款。2016年,盟國承認網絡空間是軍事行動的一個領域。盟國領導人進一步承諾,將加強其國家網絡和基礎設施的復原力作為優先事項,并申明國際法適用于網絡空間[15]。雖然北約的主要重點是保護聯盟擁有和運營的通信和信息系統,但它規定了簡化的網絡防御治理,協助盟國應對網絡攻擊,并將網絡防御納入作戰計劃,包括民事應急計劃。北約清楚地認識到,其盟國和合作伙伴受益于一個可預測和安全的網絡空間。
對北約安全的網絡威脅越來越頻繁,越來越復雜,越來越具有破壞性和脅迫性。聯盟必須準備好保衛其網絡和行動,以應對它所面臨的日益復雜的網絡威脅。因此,盟軍的理論指出,網絡防御是影響未來軍事力量平衡的六個關鍵因素之一[16]。北約的政策進一步將網絡防御的追求定格在六個關鍵目標上[17]。
將網絡防御的考慮納入北約的結構和規劃過程,以執行北約的集體防御和危機管理的核心任務。- 重點關注北約及其盟國的關鍵網絡資產的預防、恢復和防御。
發展強大的網絡防御能力,集中保護北約自己的網絡。
為對北約核心任務至關重要的國家網絡的網絡防御制定最低要求。
提供援助,以實現最低水平的網絡防御,減少國家關鍵基礎設施的脆弱性。
與合作伙伴、國際組織、私營部門和學術界接觸。
最近的研究闡述了這些目標是如何實現的[18]。盡管其成員負責保護自己的網絡空間部分,但北約在促進互動、保持態勢感知以及隨著危機或沖突的發展將資產從一個盟友或戰術情況轉移到另一個盟友方面發揮著關鍵作用。它進一步倡導多國部隊之間的高度互操作性,包括聯合收集、決策和執行盟國在網絡空間的行動要素[19]。2013年,北約防御規劃進程開始向其盟國分配一些集體的最低能力,以確保一個共同的基線,包括國家網絡應急小組(CERT)、加密、教育、培訓和信息共享。在網絡空間以及其他領域,北約在建立國際規范和行為準則方面發揮了不可或缺的作用,促進了對不可接受的行為、譴責、制裁和起訴的明確性。
美國國家網絡戰略[20]宣稱有責任捍衛美國利益免受網絡攻擊,并威懾任何試圖損害國家利益的對手。它進一步確認了為實現這一目標而開發的網絡空間行動能力。美國軍事理論將網絡行動定義為一系列行動,以防止未經授權的訪問,擊敗特定的威脅,并拒絕對手的影響[21]。在本報告的背景下,有兩個關鍵功能非常突出。
網絡空間安全(Cybersecurity),是指在受保護的網絡空間內采取的行動,以防止未經授權訪問、利用或破壞計算機、電子通信系統和其他信息技術,包括平臺信息技術,以及其中包含的信息,以確保其可用性、完整性、認證、保密性和不可抵賴性。
而網絡空間防御(Cyber Defence)則是指在受保護的網絡空間內采取的行動,以擊敗已經違反或有可能違反網絡空間安全措施的特定威脅,包括檢測、定性、反擊和減輕威脅的行動,包括惡意軟件或用戶的未經授權的活動,并將系統恢復到安全配置。
盡管有區別,但網絡安全和網絡防御都需要對系統和安全控制進行廣泛的持續監測。聯合軍事理論進一步承認了整合能力的挑戰,其中包括。
民族國家的威脅,可以獲得其他行為者無法獲得的資源、人員或時間。一些國家可能利用網絡空間能力來攻擊或進行針對美國及其盟友的間諜活動。這些行為者包括傳統的對手;敵人;甚至可能是傳統的盟友,并可能外包給第三方,包括幌子公司、愛國的黑客或其他代理人,以實現其目標。
非國家威脅包括不受國家邊界約束的組織,包括合法的非政府組織(NGO)、犯罪組織和暴力極端主義組織。非國家威脅利用網絡空間籌集資金,與目標受眾和對方溝通,招募人員,計劃行動,破壞對政府的信任,進行間諜活動,并在網絡空間內直接開展恐怖行動。他們也可能被民族國家用作代理人,通過網絡空間進行攻擊或間諜活動。
個人或小團體的威脅是由可獲得的惡意軟件和攻擊能力促成的。這些小規模的威脅包括各種各樣的團體或個人,可以被更復雜的威脅所利用,如犯罪組織或民族國家,往往在他們不知情的情況下,對目標實施行動,同時掩蓋威脅/贊助者的身份,也創造了合理的推諉性。
事故和自然災害可以擾亂網絡空間的物理基礎設施。例子包括操作失誤、工業事故和自然災害。從這些事件中恢復可能會因為需要大量的外部協調和對臨時備份措施的依賴而變得復雜。
匿名性和歸屬性。為了啟動適當的防御反應,網絡空間威脅的歸屬對于被防御的網絡空間以外的任何行動都是至關重要的,而不是授權的自衛。
地域。防御性反應的累積效應可能超出最初的威脅。由于跨區域的考慮,一些防御行動被協調、整合和同步化,在遠離被支持的指揮官的地方集中執行。
技術挑戰。使用依賴利用目標中的技術漏洞的網絡空間能力可能會暴露其功能,并損害該能力對未來任務的有效性。這意味著,一旦被發現,這些能力將被對手廣泛使用,在某些情況下,在安全措施能夠被更新以考慮到新的威脅之前。
私營企業和公共基礎設施。國防部的許多關鍵功能和行動都依賴于簽約的商業資產,包括互聯網服務提供商(ISP)和全球供應鏈,國防部及其部隊對這些資產沒有直接的權力。
全球化。國防部的全球業務與其對網絡空間和相關技術的依賴相結合,意味著國防部經常從外國供應商那里采購任務所需的信息技術產品和服務。
緩解措施。國防部與國防工業基地(DIB)合作,以加強駐扎在DIB非機密網絡上或通過DIB非機密網絡的國防部項目信息的安全性。
2018年國防戰略[22]對美國軍隊在各個領域--空中、陸地、海上、太空和網絡空間--都表示嚴重關切。它進一步承認,當前的國際安全格局受到快速技術進步和戰爭性質變化的影響。為了應對這一挑戰,美國國防部確定了現代化的優先事項,其中包括人工智能/ML、自主性和網絡。網絡是一個獨特的作戰領域,對需要加強指揮、控制和態勢感知以及自主行動的軍事行動來說,具有重大挑戰和潛在的飛躍能力。
2019年聯邦網絡安全研究與發展戰略計劃[23]闡明了用人工智能(AI)模型、算法以及其他領域的人與AI互動來增強網絡安全研究與發展(R&D)的必要性。將人工智能技術納入網絡自主和半自主系統,將有助于人類分析員在自動監測、分析和應對對手攻擊方面以更快的速度和規模運作。這方面的應用包括部署智能自主代理,在日益復雜的網絡戰斗空間中檢測、響應和恢復對手的攻擊。預期成果包括預測固件、軟件和硬件中前所未有的安全漏洞;根據學習到的互動歷史和預期行為,從攻擊場景中持續學習和建模;利用通信模式、應用邏輯或授權框架,防御針對人工智能系統本身的攻擊;半/完全自主的系統減少了人類在網絡操作中的作用。
2020年,美國人工智能國家安全委員會[24]強調了人工智能技術對經濟、國家安全和人類福祉的潛在影響。它指出,美國的軍事對手正在整合人工智能概念和平臺,以挑戰美國幾十年來的技術優勢。人工智能加深了網絡攻擊和虛假信息運動帶來的威脅,我們的對手可以利用這些威脅來滲透社會,竊取數據,并干擾民主。它明確宣稱,美國政府應該利用人工智能的網絡防御措施,以防止人工智能的網絡攻擊,盡管它們本身并不能保衛本質上脆弱的數字基礎設施。
根據北約合作網絡防御卓越中心的數據,至少有83個國家已經起草了國家網絡安全戰略[25]。此外,所有30個北約成員國都發布了一份或多份治理文件,反映了保衛網絡環境的戰略重要性。這種堅定的姿態源于過去20年里發生的越來越普遍和有影響的網絡攻擊。在本節中,我們研究了影響北約盟國的高調入侵的簡短歷史,培養了當前的氣氛,并強調了對更好的網絡保護、威懾、檢測和反應技術的需求。
2003年,一系列協調攻擊破壞了美國的計算機系統。這些攻擊被美國政府命名為 "泰坦雨",持續了三年,導致政府機構、國家實驗室和美國國防承包商的非機密信息被盜。隨后的公開指控和否認,源于準確檢測和歸因于網絡攻擊的困難,成為網絡空間中新出現的國際不信任的特征。
2007年,愛沙尼亞成為一場持續二十二天的政治性網絡攻擊活動的受害者。分布式拒絕服務攻擊導致許多商業和政府服務器的服務暫時下降和喪失。大多數的攻擊是針對非關鍵性服務,即公共網站和電子郵件。然而,有一小部分集中在更重要的目標,如網上銀行和域名系統(DNS)。這些攻擊引發了一些軍事組織重新考慮網絡安全對現代軍事理論的重要性,并導致了北約合作網絡防御卓越中心(CCDCOE)的建立,該中心在愛沙尼亞的塔林運作。
2008年,一系列的網絡攻擊使格魯吉亞組織的網站失效。這些攻擊是在一場槍戰開始前三周發起的,被認為是一次與主要作戰行動同步的協調的網絡空間攻擊。
2015年,俄羅斯計算機黑客將目標鎖定在屬于美國民主黨全國委員會的系統上。這次攻擊導致了數據泄露,被確定為間諜行為。除了強調需要加強網絡復原力外,對這一事件的反應突出了采取行動打擊虛假信息和宣傳行動的必要性。
2017年,WannaCry勒索軟件感染了150個國家的20多萬臺電腦。這種不分青紅皂白的攻擊,由利用微軟視窗操作系統漏洞的勒索軟件促成,鎖定數據并要求以比特幣支付。在幸運地發現了一個殺毒開關后,該惡意軟件被阻止了,但在它導致工廠停止運營和醫院轉移病人之前。
2018年,挪威軍方和盟國官員證實,俄羅斯在歐洲高北地區舉行的三叉戟接點演習中,持續干擾GPS信號,擾亂了北約的演習[26]。"使用天基系統并將其拒絕給對手的能力是現代戰爭的核心"[27]。在過去幾十年里,軍事行動對天基資產的依賴性越來越大,天基資產越來越成為網絡攻擊的理想目標。俄羅斯等國都將電子戰、網絡攻擊和電磁戰斗空間內的優勢作為在未來任務中取得勝利的戰略的一部分。這些國家的現有理論突出了一個重點,即防止對手的衛星通信系統影響其作戰效率。衛星依賴于網絡技術,包括軟件、硬件和其他數字組件。空間系統對于在空中、陸地、海上、甚至網絡領域進行的行動中提供數據和服務是至關重要的。對衛星控制系統或帶寬的威脅對國家資產和目標構成了直接挑戰,并促進了對緩解措施的需求,以實現這些系統的彈性。
2020年,來自亞美尼亞和阿塞拜疆的黑客在納加諾-卡拉巴赫戰爭期間以網站為目標。錯誤信息和舊事件的視頻被當作與戰爭有關的新的和不同的事件來分享。新的社交媒體賬戶創建后,關于亞美尼亞和阿塞拜疆的帖子激增,其中許多來自真實用戶,但也發現了許多不真實的賬戶。這一事件強調了社會網絡安全作為一個新興研究領域的出現[28]。
2020年,一場重大的網絡攻擊通過破壞流行的網絡監控工具Solarwinds的軟件供應鏈滲透到全球數千家機構。據報道,由于目標的敏感性和高知名度,以及黑客進入的時間之長,隨后發生的破壞程度是美國所遭受的最嚴重的網絡間諜事件之一。在被發現的幾天內,全世界至少有200個組織被報告受到了攻擊。
越來越多的趨勢是網絡空間發展的特點。網絡技術在我們生活的各個方面發揮著越來越大的作用。這一趨勢也延伸到了軍事沖突。對網絡技術的日益依賴將帶來新的脆弱性,并侵蝕傳統網絡防御的界限。隨著基礎技術組件和界面的成熟,網絡空間和其他領域,包括關鍵基礎設施、軍事武器系統和綜合生物、物理和量子系統之間的交叉將越來越重要。在本節中,我們確定了將影響網絡空間演變的技術和非技術趨勢,以及ML在其防御應用中的基本效用。
硬件、軟件和協議的可編程性和復雜性日益增加。可編程性的增加帶來了快速的開發和交付窗口,但每一個新的代碼庫都會進一步引入新的漏洞。復雜性的增加導致了未使用的代碼路徑,即軟件臃腫,從而維持了不良的攻擊路徑。第三方和開源硬件和軟件的存在越來越多,這使得快速的原型設計成為可能,但也容易受到不透明的供應鏈和來源損失的影響。
自主性的應用和加速的決策循環是網絡沖突的方向和速度的特征。人類將在機器智能中依賴大數據、增加的計算能力和新型計算算法的匯合。日益增長的網絡速度需要更多地依賴預防妥協、復原力以及與人類專家的最佳人機合作。同時,網絡空間越來越不可信,新興的安全架構規定,需要根據資產和信息對任務背景的重要性來保護它們[29]。
網絡空間的應用范圍越來越多樣化。隨著邊緣設備保持通電和可訪問性,以及低尺寸、低重量和電源設備連接的應用增長,無處不在的連接將增加軍事上對網絡空間的依賴。與網絡物理系統(即物聯網)一樣,新興的生物、物理和量子應用將需要與網絡空間的新接口。這些接口將為網絡防御創造新的機會和挑戰,如儀器和傳感、側信道攻擊和形式驗證。
機器學習(ML)將繼續發展其與網絡空間技術和網絡防御應用的多層面關系。一方面,ML可以增強幾乎所有的網絡技術及其應用(即微電子、網絡、計算架構等的設計、開發和測試)。另一方面,網絡技術的進步(如張量處理單元、量子計算機)可以增強ML能力。鑒于在大量數據中進行模式識別的基本挑戰,ML可以大大改善網絡空間的能力和彈性。
互聯網用戶的數量囊括了世界一半以上的人口[30]。盡管有跡象表明,由智能手機出貨量下降和2020年全球大流行引起的近期增長放緩,但創新繼續推動產品改進。收集的數字數據的迅速崛起是那些增長最快的公司成功的關鍵,通常是通過數據挖掘和豐富的上下文增強,幫助個性化的產品和服務。這導致了對濫用數據、用戶隱私和準備推動市場變化或監管的問題內容的擔憂。隨著數字系統變得越來越復雜,數據越來越豐富,任務也越來越重要,利用的機會和意愿也越來越大。越來越多地,新興技術的網絡安全影響被納入國際外交和國防考慮。最近的例子包括脆弱性平等進程[31]、網絡空間信任與安全巴黎呼吁[32]和算法權利法案[33]。
戰略性的全球需求信號,包括氣候變化和資源短缺,可能會產生新的領土野心和聯盟,導致政治格局急劇變化。例如,由天基太陽能技術產生的電力可能被傳送到地面,這就需要新的關鍵基礎設施和網絡空間的全球存在點。同樣,由自然資源短缺引起的人口變化可能會改變政治和國家安全格局。這些變化將引入新的關鍵基礎設施,并對網絡空間產生依賴性。
軍事行動已經嚴重依賴網絡空間。這種依賴性是一個可以被利用來獲得不對稱優勢的弱點[34]。數字地形的丟失、退化、損壞、未經授權的訪問或利用為對手提供了巨大的優勢,并對軍事目標構成了威脅。近鄰的行為者將繼續試圖破壞網絡空間或反擊進攻性網絡行動。進攻性網絡能力的民主化和擴散將進一步為非近鄰的競爭對手提供具體的優勢。越來越多地,一個國家的能力和影響力可以通過其將消費電子產品武器化的能力來衡量,特別是當這些商業開發的系統將成為軍事應用的基礎。因此,網絡攻擊的范圍、頻率和影響都將增長。
同時,全球化將促使對軍事行動的標準和責任的審查增加。政治和公眾對問責制的要求將因戰爭的日益不透明而受到挑戰。例如,在物理領域開展的威懾行動需要精心策劃的敘述和信息傳遞,與24小時的新聞周期保持一致。然而,進攻性的網絡行動準備實現更加隱蔽的效果,不容易被觀察到或歸因。網絡戰工具已將網絡空間轉化為一個灰色地帶的戰場,在這里,沖突低于公開的戰爭門檻,但高于和平時期。
作戰將越來越多地將網絡與傳統領域(如陸地、海洋、空中、太空)結合起來。戰爭學說、國際條約和一般法律將隨著力量平衡、現有技術和區域沖突的變化而反應性地發展。進攻性網絡工具的民主化將對抗動能領域作戰的傳統優勢。前所未有的連通性和日益增長的民族主義將推動網絡空間繼續被用于不對稱的優勢。世界范圍內的社會動蕩所助長的虛假信息和影響運動將可能蔓延到網絡空間。盡量減少外部影響、執行數據隱私和管理數字內容的愿望增強,可能會推動互聯網的巴爾干化。
這在俄羅斯宣布將其國家部分從全球互聯網中關閉并成為 "數字主權",同時在網絡空間中追求決定性的軍事優勢中已經得到證明。在這個目標中,包括為人工智能系統建立信息安全標準。這樣的新技術應用很可能會影響俄羅斯選擇的實現其目標的方式。例如,Kukkola等人[35]斷言,人工智能可能為俄羅斯提供一個機會,以靈活的方式定義其數字邊界,反映普遍的意見和忠誠度,而不是地理位置。俄羅斯領導層進一步斷言,領導人工智能的國家將是 "世界的統治者",表明這種進步將是變革性的,其影響尚未被完全理解。
傳統的網絡安全和網絡防御方法依賴于人工數據分析來支持風險管理活動和決策。盡管這些活動的某些方面可以自動化,但由于其簡單性和對問題領域的有限理解,自動化往往是不足的。在這一章中,我們將調查DML應用的文獻,這些應用可以幫助信息安全的持續監控,用于美國國家標準研究所定義的一組安全自動化領域[1]。我們這樣做是為了對最先進的研究現狀、實際實施、開放的挑戰和未來的愿景建立一個結構化的理解。通過這些見解,我們指出了DML在整個網絡安全領域應用的一系列挑戰,并總結了我們的發現。
在不同的安全自動化領域中,我們已經確定了主題和建議未來研究的領域。其中一個反復出現的主題似乎是缺乏實際的實現,也就是說,缺乏高技術準備水平(TRL)。我們懷疑這可能是由于許多不同的原因,例如,未滿足性能預期、數據不足、不合格的深度學習架構、對促進可擴展的DML應用的通用數據存儲和分析解決方案缺乏共識,或研究的初級階段。通過我們的初步調查,我們強調了未來的研究方向和/或阻礙每個安全自動化領域的進一步進展的問題。
惡意軟件檢測。DML應用需要處理惡意軟件如何隨著時間的推移改變其統計屬性,例如,由于對抗性方法(概念漂移)。還有一個問題是關于數據共享,以適應不太可能被釋放到野外的高級惡意軟件,以及一般的數據訪問。此外,還需要研究如何定義能夠代表軟件的新特征,以便進行檢測和歸屬。
事件管理。DML與現有安全控制的整合不足,限制了DML應用的開發程度。在操作化、管理和例行程序方面,以促進標記數據的收集和深度學習模型的開發。
信息管理。DLP系統可以與網絡和終端系統緊密相連,需要對系統有一個深刻而廣泛的了解。在當前的IT安全趨勢下,加強數據保密性,這樣的系統正面臨著數據可訪問性的降低。這絕不是這個領域特有的問題,但卻使DML應用的開發變得復雜。因此,研究機會是存在的,例如,通過與底層操作系統更深入的整合來恢復數據的可訪問性。然而,也有一些課題需要研究描述任何給定數據是否包含敏感信息的條件,以及相同數據的變化如何被識別,而不考慮例如編碼方案。以及當所需的數據在沒有額外分析的情況下無法直接獲得時,如何表示模糊或開放的規則并驗證其合規性。
脆弱性管理。缺乏共識和對公共和足夠大的數據集的訪問,已經被認為是漏洞發現領域的一個挑戰。然而,有一些嘗試可以減少這種依賴性,通過部署預先訓練好的語言模型,例如,對軟件掃描進行模糊測試,以檢測漏洞并協助修補漏洞。我們預見了兩個可以進一步研究的方向:改進深度學習架構或改進數據集及其特征表示。
軟件保證。盡管支持DML應用的技術存在于相關領域,如惡意軟件檢測和漏洞管理。我們還沒有發現在這個領域內研究問題的努力,但當多個DML應用能夠協同工作時,我們期待這種發展。
資產管理。隨著即將到來的資產新浪潮,被稱為 "工業4.0"。其中包括制造業的自動化和數據交換的趨勢,以及移動設備、物聯網平臺、定位設備技術、3D打印、智能傳感器、增強現實、可穿戴計算和聯網的機器人和機器。我們認為,DML的應用可以并將有助于這種未來資產管理的某些方面,然而,哪些方面仍然是一個開放的研究問題,開放的文獻表明,需要探索行業特定的使用案例。
許可證管理。考慮到軟件資產管理(SAM)考慮到許可問題,這里也適用與資產管理相同的未來研究方向。- 網絡管理。移動目標防御(MTD)是一個新興的研究領域,將大大受益于人工智能驅動的方法。
配置管理。我們希望與MTD研究相關的技術可以使配置管理能力受益。
補丁管理。我們已經確定了解決某些問題的研究,如:以風險意識的方式動態調度補丁,自動漏洞修復分析,以及在軟件補丁尚未可用的情況下定位漏洞緩解信息。然而,沒有人試圖將這些納入一個單一的模型,從而創建一個完整的管道。這可能是未來研究中需要探索的一個領域。
最后,我們沒有發現任何證據表明,任何安全領域在DML應用方面的研究都已經完成。所有的領域都有尚未探索的研究領域,這些領域在未來可以并且有望經歷重大的研究。
惡意軟件是指在所有者不知情或不同意的情況下,故意設計成滲入、修改或破壞計算機系統的任何惡意軟件。惡意軟件具有多種形式的數字內容,包括可執行代碼、腳本和嵌入互動文件中的活動對象。下面列舉了常見的惡意軟件類型及其特點。
安全分析師和惡意軟件開發者之間的斗爭是一場持續的戰斗。最早記錄在案的病毒出現在1970年代。今天,惡意軟件的復雜性變化很快,利用不斷增加的創新。最近的研究強調了惡意軟件在促進網絡安全漏洞方面的作用,注意到惡意軟件的趨勢是以經濟利益為動機的目標有效載荷,并提供證據斷言互聯網連接設備的擴散將促進惡意軟件交易[2],[3]。
惡意軟件檢測是指識別終端設備上是否存在惡意軟件,以及區分特定程序是否表現出惡意或良性特征的過程。傳統的基于簽名的方法來識別和描述惡意軟件越來越不利,因為微不足道的改變使惡意軟件可以逃避普通的檢測方法[4], [5]。基于簽名的方法本質上是基于正則表達式的模式匹配,從觀察到的惡意軟件的經驗知識中獲得。從已知的惡意軟件樣本中提取的獨特字節串建立了一個簽名數據庫,通常由終端保護供應商的訂閱服務提供。當反惡意軟件程序收到要測試的文件時,它將文件的字節內容與數據庫中的簽名進行比較。只要惡意軟件不采用規避措施,這種方法是有效的,而且計算效率高(即類型1錯誤低)。然而,隨著簽名的數量和采用棘手的規避措施的增加,模式匹配的計算成本變得很高,而且越來越無效。啟發式方法在一定程度上通過規則解決了這一挑戰,但同時也增加了假陽性率。簽名和啟發式方法的脆弱性是一個長期公認的問題,它促進了對替代和補充技術的研究。
這些補充技術通常是一個艱巨的過程,需要詳盡地結合軟件逆向工程、源代碼調試、運行時執行分析以及網絡和內存取證。靜態分析技術可以識別表面特征,如加密哈希值、大小、類型、標題、嵌入內容和軟件打包器的存在。靜態分析工具包括源代碼和字節碼分析器、數字簽名驗證工具和配置檢查器。動態分析技術可以識別運行時的特征,如對文件系統、操作系統、進程列表、互斥因子和網絡接觸點的改變。動態技術需要大量的專業工具,包括解包器、調試器、反匯編器、解碼器、模糊器和沙箱,通過這些工具可以安全地執行、檢測和觀察可疑文件的行為。許多擁有強大信息安全計劃的軍事組織采用了一種混合方法,通過一系列的技術和工具對可疑的未知文件進行分流和檢查[6]。
盡管采取了全面的方法,但許多工具都有局限性,沒有一種技術可以自信地保證軟件的出處和衛生。例如,軟件打包器的存在和其他混淆文件內容的伎倆阻礙了靜態分析方法。同樣地,通過沙盒進行動態分析的實施成本很高,往往缺乏取證的可追溯性,而且很容易被虛擬的殺戮開關所顛覆,這些開關會對執行環境進行檢測。惡意軟件發現的ML應用可以追溯到20年前。早期的方法依賴于特征向量,如ASCII字符串、指令、n-grams、頭域、熵和動態鏈接庫的導入,這些都是從可執行文件中提取的。這些方法產生了不同的結果。雖然提供了巨大成功的跡象和顯著的準確性,但它們最終缺乏可擴展性,未能跟上不斷變化的威脅,因此必須繼續使用傳統的、精確的簽名。惡意軟件創建和發現的對抗性確保了對手一旦意識到用于識別其代碼的特征就會采用新技術。因此,由于缺乏暗示惡意的明顯或自然特征,這些技術被證明具有局限性。
事件管理包括監測工具和技術,并在必要時對網絡或系統中觀察到的事件作出反應。如果這些事件表明存在惡意或有問題的活動,則可稱為 "警報 "或 "警告"。它們通常被記錄在記錄一個組織的周邊事件的日志中。有大量的工具可以被認為是這個領域的一部分,但我們特別考慮兩個。安全信息和事件管理(SIEM)系統和入侵檢測系統(IDS)。前者致力于通過聚集來自多個安全控制的日志來實現分析。后者部署在戰略位置,分析本地系統或網絡的日志。
數據的分類是軍事領域的一個標準要求。傳統上,紙質文件被標記為 "非機密 "或 "機密 "等標簽,用戶必須遵循嚴格的規定以確保所需的保密性。這種基于紙張的系統的一個特性是文件和其分類之間的直接聯系,因為它是文件的一部分。文件分類的元信息不能與文件本身分開。這在數字環境中不能以同樣的方式實現,因為通常很容易將分類數據與其元數據分開,從而將其分類分開。一些系統試圖保證這種不可分割的聯系。然而,它們只限于邊緣情況。在實踐中,數據被儲存在無數的系統中,被轉移、改變、轉換,并使用難以計數的格式。一些例子是。
以PDF、Office Open XML或純文本等辦公格式存儲的文本文件。
以簡單格式存儲的圖像,如BMP(位圖圖像文件格式)或JPEG;以及
以WAVE或MP3格式存儲的音頻數據。
這些格式中有些提供受保護的元數據,有些則是除了信息之外沒有任何東西的普通格式。
本節重點討論一種通常被稱為數據丟失預防/數據泄漏預防(DLP)的一般方法,它可以處理任意數據。這樣的DLP系統會分析應用于數據的用戶行為(例如,通過電子郵件發送文件或打印文件)是否被給定的規則集所允許。元數據,如分類,可以緩解這一過程,但(在理論上)不是必需的。我們可以把這樣的DLP形式化為一個決策任務,我們要決定一個給定的行動a是否可以按照規則r應用于一個文件d。在白名單方法中,我們把對數據的操作限制在允許的規則中。其他的都是禁止的。黑名單方法則與此相反。除非明確禁止,否則一切都被允許。這兩種方法在網絡安全中都很常見。
我們可以區分兩個主要的系統設計。端點解決方案的工作方式類似于防病毒(AV)。它們監測特定設備上的活動。端點解決方案可以在訪問時以未加密的形式訪問數據(也稱為 "使用中的數據")或主動搜索系統中的數據(也稱為 "靜態數據"),這樣,主要的挑戰是對給定的數據進行分類并應用政策,例如,阻止分類文件被打印或通過不安全的渠道或不受信任的目的地傳輸。網絡解決方案監測數據交換,也被稱為 "運動中的數據"。因此,它們不能在特定的主機上執行規則,而是限制信息交流。網絡解決方案面臨的一個共同問題是,越來越多的網絡流量被端對端加密,因此監測系統無法讀取。介于上述兩種解決方案之間的第三類是基于云的解決方案,其中DLP是對存儲在基于云的系統中的數據進行強制執行。基于云的解決方案似乎非常特別,但它們與端點解決方案相似,因為它們可以在其云中的 "本地 "數據上操作,并與網絡解決方案相似,因為它們可以監測流量。然而,終端可能會在云中存儲加密的數據,這樣云系統可能會受到對未加密數據的較少訪問。
DLP系統面臨以下挑戰:
1)數據獲取。DLP必須訪問數據本身,以分析是否允許某個行動。這對基于網絡的解決方案來說變得越來越復雜。
分析數據。DLP系統必須 "理解 "并對內容進行分類。這意味著,他們必須支持廣泛的不同文件類型。
表示規則。規則是決定是否可以對給定的數據采取某種行動所必需的。對于一些規則,如 "不允許轉移標記為機密的文件",規則的表示是直接的。然而,"模糊 "規則要難得多。例如,"不允許轉讓軍事地點的圖片",因為沒有明確的定義,一張圖片是否包含軍事地點。
DML可以應用于所有挑戰,但分析數據是最明顯的挑戰,將在 "當前研究 "中簡要討論。
美國家安全系統委員會(CNSS)詞匯表第4009號將漏洞定義為信息系統、系統安全程序、內部控制或實施中的弱點,可被威脅源利用或觸發[41]。軟件漏洞是指在軟件代碼中發現的可被攻擊者利用的安全缺陷、小故障或弱點[42]。
漏洞管理是識別、分類、補救和緩解漏洞的循環做法[43]。美國國家標準與技術研究所(NIST)將漏洞管理能力定義為一種信息安全持續監控(ISCM)能力,它可以識別設備上的漏洞,這些漏洞很可能被攻擊者用來破壞設備,并將其作為一個平臺,將破壞延伸到網絡上[44]。漏洞管理的目的是確保軟件和固件漏洞被識別和修補,以防止攻擊者破壞一個系統或設備,而這又可能被用來破壞其他系統或設備。
美國家安全系統委員會[59]將軟件保證定義為:軟件按預期功能運行,并且在整個生命周期內沒有故意或無意設計或插入的漏洞的信心水平[59]。NASA技術標準8739.8A中的定義使用了類似的措辭[60]。
軟件保證領域與其他領域相聯系,特別是與漏洞管理領域相聯系,涉及到漏洞掃描和發現,但也涉及到惡意軟件檢測。
網絡安全的最佳實踐需要對構成信息環境的數字資產進行說明[1], [64], [65]。資產管理是指組織維護硬件、軟件和信息資源清單的做法,長期以來被認為是強大的網絡安全態勢的一個組成部分[66]。雖然傳統上是通過配置管理、網絡管理和許可管理的一些工具組合來完成的,但云計算和面向服務的技術的擴散已經導致了更新的解決方案。例如,信息技術資產管理(ITAM)、信息技術服務管理(ITSM)和軟件資產管理(SAM)工具,提供了對技術投資的商業價值核算和最大化的洞察力[67], [68]。
這些解決方案的需求和效用可以通過其需求來描述。獨立評估顯示,ITAM、ITSM和SAM工具的全球市場價值每年在10億至50億美元之間,并列舉了二十多家提供軟件工具或管理服務的技術供應商[69], [70], [71]。這些解決方案對設備、軟件,或者在云服務的情況下,對云服務提供商的接口進行檢測。他們進一步提供工作流程,將資產分配給業務角色和功能。盡管可用的儀器和工作流程功能具有可擴展性,但這些工具的共同特點是能夠感知、查詢和解釋它們所監測的資產的本地數據。更明顯的是,它們作為一種手段,支持最終由人類強加的手工業務流程。
正是通過這一視角,深度學習對資產管理的破壞可以得到最好的實現。現有的工具為監督業務功能的操作員提供信息。雖然它們的實施和有效使用可以幫助減輕安全風險,但它們要求其操作者指定一套配置參數。例如,SAM工具要求其操作者配置如何解釋軟件許可條款和產品使用權。這些工具通過商業智能儀表盤和工作流程建議提供了一定程度的自動化,但由于需要調整,這可能會增加整個解決方案的復雜性,這與直覺相反。
許可證管理工具可以控制軟件產品的運行地點和方式。它們在代碼中捕獲許可協議條款,自動收集軟件使用情況,并計算出成本影響,幫助優化軟件支出。當被軟件供應商采用并集成到他們的產品中時,它們有助于遏制軟件盜版,并提供量身定制的許可功能(例如,產品激活、試用許可、訂閱許可、浮動許可)。當被最終用戶組織采用時,它們有助于遵守軟件許可協議。許可證管理功能經常出現在SAM工具中。
網絡管理工具包括主機發現、庫存、變更控制、性能監控和其他設備管理功能。網絡管理工具通常與資產和配置管理工具的能力相重疊,并增加了便于設備監控和配置的功能。網絡管理同樣包括組織邊界內的那些系統,但為了管理云服務,可能會超出其傳統的范圍。事實上,軟件、網絡和虛擬化技術的爆炸性增長和采用已經推動了多個市場提供一系列屬于網絡管理的工具。
配置管理工具允許管理員配置設置,監控設置的變化,收集設置狀態,并根據需要恢復設置。配置管理跟蹤提供服務的組件之間的關系,而不是資產或網絡本身。管理信息系統和網絡組件之間發現的配置是一項艱巨的任務。系統配置掃描工具提供了一種自動化的能力來審計目標系統,并評估與安全基線配置的一致性。身份和賬戶配置管理工具使一個組織能夠管理身份憑證、訪問控制、授權和權限。身份管理系統還可以實現和監控基于身份憑證的物理訪問控制。軟件配置管理工具跟蹤和控制源代碼和軟件構建之間的變化。與其他安全自動化領域類似,深度學習的應用趨勢表明,正在從人類管理軟件系統向計算機管理軟件系統本身轉變。
補丁管理是指識別、定位和應用補丁到一套管理的軟件的過程,通常是在一個企業環境中。補丁通常以安全為導向,旨在修復軟件或固件的漏洞。由于新的軟件漏洞不斷被發現,補丁管理可能會成為一項困難和艱巨的任務,特別是對于擁有數百臺主機和復雜的軟件庫存的組織。因此,一個強大的補丁管理過程是必要的,以保持一個組織免受惡意活動的傷害。補丁管理因各種挑戰而變得復雜。首先,一個組織必須考慮一個修補機制,以確保眾多主機的安全,包括在家工作的設備、非標準設備、移動設備、以及具有各種操作系統和虛擬設備的設備。此外,補丁可以使用幾種不同的機制來交付,如手動安裝補丁、指導軟件自行打補丁、自動、計劃更新或補丁管理工具(第三方工具或操作系統提供的工具)。由于它既是一個耗時的過程,又對安全至關重要,任何自動化補丁管理的方法都將是非常有益的。
(本節中使用的分類法和術語是根據NIST報告[1],并從Shafee和Awaad的論文[2]中稍作擴展而采用的)。
機器學習的數據驅動方法在ML操作的訓練和測試(推理)階段帶來了一些漏洞。這些漏洞包括對手操縱訓練數據的可能性,以及對手利用模型對性能產生不利影響的可能性。有一個研究領域被稱為對抗性機器學習(AML),它關注的是能夠經受住安全挑戰的ML算法的設計,對攻擊者能力的研究,以及對攻擊后果的理解。AML也對針對深度學習模型的攻擊感興趣。
ML管道中的各個階段定義了這些對抗性攻擊的目標,如輸入傳感器或輸出行動的物理域,用于預處理的數字表示,以及ML模型。AML的大多數研究都集中在ML模型上,特別是監督學習系統。
用于對先前所述目標進行攻擊的對抗性技術可能適用于ML操作的訓練或測試(推理)階段。
人工智能(AI)已經被使用了很多次,因為它們在學習解決日益復雜的計算任務時具有前所未有的性能。由于它也被普遍用于影響人類生活的決策,如醫學、法律或國防,因此需要解釋或說明為什么這種人工智能系統會得出這樣的結論。
傳統的模型,如決策樹、線性和邏輯回歸,通過對特征權重的分析,允許一定程度的可解釋性;而深度神經網絡是不透明的,仍然是一個黑盒子。此外,如圖5-1所示,機器學習算法的性能與解釋訓練過的模型的難易程度之間似乎存在一種反比關系。
2017年,DARPA啟動了可解釋人工智能(XAI)計劃,以解決數據分析(針對情報分析員)以及未來利用強化學習的自主系統的可解釋性問題。在DARPA的報告中,提出了一套創建這種ML技術的方案,在保持高水平的學習性能(如預測精度)的同時,產生更多的可解釋模型,并使人類能夠理解、信任和管理新興的人工智能系統[13]。
文獻對可通過設計解釋的模型和可通過外部技術解釋的模型進行了區分。DL模型不能通過設計來解釋;因此,研究集中在外部XAI技術和混合方法上。Arrieta等人解釋了適用于不同類型的DL模型的技術和混合方法的所有細節。此外,他們解決了一些關于可解釋性和準確性之間的權衡、解釋的客觀性和不明確性以及傳達需要非技術專長的解釋的問題[14]。
超參數是控制學習過程行為的屬性,它們應該在訓練模型之前配置好,而不是在訓練過程中學習的模型參數,例如權重和偏差。它們很重要,因為它們會對正在訓練的模型的性能產生重大影響。
語法(框架)的互操作性。2017年,Open Neural Network eXchange(ONNX)格式被創建為社區驅動的開源標準,用于表示深度學習和傳統機器學習模型。ONNX協助克服了人工智能模型中的硬件依賴問題,并允許將相同的人工智能模型部署到多個HW加速目標。許多框架的模型,如TensorFlow、PyTorch、MATLAB等,都可以導出或轉換為標準的ONNX格式。然后,ONNX格式的模型可以在各種平臺和設備上運行(圖5-2)。
語義互操作性。當數據來自于含義不相同的混合來源時,就不可能了解趨勢、預測或異常情況。語義互用性是指計算機系統交換具有明確意義的信息的能力。為此,無論數據是從單一來源還是異質來源匯總而來,都需要高質量的人類注釋數據集來準確地訓練機器學習模型。
實現語義互操作性的最佳實踐之一是使用原型。原型是一種數據格式規范,它應該盡可能地提供最可用的完整細節。它提供了數據的共享意義。人工智能系統的語義互操作性要求原型是高質量的、基于證據的、結構化的,并由領域專家設計[20]。
與傳統的機器學習方法相比,深度學習在很大程度上依賴于大量的訓練數據,因為它需要大量的數據來理解數據的潛在模式。然而,在某些領域,訓練數據不足是不可避免的。數據收集是復雜而昂貴的,這使得建立一個大規模、高質量的注釋數據集變得異常困難。轉移學習是一個重要的工具,可以用來解決訓練數據不足的問題。它試圖將知識從源域(訓練數據)轉移到目標域(測試數據),方法是放寬訓練數據和測試數據必須是獨立和相同分布的假設,即樣本是相互獨立的,并且來自相同的概率分布。這樣一來,目標域的模型就不需要從頭開始訓練。
深度遷移學習研究如何通過深度神經網絡有效地遷移知識。根據使用的技術,Tan等人[21]將深度遷移學習分為四類:基于實例、基于映射、基于網絡和基于對抗。
1)基于實例的深度遷移學習。源域中與目標域不同的實例被過濾掉并重新加權,以形成接近目標域的分布。用源域中重新加權的實例和目標域中的原生實例來訓練模型。
2)基于映射的深度遷移學習。來自源域和目標域的實例被映射到一個新的數據空間。然后,新數據空間中的所有實例被用作訓練集。
3)基于網絡的深度遷移學習。一般來說,網絡中最后一個全連接層之前的各層被視為特征提取器,最后一個全連接層被視為分類器/標簽預測器。網絡在源域用大規模訓練數據集進行訓練。然后,預訓練網絡的結構和特征提取器的權重將被轉移到將在目標領域使用的網絡中。
4)基于對抗的深度遷移學習。這組技術的靈感來自生成對抗網(GAN)(圖5-3)。一個被稱為領域分類器的額外鑒別器網絡從源領域和目標領域提取特征,并試圖鑒別特征的來源。所有的源和目標數據都被送入特征提取器。特征提取器的目的是欺騙域分類器,同時滿足分類器的要求。
有了低質量的數據,無論機器學習和/或深度學習模型有多強,它都無法做到預期的效果。影響數據質量的過程分為三組:將數據帶入數據庫的過程,在數據庫內操作數據的過程,以及導致準確的數據隨著時間的推移而變得不準確的過程。關于降低數據質量的過程的細節可以在參考文獻中找到。[22].
在使用、導入或以其他方式處理數據之前,確保其準確性和一致性的過程,被稱為數據驗證。現在,數據存儲在不同的地方,包括關系型數據庫和分布式文件系統,并且有多種格式。這些數據源中有許多缺乏準確性約束和數據質量檢查。此外,今天的大多數ML模型定期使用新的可用數據進行重新訓練,以保持性能并跟上現實世界數據的變化。因此,由于任何參與數據處理的團隊和系統都必須以某種方式處理數據驗證,這就成為一項繁瑣和重復的任務。對數據驗證自動化的需求正與日俱增。
一種方法是由Amazon Research提出的單元測試方法[23]。該系統為用戶提供了一個聲明性的API,允許用戶對他們的數據集指定約束和檢查。當驗證失敗時,這些檢查在執行時產生錯誤或警告。有一些預定義的約束供用戶使用,用于檢查數據的完整性、一致性和統計量等方面。在約束條件被定義后,系統將它們轉化為實際的可計算的度量。然后,系統計算指標并評估結果,隨后,報告哪些約束成功了,哪些失敗了,包括哪個指標的約束失敗了,哪個值導致失敗。由于新的數據不斷涌現,該方法采用了遞歸計算方法,只考慮自上一個時間步驟以來的新數據,以增量方式更新度量。此外,該系統自動為數據集提出約束條件。這是通過應用啟發式方法和機器學習模型實現的。
另一種方法是基于數據模式的方法,由谷歌研究院提出[24]。對正確數據的要求被編入數據模式中。所提議的系統采取攝取的數據,通過數據驗證,并將數據發送到訓練算法中。數據驗證系統由三個主要部分組成。一個數據分析器,計算預先定義的足以用于數據驗證的數據統計數據;一個數據驗證器,檢查通過模式指定的數據屬性;以及一個模型單元測試器,使用通過模式生成的合成數據檢查訓練代碼中的錯誤。該系統可以檢測單批數據中的異常情況(單批驗證),檢測訓練數據和服務數據之間或連續幾批訓練數據之間的顯著變化(批間驗證),并發現訓練代碼中未反映在數據中的假設(模型測試)。
盡管深度學習通過使用神經網絡中的多層來逐步分解特征以識別某些特征,但它對數據來源的背景理解較淺,其中背景提供了使某一事件產生的環境或元素,并能為其解釋傳達有用的信息。因此,一個模型最終可能被專門用于訓練數據中記錄的一種或多種情況。因此,這個模型可能對類似的情況有偏見,從而只在這種情況下表現合理。該模型能夠推翻從訓練中學到的經驗,以適應不斷變化的環境。然而,這種能力是受限制的。研究能夠捕捉上下文的模型的動機,通過更強大的、有彈性的、可適應的深度學習來提高任務的有效性。這使得深度學習的使用更具成本效益。
彌補偏見問題的最初努力,始于Bottou和Vapnik[25]提出的局部學習的建議。它涉及到將輸入空間分離成子集并為每個子集建立模型。這個概念本身并不新穎,但由于處理大數據集的應用的復雜性,已經獲得了一些可信度[26]。相反,Mezouar等人[27]沒有發現局部模型比全局模型更值得投資用于預測軟件缺陷。多任務學習(MTL)[28]是機器學習的另一個子領域,可以利用。它將輸入空間分離成多個任務,并利用共享信息,同時考慮到它們的差異。其目的是通過聯合學習和獲取共享表征來提高多個分類任務的性能。Suresh等人[29]試圖在死亡率預測的背景下比較這三種類型的模型。他們的工作表明,多任務模型在整體和每組性能指標上都能勝過全局模型和在單獨的數據子集上訓練的局部模型。不幸的是,似乎還沒有就最合適的模型來捕捉上下文達成最終共識。由于在特定任務的模型之間進行信息共享的技術研究,調整本地/全局模型以適應新的環境,或如何將本地和全局模型結合起來,仍然是活躍的[30],[31]。
在上面提到的所有挑戰中,這個RTG的成員最關心的是分享知識的可能方式。本章討論的問題有兩種可能的方式:分享訓練數據或分享模型:
1)訓練數據共享。從北約演習中收集的數據是有價值的。能夠利用它們將是非常好的。對于數據共享,最可能的是,應該構建一個數據庫。當各盟國的數據庫被加入時,可能會出現語義互操作性的問題(見第6.4節,語義互操作性)。為了保持數據庫的完整性,所有的盟友都應該圍繞一個標準化重新形成他們的訓練數據,并以這種方式向數據庫提供數據。這既費時又容易出錯。此外,數據的質量是至關重要的,在向數據庫提供數據之前應該進行審查(見6.6節)。此外,這種方法是危險的,因為如果對手到達這個數據庫,他們可以在數據中下毒。(關于可能的訓練數據目標攻擊和針對它們的對策技術,見第6.1節,訓練階段攻擊)。
2)模型共享。在句法互操作性工具的幫助下,現在可以共享DL模型了。(見第6.4節,句法互操作性)。使用基于網絡的遷移學習,在北約盟友之間分享特征提取器似乎更有幫助,這樣任何盟友都可以在他們的測試數據上應用他們希望的任何任務的衍生知識(關于遷移學習的細節,見6.5節)。然而,問題是,誰來訓練這個模型,他將使用哪些數據?如果在數據庫中存儲數據是有問題的,那么為了訓練將被共享的模型,授予一個人/實體對所有北約練習數據的訪問權也可能是麻煩的。通常情況下,不存在這樣的平臺,允許每個人使用自己的數據來訓練相同的DL模型。然而,在這種情況下,一種叫做 "聯合學習 "的分散方法似乎是可行的。它是一種分布式的機器學習方法,在這種方法中,一些被稱為客戶的參與者一起工作,在多次迭代中訓練某個機器學習模型。聯合學習最早是在[32]中提出的,它是由一組移動設備執行的分布式訓練模型,這些設備與中央服務器交換本地模型的變化,中央服務器的功能是將這些更新集合起來形成一個全球機器學習模型。一個聯合學習場景由一個中央服務器和一組N個客戶組成,每個客戶都有自己的本地數據集。最初選擇一個客戶端的子集來獲得模型權重方面的共享模型的全局狀態。然后,基于共享參數,每個客戶在自己的數據集上進行本地計算。然后,客戶提交模型更新(即基于客戶本地數據集的本地學習的權重)給服務器,服務器將這些更新應用于其當前的全局模型,生成一個新的模型。然后,服務器再次與客戶共享全局狀態,這個過程要進行多次,直到服務器確定了一個特定的準確度。因此,客戶不需要分享他們的原始數據來為全局模型做貢獻,只要有足夠的CPU或能源資源來處理它所擁有的訓練數據就足夠了。
軍事行動植根于對工業時代危機的實際反應,并由關于規模、殺傷力和覆蓋范圍的假設形成[1]。然而,當代沖突跨越了區域邊界和地理領域。威脅的數量和行為者的范圍在數量和多樣性上都在增長,這與需要與之協調應對的行為者的數量相呼應。利用網絡空間的敵人可以挑戰盟國能夠或愿意作出反應的門檻。對網絡領域的依賴增加了在敵方網絡空間實現支持軍事目標的效果的重要性。最終,軍事行動變得更加動態和復雜。
深度機器學習(DML)已經成為人工智能領域的主要技術來源。可以預見的是,DML對網絡防御之外的軍事應用的影響將是廣泛的,因為它提供了在軍事行動環境中獲得信息和決策優勢的機會。在本章中,我們將研究那些有可能受益并因此重塑網絡防御的軍事應用,超越傳統的保護、威懾、檢測和響應概念。
軍事學說將指揮與控制(C2)定義為 "由適當指定的指揮官在完成任務的過程中對指定的和附屬的部隊行使權力和指導"[2]。指揮與控制是通過指揮官在完成任務時對人員、設備、通信、設施和程序的安排來實現的,以規劃、指揮、協調和控制部隊和行動。傳統的C2結構包括作戰指揮權、作戰控制、戰術控制和行政控制[3], [4]。這些結構植根于物理領域中開展的活動,以聯合行動區為界限,對網絡領域來說,其不足之處越來越多。
軍事理論進一步將[1]網絡行動定義為包括防止未經授權的訪問的網絡安全行動,為擊敗特定威脅而采取的防御行動,為創造拒絕效果而采取的攻擊行動,以及為獲得情報而采取的開發行動[5]。如同在傳統作戰領域(如陸地、空中、海上、太空)中執行的任務一樣,網絡行動也要遵守某些C2結構。然而,與其他領域不同,網絡部隊可能同時在全球、區域和聯合行動區執行任務。因此,網絡行動依賴于集中的規劃和分散的執行,需要對傳統的C2結構進行調整,以實現軍事單位和當局之間的詳細協調。這種結構要求進行規劃、執行和評估的所有各方了解網絡行動的基本行動和程序。聯合部隊執行的物理和邏輯邊界,以及對其使用的優先權和限制,必須進一步在軍事梯隊、國家部隊和聯盟伙伴之間的協調和同步中集中確定。
網絡行動的C2在很大程度上是由傳統的網絡安全技術形成的,比如那些對硬件、軟件、數據和用戶的安全控制進行持續監控的技術[6], [7], [8]。盡管C2現在和將來都是對人的挑戰[9],但新興技術中的共同主題將影響其發展,無論是在網絡領域還是傳統作戰領域。信息技術、傳感器、材料(如電池)、武器的進步,以及越來越多地采用無人駕駛和自主平臺,將推動C2的進化變化。計算機將越來越多地與其他設備連接,并收集或分享數據,而無需人類的干預或意識。在較小規模的設備上增加計算、存儲和帶寬能力將使新的分析技術能夠以更快的節奏提取更多的理解,并更接近觀察點。軍事單位可能進一步需要與一系列行為者互動,并聯合工作以實現共同的理想結果,而沒有任何權力來指導這些臨時伙伴或與他們的信息系統互操作。根據沖突的性質,戰術決策可能需要在不同的層面上進行。甚至完全消除某些網絡空間任務中的地理內涵也是可取的[10]。
總的來說,這些因素表明,分散化和敏捷性是C2架構中非常理想的原則。任何新的架構都可以而且應該支持傳統的等級制度、等級制度內的適應性團隊以及其他分布式環境,同時保持對戰斗空間的情況了解。這些問題包括缺乏網絡社區以外的專業知識,無常的性質、時間和圍繞網絡漏洞的平等,以及任務規劃的集中化[11]。新興的倡議,如美國國防部新興的聯合全域指揮和控制倡議[12],反映了這一概念,即動能、電磁、網絡和信息行動之間的協調相互作用。
分散和保護數據的新興技術可以進一步實現去中心化。分布式賬本技術,即區塊鏈,是記錄資產交易的數字系統,其中交易及其細節同時記錄在多個地方。DML最近提出了一種整合,通過它來克服區塊鏈實施中發現的實際挑戰[13]。同樣,保護使用中的數據,而不是靜止或傳輸中的數據的技術(例如,安全的多方計算、同態加密、功能加密、遺忘RAM、差分隱私)允許對其他方持有的數據進行有用的計算,而不泄露關于數據內容或結構的敏感信息。這樣的技術可以允許不受信任的各方安全地進行DML處理,或者允許多方共同計算有用的結果而不披露基礎輸入。值得注意的是,對抗性的惡意軟件可能會采用這些技術來更好地混淆其操作。雖然這些技術在學術界被廣泛研究,有良好的理論基礎,但特別需要更多的工作來適應軍事用例和可擴展性,以及DML可以提高應用程序的效用的具體實例[14]。
DML應用的進展將提供機會,為規劃和執行任務提供更有能力的決策支持輔助[15]。新穎的人/機界面、混合現實合成環境和遠程存在能力將進一步改變作戰人員之間、自動代理、機器和機器人之間的互動方式。這些技術發展共同提供了在復雜作戰環境中加速觀察、定位、決策和行動的潛力。DML將可能改善決策,并通過人機合作促進自主行動。
網絡空間依賴于空氣、陸地、海洋和空間等物理領域。它包括執行虛擬功能的節點和鏈接,反過來又能促進物理領域的效果。網絡空間通常由三個相互依存的層來描述[5]。物理層由提供存儲、運輸和處理信息的設備和基礎設施組成。邏輯層由那些以從物理網絡中抽象出來的方式相互關聯的網絡元素組成,基于驅動其組件的編程。最后,網絡角色層是通過對邏輯層的數據進行抽象而創建的視圖,以開發在網絡空間中運作的行為者或實體的數字代表。
在這些層中的操縱是復雜的,而且通常是不可觀察的。準確和及時的網絡空間態勢感知(SA)對于在一個日益復雜的戰場上取得成功至關重要。這在戰術環境中尤其如此,因為那里有獨特的信息處理和操作限制。政府和工業界正在進行的大量研究和投資旨在提供工具,從網絡數據中開發基本的SA,但在關鍵指標方面沒有提供所需的數量級改進,如成功的入侵檢測概率、誤報率、檢測時間、反應速度、效果的精確性和可預測性、戰斗損失評估的準確性和及時性,以及人類操作員的認知負荷。防御性反應的累積效應可能會超出最初的威脅,這就需要跨區域的考慮以及防御性反應的協調或同步。這些考慮,特別是對戰術戰場而言,需要在連續處理和更接近源頭的行動方面進行突破性創新,對來自多個異質網絡、情報收集、社交媒體和其他多模式來源的信息進行自主融合。
DML可能有助于開發一些方法,在對手利用這些漏洞之前加速發現這些漏洞。同樣,輕量級的入侵檢測系統可以在戰術邊緣的限制下運行,減輕對帶寬和延遲的限制。其他應用包括自動融合來自許多異質網絡的數據,這些網絡具有高度分布、聯合或分層的特性;自動識別來自不同來源(如網絡和系統、情報、社交媒體)以及不同時間尺度和安全敏感性的模式;網絡和任務本體,以促進操作狀態和任務影響之間的映射;以及建模和模擬解決方案,允許自動生成現實的數據集,以促進實驗。
任務保障是一個成熟的概念,在許多工程領域中進行探索,包括高可用性系統、故障分析以及軟件和系統工程[16]。美國防部政策將任務保證定義為:
一個保護或確保能力和資產--包括人員、設備、設施、網絡、信息和信息系統、基礎設施和供應鏈--的持續功能和彈性的過程,對于在任何操作環境或條件下執行國防部的任務必要功能至關重要[17]。
任務保障的根本是洞察那些成功實現目標所需的資源和行動。任務映射是確定一個任務與其基本資源和程序之間的依賴關系的過程。在網絡空間的背景下,這包括信息系統、業務流程和人員角色。網絡空間是一個復雜的、適應性強的、有爭議的系統,其結構隨時間變化。復雜的因素包括。
事故和自然災害會擾亂網絡空間的物理基礎設施。例子包括操作錯誤、工業事故和自然災害。由于需要大量的外部協調和對臨時備份措施的依賴,從這些事件中恢復可能會很復雜。
美國防部的許多關鍵功能和操作都依賴于簽約的商業資產,包括互聯網服務提供商(ISP)和全球供應鏈,國防部及其部隊對這些資產沒有直接的權力。
美國防部的全球業務與對網絡空間和相關技術的依賴相結合,意味著國防部經常從外國供應商那里采購任務所需的信息技術產品和服務。
確保依賴網絡基礎設施的任務的一個關鍵挑戰是難以理解和模擬動態、復雜和難以直接感知的方面。這包括確定哪些任務在任何時候都是活躍的,了解這些任務依賴哪些網絡資產,這些依賴的性質,以及損失或損害對任務的影響。對網絡地形的理解必須考慮到依賴性是如何隨著時間和各種任務的背景而變化的。它需要確定任務和網絡基礎設施之間的依賴程度和復雜性;考慮到相互競爭的優先事項和動態目標。這種洞察力可以確保必要資源的可用性,并幫助評估在有爭議的條件下的替代行動方案。
此外,作戰人員可能面臨復雜的情況,這些情況不利于傳統的網絡防御行動,而有利于保證任務。例如,當計算機系統被破壞時,目前的做法是將被破壞的系統隔離起來。然后,該系統通常被重建或從一個可信的備份中恢復。業務連續性計劃試圖解決在退化條件下的運作問題,而災難恢復計劃則解決最壞的情況。這些方法優先考慮最小的利潤損失,并不迎合作戰人員可能面臨的復雜決策類型,即要求保持一個完整的系統在線,以確保一個關鍵應用程序的可用性,而對手則利用它作為一個杠桿點來獲得進一步的訪問或滲出機密信息。在這樣的條件下,作戰人員需要清楚地了解每個選擇之間的權衡,以及所選路徑的結果對任務和目標的潛在影響。此外,與受到網絡攻擊的企業不同,作戰人員必須考慮到網絡攻擊是更廣泛的綜合效應應用的一部分,必須考慮對手協調使用網絡、電子戰和動能效應的因素。最后,災難恢復計劃可以說是戰爭失敗后的一個計劃。因此,作戰人員需要有效的理論和決策支持系統,要求在被拒絕的、退化的和有爭議的環境中保持任務的連續性。
目前的任務繪圖方法主要分為兩類。首先,流程驅動的分析是一種自上而下的方法,主題專家確定任務空間和支持該任務空間的網絡關鍵地形。這種方法通過主題專家的業務流程建模產生可解釋的結果,盡管這些結果往往是靜態的。其次,人工制品驅動的分析是一種自下而上的方法,來自主機和網絡傳感器的日志和數據被用來推斷網絡資產的使用。這種方法通過數據挖掘、紅色團隊和取證發現產生高保真的分解,盡管其結果沒有提供對執行任務的替代機制的洞察力。目前存在一系列的工具和方法來完成要素任務映射[18]。
人工智能(AI)已經在軍事任務的決策中出現了許多應用,并將繼續加速這一問題領域的能力。潛在的解決方案可以尋求對特定的業務流程進行建模,并使其成為機器可描述的,從而使用戶生成的邏輯可以對這些流程進行 "推理",并協助管理大量的信息或多個費力、復雜、甚至競爭的任務和解決方案集。DML,加上自然語言處理方面的進展[19],提供了特別的前景,因為C2渠道之間的傳統信息交換手段包括通過軍事信息流頒布的人類生成的任務命令。
防御性網絡空間行動(DCO)包括旨在通過擊敗或迫近網絡空間的敵對活動來維護軍事網絡的保密性、完整性和可用性的任務。這就將DCO任務與傳統的網絡安全區分開來,前者是擊敗已經繞過或有可能繞過現有安全措施的具體威脅,后者是在任何具體的敵對威脅活動之前確保網絡空間不受任何威脅。DCO任務是針對具體的攻擊威脅、利用或惡意網絡空間活動的其他影響而進行的,并根據需要利用來自情報收集、反情報、執法和公共領域的信息。DCO的目標是擊敗特定對手的威脅,并將被破壞的網絡恢復到安全、正常的狀態。活動包括事件管理、事件管理和惡意軟件檢測的任務。它還包括情報活動,以幫助理解新聞媒體、開放源碼信息和其他信號,從而評估敵方威脅的可能性和影響。因此,傳統上植根于情報收集活動的DML應用對防御性網絡空間行動具有同等的效用。
數據泄露的頻率越來越高,預示著安全自動化概念和能力的加速采用[20]。只有通過自動分析、響應和補救威脅,組織才有可能大規模地復制經驗豐富的網絡專家的專業知識和推理,并確保更大程度的保護。有兩個特別的技術類別脫穎而出。安全信息和事件管理,以及安全協調、自動化和響應。
安全信息和事件管理(SIEM)技術聚集事件數據,包括安全設備、網絡基礎設施、系統和應用程序產生的日志和網絡遙測。數據通常被規范化,從而使事件遵循一個共同的結構,并通過有關用戶、資產、威脅和漏洞的上下文信息來加強。SIEM平臺有助于網絡安全監控、數據泄露檢測、用戶活動監控、法規遵從報告、法證發現和歷史趨勢分析。
安全協調、自動化和響應(SOAR)技術能夠將工作流程應用于SIEM平臺收集的網絡事件數據。這些工作流程,有時被稱為 "游戲手冊",可自動采取符合組織流程和程序的響應行動。SOAR平臺利用與補充系統的整合來實現預期的結果,如威脅響應、事件管理,以及在廣泛的網絡管理、資產管理和配置管理工具中增加自動化。
總體而言,SIEM和SOAR技術實現了安全過程的兩個關鍵階段的自動化:信息收集和分析,以及響應的執行。新興研究研究了人工智能技術在事件檢測和自動行動方案建議方面的應用,這兩種技術都適用[21], [22], [23], [24], [25]。
隨著互聯系統的規模和范圍的增長,超越自動化的自主性應用對于可擴展的網絡防御是必要的。重要性較低的互聯系統可以由網絡安全傳感器、系統和安全操作中心監控,而關鍵系統,如部署在有爭議的環境中的系統,可能需要自主智能響應能力[15]。
許多任務環境帶來了不利的條件,其中適應性的、分散的規劃和執行是非常可取的。盡管已經探討了聯合網絡行動的好處和挑戰[26],但市場力量繼續推動軟件即服務解決方案,這些解決方案依賴于云計算基礎設施,在國防部預期的操作環境中可能無法使用。云計算的普遍性和對傳統網絡邊界的侵蝕,助長了對外部和越來越不可信的基礎設施的依賴。同時,這種方法往往提供了最佳的規模經濟和能力。
零信任是一種安全模式和一套設計原則,承認傳統網絡邊界內外威脅的存在。零信任的根本目的是了解和控制用戶、流程和設備如何與數據打交道。零信任框架提出了一個適用于企業網絡的安全愿景,包括云服務和移動設備。同時,零信任仍然是一種愿景和戰略,更多的規范性方法仍在出現[27]。其中包括云安全聯盟的軟件定義周邊框架[28],谷歌的BeyondCorp安全模型[29],Gartner的自適應風險和信任評估方法[30],以及Forrester的零信任擴展生態系統[31]。在探索這些設計原則的應用或它們在保證DML應用方面可能發揮的作用方面,人們做得很少。
隨著網絡安全產品和解決方案的生態系統日益多樣化,實現互操作性以協調機器速度的反應將變得至關重要。新興的規范,如OpenC2[32],將使網絡防御系統的指揮和控制不受底層平臺或實現方式的影響。OpenC2提供了標準化網絡防御系統接口的方法,允許執行網絡防御功能的解耦塊之間的整合、通信和操作。這套規范包括一種語義語言,它能夠為指揮和控制網絡防御組件的目的進行機器對機器的通信;執行器配置文件,它規定了OpenC2語言的子集,并可以在特定的網絡防御功能的背景下對其進行擴展;以及轉移規范,它利用現有的協議和標準在特定環境中實施OpenC2。這一舉措和類似舉措的成功將取決于工業界對它的采用。目前沒有類似的方法用于進攻性網絡空間行動,這主要是因為所使用的工具的定制性質。
社會網絡安全是國家安全的一個新興子領域,它將影響到未來所有級別的戰爭,包括常規和非常規的戰爭,并產生戰略后果。它的重點是科學地描述、理解和預測以網絡為媒介的人類行為、社會、文化和政治結果的變化,并建立社會所需的網絡基礎設施,以便在不斷變化的條件下,在以網絡為媒介的信息環境中堅持其基本特征,實際或即將發生的社會網絡威脅"。[33].
技術使國家和非國家行為者能夠以網絡速度操縱全球的信仰和思想市場,從而改變各級戰爭的戰場。例如,在DML的推動下,"深度造假 "技術出乎意料地迅速發展,這有可能改變人們對現實的認知、作為信息來源的新聞、人們之間的信任、人民與政府之間的信任以及政府之間的信任。
網絡防御將越來越多地納入反措施,以阻止與網絡領域不可分割的影響力運動。這將需要對部隊甚至社會進行教育,讓他們了解現代信息環境的分散性,存在的風險,以及審查我們消化并允許形成我們世界觀的事實的方法和多學科手段。消除軍隊和他們誓死捍衛的社會之間的任何不信任概念,對全球安全至關重要。
傳統的網絡安全和網絡防御方法是在網絡殺傷鏈的后期階段與對手接觸,而網絡欺騙是一個新興的研究領域,探索在早期與對手接觸的效用,特別是欺騙他們[34]。幾十年前,隨著蜜罐的出現,欺騙性方法在研究界獲得了新的興趣,并被視為推翻網絡防御固有的不對稱性的可行方法而得到重振。欺騙性方法有可能通過給對手帶來不確定性來改變不對稱的局面。同時,欺騙能力可能會帶來更多的復雜性。
網絡欺騙,有時被描述為移動目標防御的一種形式,包含了多個系統領域的技術:網絡、平臺、運行環境、軟件和數據。移動目標技術的設計是為了對付現代系統的同質性,即系統和應用程序之間足夠相似,以至于一個單一的漏洞可以使數千或數百萬(或更多)的設備同時受到攻擊。技術尋求在系統設置之間引入多樣性,使系統的關鍵組件隨機化,從而使攻擊者無法利用相同的特征,并隨著時間的推移改變系統組件,從而使相同的漏洞無法重復發揮作用。許多網絡攻擊是 "脆弱的",因為它們需要精確的配置才能成功,而移動目標技術就是利用這種脆弱性。盡管如此,仍然需要研究網絡指標和有效性措施,以判斷網絡欺騙和其他移動目標技術的成功,以及它們對不同威脅模式的應用。
本報告定義了用于分析戰場壓力下卷積神經網絡模型形式的二維(圖像)分類器的方法。在此背景下,戰場壓力被定義為那些改變了傳感器數據相對于用于訓練神經網絡圖像的壓力。戰場壓力可以是有意的,如偽裝或扭曲,也可以是無意的,如遮蔽物或過度的背景(或前景)雜亂。首先描述了進行分析所需的部分,然后是用于對神經網絡分類器進行排名和評級的方法步驟,報告最后以一個實際的分析案例作為結束。
在過去十年中,在深度神經網絡和卷積分類方法的發現推動下,二維分類系統取得了巨大的進展。這一進展得到了開發自動駕駛車輛的推動。自主駕駛車輛已經被部署在某些駕駛環境中,但由于分類錯誤的嚴重后果,一直遠離人口稠密的環境。
一旦意識到這些分類錯誤,研究人員已經分析了其原因,甚至研究了對分類系統的有意攻擊。其中一種攻擊被稱為對抗性攻擊,即待分類圖像中的關鍵像素被改變以故意誤導分類系統。針對這些攻擊的緩解技術已經被提出。對抗性攻擊是在 "微觀"(像素)層面上進行的,其目的是為了讓普通人的眼睛無法察覺。
本研究沒有分析這種類型的微觀攻擊,而是著眼于"宏觀"攻擊對神經網絡模型分類器的影響。這些宏觀攻擊是非常明顯的,如目標偽裝、破壞性著色、故意扭曲和船體消隱等。這些是在戰場環境中會出現的分類系統攻擊,被稱為戰場壓力。由于宏觀攻擊的復雜性和可變性,我們進行了一個 "黑箱 "分析,以確定暴露在戰場壓力下的卷積神經網絡(CNN)的穩健性。用于開發這個分析框架的神經網絡是已發布的、經過預訓練的神經網絡模型,使用轉移學習法對感興趣的分類類別進行了微調。同樣的神經網絡也是從中立的權重和偏差中訓練出來的,它們的穩健性用包含戰場壓力的測試圖像進行測試。
本報告的結構如下。第2節描述了用于訓練和測試被測卷積神經網絡模型的圖像數據庫。第3節描述了所使用的不同的戰場壓力,它們是如何被合成的,以及它們是如何被逐步添加到用于測試神經網絡的圖像中的。第4節描述了用于本報告所述分析的預訓練的CNN模型的選擇。第5節描述了用于針對戰場壓力對不同神經網絡進行評級的指標。第6節和第7節提供了關于從網上下載的微調預訓練神經網絡的方法和分析實例。報告的最后是對所做工作的總結,隨后是為進行分析而編寫的所有MATLAB腳本的附錄。
深度學習技術在計算機視覺領域的快速發展,促進了基于人工智能(AI)應用的廣泛傳播。分析不同種類的圖像和來自異質傳感器數據的能力使這項技術在軍事和國防應用中特別有趣。然而,這些機器學習技術并不是為了與智能對手競爭而設計的;因此,使它們如此有趣的特性也代表了它們在這一類應用中的最大弱點。更確切地說,輸入數據的一個小擾動就足以損害機器學習算法的準確性,并使其容易受到對手的操縱--因此被稱為對抗性機器學習。
對抗性攻擊對人工智能和機器人技術的穩定性和安全性構成了切實的威脅。這種攻擊的確切條件對人類來說通常是相當不直觀的,所以很難預測何時何地可能發生攻擊。此外,即使我們能估計出對手攻擊的可能性,人工智能系統的確切反應也很難預測,從而導致進一步的意外,以及更不穩定、更不安全的軍事交戰和互動。盡管有這個內在的弱點,軍事工業中的對抗性機器學習話題在一段時間內仍然被低估。這里要說明的是,機器學習需要在本質上更加強大,以便在有智能和適應性強的對手的情況下好好利用它。
在很長一段時間里,機器學習研究人員的唯一關注點是提高機器學習系統的性能(真陽性率/敏感度、準確性等)。如今,這些系統缺乏穩健性的問題已不容忽視;許多系統已被證明非常容易受到蓄意的對抗性攻擊和/或操縱。這一事實使它們不適合現實世界的應用,特別是關鍵任務的應用。
一個對抗性的例子是,攻擊者故意設計了一個機器學習模型的輸入,以導致該模型犯錯。一般來說,攻擊者可能無法接觸到被攻擊的機器學習系統的架構,這被稱為黑盒攻擊。攻擊者可以利用 "可轉移性 "的概念近似于白盒攻擊,這意味著旨在迷惑某個機器學習模型的輸入可以在不同的模型中觸發類似的行為。
最近針對這些系統的對抗性攻擊的演示強調了對抗性行為對穩定性影響的普遍關注,無論是孤立的還是互動的。
也許最廣泛討論的攻擊案例涉及圖像分類算法,這些算法被欺騙成 "看到 "噪聲中的圖像,即隨機產生的不對應于任何圖像的白噪聲被檢測為圖像,或者很容易被像素級的變化所欺騙,因此它們將一輛校車分類為鴕鳥,例如。同樣,如果游戲結構或規則稍有改變,而人類不會受到影響,那么表現優于人類的游戲系統(如國際象棋或AlphaGo)就會突然失敗。在普通條件下運行良好的自動駕駛汽車,只要貼上幾張膠帶,就會被誘導轉向錯誤的車道或加速通過停車標志。
許多北約國家利用人工智能和機器學習來改善和簡化軍事行動和其他國家安全舉措。關于情報收集,人工智能技術已經被納入在伊拉克和敘利亞的軍事行動中,其中計算機視覺算法被用來檢測人和感興趣的物體。軍事后勤是這一領域的另一個重點領域。美國空軍使用人工智能來跟蹤其飛機何時需要維護,美國陸軍使用IBM的人工智能軟件 "沃森 "來預測維護和分析運輸請求。人工智能的國防應用還延伸到半自主和自主車輛,包括戰斗機、無人機或無人駕駛飛行器(UAV)、地面車輛和船舶。
人們認為對抗性攻擊在日常生活中相對罕見,因為針對圖像分類算法的 "隨機噪音 "實際上遠非隨機。不幸的是,對于國防或安全技術來說,這幾乎是不可能的。這些系統將不可避免地被部署在對方有時間、精力和能力來開發和構建正是這些類型的對抗性攻擊的環境中。人工智能和機器人技術對于部署在敵人控制或敵人爭奪的地區特別有吸引力,因為這些環境對于我們的人類士兵來說是最危險的環境,在很大程度上是因為對方對環境有最大的控制。
在意識到人工智能發展和應用的技術領先的重要性后,北約于2020年在多國能力發展運動(MCDC)下啟動了人工智能、自動化和機器人技術的軍事用途(MUAAR)項目。該項目的范圍是開發概念和能力,以應對開展聯合聯盟行動的挑戰,并對其進行評估。項目的目標是評估可能受益于人工智能、自動化和機器人技術的當前和未來的軍事任務和功能。它還考慮了效率和成本節約方面的回報。
在國防應用中,對抗性地操縱機器學習分類器所帶來的危險的例子很多,嚴重程度各不相同。例如,致命的自主武器系統(LAWS)可能會將友軍戰車誤認為是敵軍戰車。同樣,一個爆炸裝置或一架敵方戰斗機可能會被錯誤地識別為一塊石頭或一只鳥。另一方面,知道人工智能垃圾郵件過濾器跟蹤某些單詞、短語和字數進行排除,攻擊者可以通過使用可接受的單詞、短語和字數來操縱算法,從而進入收件人的收件箱,進一步增加基于電子郵件的網絡攻擊的可能性。
綜上所述,人工智能支持的系統可能會因為對抗性攻擊而失敗,這些攻擊是故意設計來欺騙或愚弄算法以使其犯錯的。這種攻擊可以針對分類器的算法(白盒攻擊),也可以通過訪問輸入來針對輸出(黑盒攻擊)。這些例子表明,即使是簡單的系統也能以意想不到的方式被愚弄,有時還可能造成嚴重后果。隨著對抗性學習在網絡安全領域的廣泛應用,從惡意軟件檢測到說話人識別到網絡物理系統再到許多其他的如深度造假、生成網絡等,隨著北約增加對自動化、人工智能和自主代理領域的資助和部署,現在是時候讓這個問題占據中心位置了。在將這些系統部署到關鍵任務的情況下之前,需要對這些系統的穩健性有高度的認識。
已經提出了許多建議,以減輕軍事環境中對抗性機器學習的危險影響。在這種情況下,讓人類參與其中或在其中發揮作用是至關重要的。當有人類和人工智能合作時,人們可以識別對抗性攻擊,并引導系統采取適當的行為。另一個技術建議是對抗性訓練,這涉及給機器學習算法提供一組潛在的擾動。在計算機視覺算法的情況下,這將包括顯示那些戰略性放置的貼紙的停車標志的圖像,或包括那些輕微圖像改變的校車的圖像。這樣一來,盡管有攻擊者的操縱,算法仍然可以正確識別其環境中的現象。
鑒于一般的機器學習,特別是對抗性機器學習,仍然是相對較新的現象,對兩者的研究仍在不斷涌現。隨著新的攻擊技術和防御對策的實施,北約軍隊在關鍵任務的行動中采用新的人工智能系統時需要謹慎行事。由于其他國家,特別是中國和俄羅斯,正在為軍事目的對人工智能進行大量投資,包括在引起有關國際規范和人權問題的應用中,北約保持其戰略地位以在未來戰場上獲勝仍然是最重要的。
Elie Alhajjar博士是美國陸軍網絡研究所的高級研究科學家,同時也是紐約州西點軍校數學科學系的副教授,他在那里教授和指導各學科的學員。在來到西點軍校之前,Alhajjar博士曾在馬里蘭州蓋瑟斯堡的國家標準與技術研究所(NIST)從事研究。他的工作得到了美國國家科學基金會、美國國立衛生研究院、美國國家安全局和ARL的資助,最近他被任命為院長的研究人員。他的研究興趣包括數學建模、機器學習和網絡分析。他曾在北美、歐洲和亞洲的國際會議上展示他的研究工作。他是一個狂熱的科學政策倡導者,曾獲得民用服務成就獎章、美國國家科學基金會可信CI開放科學網絡安全獎學金、Day One技術政策獎學金和SIAM科學政策獎學金。他擁有喬治-梅森大學的理學碩士和數學博士學位,以及圣母大學的碩士和學士學位。
收購分析和政策辦公室是國防部負責收購和維持的副部長辦公室(OUSD(A&S))的一部分,該辦公室委托IDA評估使用機器精益分析主要國防收購項目(MDAPs)合同的可行性。分析的目的是從合同中提取數據,并預測項目績效。該研究分為三個階段:爬行、步行和跑步。
爬行階段包括建立一個數據集。在分析的這一階段,收集和處理合同。所選擇的合同在1997年12月至2018年12月期間被列入選定的采購報告(SARs),并且來自截至2019年11月不再報告的MDAPs。對這一時期的合同進行檢查,確保了每個項目都有90%以上的完整性。此外,數據集被限制在這一時期,因此計劃的績效結果是已知的,這在使用機器學習算法進行預測時是必要的。我們收集了24,364份PDF格式的合同文件,涉及149個合同號和34個MDAPs。(最后,我們使用國防分析研究所的文本分析(IDATA)功能,將收集到的文件變成機器可讀的數據集。
在步行階段,通過在我們的數據上訓練機器學習算法來評估合同數據,以回答相對簡單的問題。這項活動確保了數據集具有合理的質量,機器學習算法運行正常,并能產生合理的答案。在這個階段,每個程序都產生了詞云。下圖顯示了兩個程序的詞云,分別是CH-47F和ATACMS-APAM。
ATACMS-APAM計劃的詞云
字云顯示了每個計劃的合同中各種詞匯的頻率,去掉了 "和"、"的"等常見詞匯。這些圖形對于揭示每個項目的文件中最頻繁使用的詞語很有幫助,并有助于確保我們收集到合理的數據。
接下來,我們在這些數據的訓練集上訓練了一個天真貝葉斯分類器,并要求它將每份合同按五個類別之一進行區分:(1)研究、開發、測試和評估(RDT&E);(2)RDT&E修改;(3)采購;(4)采購修改;以及(5)采購運營和維護(O&M)修改。這些類別很容易由人類確定,預計機器學習也會產生同樣的結果。下表顯示了合同類別的分布和每種合同類型的數量。
該算法對80%的文件進行了訓練,然后用來預測其余20%的文件的類別。下面的混淆矩陣顯示了該算法預測合同類型的效果。
文件類型識別的混淆矩陣
對角線元素,也就是最大的數字,顯示了算法在測試樣本中正確識別合同類型的地方。總的來說,該算法對4872個文件中的4607個進行了正確分類,導致總體準確率為94.6%。準確率取決于樣本大小。例如,該算法預測測試數據中的52個文件是RDT&E合同,而95個文件是RDT&E合同,導致近55%的準確率,而3238個采購模式中的3080個,或剛剛超過95%,被正確分類。
后面描述的其他模型表明,合同被成功地轉化為數據。因此,這表明有可能將我們的算法應用于這個數據集,提出相對簡單的問題并獲得合乎邏輯的答案。
在跑步階段,我們提出了更難的預測問題,以測試機器學習算法使用合同數據集來預測項目績效的能力。我們使用Q-比率作為數量增長的衡量標準,使用數量調整后的項目采購單位成本作為成本增長的衡量標準,以及項目結束日期。使用70%的項目來訓練支持向量機(SVM)模型,并對其余30%的項目的績效指標進行預測。支持向量機無法比隨機猜測更好地預測績效。我們還研究了使用聚類來識別類似程序。盡管我們可以識別相似的程序,但很難確定這些程序為什么相似,這表明在這個領域還需要更多的研究。
我們發現,文本分析和機器學習算法很適合從合同中提取信息,并將這些信息轉化為結構化的數據集。盡管我們的分析使用了幾個不同的指標,表明提取的數據對描述性的目的是有用的,但我們無法確定機器學習算法是否能預測項目的表現。然而,這一結果并不意味著用合同數據集預測項目績效是不可行的。它可能意味著,更完整(或不同)的合同集、其他績效指標或替代算法將改善預測結果。此外,為了改善預測,可能有必要將合同數據與其他來源的數據相結合。
態勢感知是作戰人員的必需能力。一種常見的監視方法是利用傳感器。電子光學/紅外(EOIR)傳感器同時使用可見光和紅外傳感器,使其能夠在光照和黑暗(日/夜)情況下使用。這些系統經常被用來探測無人駕駛飛機系統(UAS)。識別天空中的這些物體需要監測該系統的人員開展大量工作。本報告的目的是研究在紅外數據上使用卷積神經網絡來識別天空中的無人機系統圖像的可行性。本項目使用的數據是由作戰能力發展司令部軍備中心的精確瞄準和集成小組提供的。
該報告考慮了來自紅外傳感器的圖像數據。這些圖像被送入一個前饋卷積神經網絡,該網絡將圖像分類為有無無人機系統。卷積模型被證明是處理這些數據的第一次嘗試。本報告提供了一個未來的方向,以便在未來進行擴展。建議包括微調這個模型,以及在這個數據集上使用其他機器學習方法,如目標檢測和 YOLO算法。
本文介紹了一個使用人工神經網絡的人工智能模型,該模型提供了改善超視距(BVR)空戰飛行員態勢感知的參數。在這種作戰方式中,有必要根據來自傳感器(主要是雷達)的信息做出決策。此外,由于有關敵機系統的信息有時是未知的,而飛行員的決策通常是基于對手的。所提出的模型建議處理這些特征,為在建設性模擬環境中的實體進行行為生成,即模擬人操作系統。我們創建了兩架飛機之間的BVR空戰模擬,每架飛機只有一枚導彈,通過拉丁超立方采樣(LHS)來選擇輸入變量,幾乎均勻地覆蓋所有的范圍。這些飛機有類似的行為,它們的參數只在模擬開始時發生變化。仿真環境生成一萬個空戰場景,改變了三十六個輸入參數,用于案例研究中提出的分析。從這些數據中,我們可以創建監督機器學習模型,大大提高BVR空戰飛行員對進攻情況的態勢感知能力,在這種情況下,參考飛機使用導彈攻擊目標或防御陣地,而不是參考飛機試圖避免敵人導彈向其方向發射。進攻型和防御型模型的準確度分別為0.930和0.924,F1分數為0.717和0.678。因此,這項工作的貢獻是使用機器學習算法來產生有關戰術狀態的反應,以提高飛行員的態勢感知,從而改善飛行中的決策過程。
美國海軍和國防部(DOD)正在優先考慮在各戰爭領域迅速采用人工智能(AI),以保持對美國有利的技術優勢。機器學習(ML)是最近人工智能發展的基礎,它存在著一個持續的、沒有得到充分解決的關鍵缺陷:對抗性樣本。自2013年發現以來,在深度神經網絡(DNN)分類器中出現了許多新形式的對抗性樣本攻擊,并提出了許多狹義和特殊的防御措施。這些防御措施都沒有經受住反測試。一些研究人員提出,這種易受攻擊性可能是不可避免的。到目前為止,還沒有發現有效的、可計算的、通用的方法,可以加固DNN,使其免受這種和相關的泛化問題的影響。我們的前提是,ML模型對所有對抗性樣本的魯棒性與抵抗力,可以通過將模型分類空間數據密集區之間的數據點稀疏的潛在空間,作為障礙隔離來改進。我們研究了兩種不同的方法來實現這種對基于對抗性樣本的攻擊防御,測試這些防御對最有效的攻擊,并將結果與現有的技術狀態的防御進行比較。
人工智能(AI)已被提出來作為推進國防部能力的一個關鍵推動因素。人工智能國家安全委員會在其最終報告中寫道:"如果我們的武裝部隊不加速采用人工智能,他們的軍事技術競爭優勢可能會在未來十年內喪失",建議 "美國現在必須采取行動,將人工智能系統投入使用,并在人工智能創新方面投入大量資源,以保護其安全,促進其繁榮,并保障民主的未來" [1]。鑒于人工智能或更具體地說,深度神經網絡(DNN)中的機器學習(ML)最近在科學和工業領域取得了廣泛的突破,這種關注無疑是恰當的。然而,在國防應用中利用ML和其他現代 "深度學習 "方法并非沒有其固有的附加風險。
最近的人工智能主張已經近乎夸大其詞;當然,在與軍事和文職領導層的高層溝通中,也發生了一些夸大其詞的情況。作為這種夸張的例子,參考一下《2019年美國總統經濟報告》是如何向美國領導人介紹機器視覺方面的人工智能狀況的。在第343頁題為 "2010-17年人工智能和人類的圖像分類錯誤率 "的圖表中,它顯示了 "人類分類 "錯誤率與機器分類錯誤率將在2015年超過人類圖像分類能力。對這一說法仔細考慮并對參考研究甚至是當前最先進研究進行檢查,顯示這一特殊的發展仍然是一個遙遠的、尚未達到的里程碑。
即使ML仍然存在挑戰,近年來,機器學習在科學、工業和商業領域的成功應用也在急劇增加。深度神經網絡已經在自然語言處理、天文學、癌癥診斷、蛋白質折疊、語音識別和機器視覺等不同領域取得了巨大的進步[2]-[8]。因此,這類系統的潛在軍事應用同樣比比皆是:分析頻譜上下的聲學和電磁傳感器數據、機器視覺、尋找-修復-跟蹤和瞄準對手的飛機、地下、水面和陸地戰斗人員、人類語言處理、語音識別、自主空中/地面/地下/陸地車輛、信息戰、情報、監視和偵察(ISR)整合、機器人技術、網絡防御、網絡攻擊、戰術決策輔助,等等。
盡管這項技術帶來了巨大進步,但目前的ML分類方法創建的模型在其核心上是有缺陷的,因為它們非常容易受到對抗性樣本攻擊和相關欺騙技術的影響[9]。廣義上講,文獻中定義的這類攻擊有三類:探索性攻擊、逃避性攻擊和中毒性攻擊。在本報告中,我們主要關注防御我們認為最關鍵的需求,即逃避攻擊。為了提供背景,我們簡要地概述了這三種攻擊。探索性攻擊,對手并不試圖實現錯誤分類,而是試圖通過精心設計輸入來獲得模型的知識,這些輸入的結果將提供關于模型內部狀態的信息,其目的是減少模型的不確定性,以支持未來的攻擊。中毒攻擊試圖在訓練期間修改模型,以偷偷地完成模型的一些未被發現的行為變化。最后,在逃避攻擊中,攻擊者不知不覺地修改了人工制定或模型的輸入,以產生分類的變化,從良性的或最初設定的類別到一些其他的、欺騙性的不真實的類別[10]。這最后一類是我們防御的重點,從這一點出發,我們把這些簡單地稱為對抗性樣本攻擊[11]。
自從2013年最初發現DNN分類器中的對抗性攻擊(逃避)以來,已經出現了許多種這樣的攻擊,并且至少提出了同樣多的狹義的特定防御措施作為回應。不幸的是,到目前為止,所提出的防御措施沒有一個能經受住反測試和適應性攻擊[12]。一些研究人員提出,這種易感性可能是空間中問題表述的一個不可避免的特征[13]。目前,還沒有發現一種有效的、計算上可接受的、通用的方法,可以支撐DNN對抗類似的相關的泛化問題[12], [14]。
在國防部的范圍內,大家都承認欺騙在戰爭中起著核心作用。因此,戰爭系統必須被設計成對欺騙有高度的適應性[15]。馬基雅弗利在“Prince”中寫道:"......雖然在任何行動中使用欺騙都是可憎的,但在發動戰爭時,它是值得稱贊的,并能帶來名聲:用欺騙征服敵人與用武力征服敵人一樣受到稱贊。" 對孫子來說,這甚至是更重要的因素,"所有的戰爭都是基于欺騙"。在國防應用中,至關重要的是,不僅系統在戰斗開始時就如設計之處那樣工作,而且它們應該具備有彈性對狡猾的、有同樣資源和動機的對手的潛在計劃。
誠然,ML在民用和科學方面已經取得了巨大的成功。盡管民用工業技術領域與軍事技術需求有很大的內在交集,但應該注意到,后者并不是前者的完美子集。也就是說,戰爭的現實要求其技術必須為虛假信息和故意欺騙的行動、展示和通信做好準備。這兩個領域之間的這些不同假設意味著,在一個領域已經準備好的東西,在另一個領域可能還沒有準備好。在整個國防部,納入這些技術的系統正在被考慮、開發,在某些情況下已經被采用,目的是增強或取代我們一些最關鍵的國家安全能力。在軍事應用中,特別是武器系統和殺傷鏈內的系統,必須消除或至少減少對抗樣本,并對其進行補償,使故障呈現最小的風險。其余的風險必須被明確指出、發現并被作戰人員充分理解。不仔細和充分地解決這個問題是不可想象的,否則我們就有可能采用脆弱性技術,將災難性的漏洞引入我們關鍵戰爭系統。
在防御基于機器學習技術的系統不受欺騙的潛在戰略背景下,我們介紹了一種防御措施。我們的前提是,ML模型對所有對抗性樣本的魯棒性與抵抗力,可以在模型分類器的分類空間數據密集區之間的數據點稀疏潛在空間中插入一個 "填充 "或 "屏障 "的方法來提高[13], [16]。我們相信,通過統計學插值或采用變分自動編碼器(VAE)[17]或生成對抗網絡(GAN)[18]來插值和投射到這個空間的模型可以創建人工填充類樣本來增加數據集,所產生的模型將能夠成功地區分合法數據點和對抗性樣本,同時保持與最先進分類方法相稱的準確性。