亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

景點推薦系統可以幫助游客過濾大量的無關信息, 還能輔助商家發掘潛在的顧客. 然而, 現有 的基于傳統方法的推薦系統, 如基于內容的推薦或協同過濾系統, 雖推薦過程相對透明直觀, 但由于數 據稀疏性的存在, 推薦結果往往不夠準確; 基于深度學習的推薦方法, 雖在一定程度上提高了推薦結 果的精度, 但由于缺乏可解釋性和透明度, 難以滿足部分用戶理解推薦依據的愿望, 也阻礙了此類方法 的推廣應用. 為了解決當前方法所存在的局限, 本文引入基于知識圖譜的景點推薦框架, 將推薦過程 與知識圖譜嵌入相結合, 推斷用戶興趣在知識圖譜上的傳播路徑, 以此作為推薦依據. 此外, 本文通過 對真實旅游數據的多角度時空分析, 探究旅游活動的時空規律, 并將其應用于景點推薦框架中, 提出一 種面向旅游的基于知識圖譜的可解釋推薦方法 —— Geo-RippleNet, 并通過構建基于開放網絡資源的 旅游知識圖譜, 對 Geo-RippleNet 進行了全面的實驗驗證. 結果表明, 本文提出的基于知識圖譜的景點 推薦方法, 不僅可以最大限度地吸收知識圖譜豐富的語義信息, 從而實現可觀的性能提升, 還能充分 利用圖譜的關系知識, 推理興趣傳播路徑, 以增強推薦結果的可解釋性. 此外, 將旅游活動的時空規律 融入到上述推薦框架中, 能夠還原用戶出游和決策的時空過程, 進一步提高方法的性能表現.

付費5元查看完整內容

相關內容

知識圖譜(Knowledge Graph),在圖書情報界稱為知識域可視化或知識領域映射地圖,是顯示知識發展進程與結構關系的一系列各種不同的圖形,用可視化技術描述知識資源及其載體,挖掘、分析、構建、繪制和顯示知識及它們之間的相互聯系。 知識圖譜是通過將應用數學、圖形學、信息可視化技術、信息科學等學科的理論與方法與計量學引文分析、共現分析等方法結合,并利用可視化的圖譜形象地展示學科的核心結構、發展歷史、前沿領域以及整體知識架構達到多學科融合目的的現代理論。它能為學科研究提供切實的、有價值的參考。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

在信息過載的時代,個性化推薦系統對于輔助用戶決策具有重要意義。同時,對推薦的解釋進一步幫助用戶更好地了解被推薦的項目,從而做出知情的選擇,這就使得可解釋的推薦研究變得非常重要。基于文本句子的解釋由于能夠向用戶傳遞豐富的信息而成為推薦系統的一種重要的解釋形式。然而,現有的句子解釋生成方法要么局限于預定義的句子模板,這限制了句子的表現力,要么選擇自由風格的句子生成,這使得句子質量難以控制。為了同時提高句子表達能力和質量,我們提出了一種神經模板解釋生成框架,它通過從數據中學習句子模板,并生成評論特定特性的模板控制的句子,從而實現了兩方面的優點。在真實數據集上的實驗結果表明,NETE在句子質量和表達能力方面始終優于最新的解釋生成方法。通過對案例研究的進一步分析,也可以看出NETE在產生多樣化和可控解釋方面的優勢。

付費5元查看完整內容

推薦系統旨在為用戶推薦個性化的在線商品或信息, 其廣泛應用于眾多Web場景之中, 來處理海量信息數據所導致的信息過載問題, 以此提升用戶體驗. 鑒于推薦系統強大的實用性, 自20世紀90年代中期以來, 研究者針對其方法與應用兩方面, 進行了大量廣泛的研究. 近年來, 很多工作發現知識圖譜中所蘊含的豐富信息可以有效地解決推薦系統中存在的一系列關鍵問題, 例如數據稀疏、冷啟動、推薦多樣性等. 因此, 本文 針對基于知識圖譜的推薦系統這一領域進行了全面的綜述. 具體地, 首先簡單介紹推薦系統與知識圖譜中的一些基本概念. 隨后, 詳細介紹現有方法如何挖掘知識圖譜不同種類的信息并應用于推薦系統. 此外, 總結了相關的一系列推薦應用場景. 最后, 提出了對基于知識圖譜的推薦系統前景的看法, 并展望了該領域未來的研究方向.

付費5元查看完整內容

題目: Fairness-Aware Explainable Recommendation over Knowledge Graphs

簡介: 最近,人們對公平性的考慮日益受到關注,尤其是在智能決策系統中。可解釋的推薦系統可能會受到解釋偏差和性能差異的困擾。在本文中,我們根據用戶的活動水平分析了不同的用戶組,發現不同組之間的推薦績效存在偏差。結果顯示由于不活躍用戶的培訓數據不足,不活躍用戶可能更容易收到不滿意的推薦,并且由于協作過濾的性質,他們的推薦可能會受到更活躍用戶的培訓記錄的影響,因而受到系統的不公平對待。我們提出了一種啟發式重新排序的公平約束方法,以在對知識圖的可解釋性推薦的背景下減輕這種不公平問題。我們使用基于最新知識圖的可解釋推薦算法對幾個數據集進行了實驗,結果表明,我們的算法不僅能夠提供高質量的可解釋的推薦,而且在幾個方面都減少了推薦的不公平性。

付費5元查看完整內容

【導讀】近來,知識圖譜用于推薦系統是關注的焦點,能夠提升推薦系統的準確性與可解釋性。如何將知識圖譜融入到推薦系統呢? 最近中科院計算所百度微軟等學者最新綜述論文《A Survey on Knowledge Graph-Based Recommender Systems》,闡述對基于知識圖譜的推薦系統進行了系統的研究。

地址://www.zhuanzhi.ai/paper/90d0d696560bc88ea93f629b478a2128

為了解決各種在線應用中的信息爆炸問題,提高用戶體驗,推薦系統被提出來進行用戶偏好建模。盡管人們已經做出了許多努力來實現更加個性化的推薦,但是推薦系統仍然面臨著一些挑戰,比如數據稀疏性和冷啟動。近年來,以知識圖譜作為邊信息生成推薦引起了人們的極大興趣。這種方法不僅可以緩解上述問題,提供更準確的推薦,而且可以對推薦的項目進行解釋。本文對基于知識圖譜的推薦系統進行了系統的研究。我們收集了這一領域最近發表的論文,并從兩個角度進行了總結。一方面,我們通過研究論文如何利用知識圖譜進行準確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,我們提出了幾個可能的研究方向。

概述

隨著互聯網的快速發展,數據量呈指數級增長。由于信息量過大,用戶在眾多的選擇中很難找到自己感興趣的。為了提高用戶體驗,推薦系統已被應用于音樂推薦[1]、電影推薦[2]、網上購物[3]等場景。

推薦算法是推薦系統的核心要素,主要分為基于協同過濾(CF)的推薦系統、基于內容的推薦系統和混合推薦系統[4]。基于CF的推薦基于用戶或交互數據項的相似度來建模用戶偏好,而基于內容的推薦利用了物品項的內容特征。基于CF的推薦系統得到了廣泛的應用,因為它可以有效地捕獲用戶的偏好,并且可以很容易地在多個場景中實現,而不需要在基于內容的推薦系統[5]、[6]中提取特征。然而,基于CF的推薦存在數據稀疏性和冷啟動問題[6]。為了解決這些問題,提出了混合推薦系統來統一交互級相似度和內容級相似度。在這個過程中,我們探索了多種類型的邊信息,如項目屬性[7]、[8]、項目評論[9]、[10],以及用戶的社交網絡[11]、[12]。

近年來,將知識圖譜(KG)作為邊信息引入推薦系統引起了研究者的關注。KG是一個異構圖,其中節點作為實體,邊表示實體之間的關系。可以將項目及其屬性映射到KG中,以了解項目[2]之間的相互關系。此外,還可以將用戶和用戶端信息集成到KG中,從而更準確地捕捉用戶與物品之間的關系以及用戶偏好。圖1是一個基于KG的推薦示例,其中電影“Avatar”和“Blood Diamond”被推薦給Bob。此KG包含用戶、電影、演員、導演和類型作為實體,而交互、歸屬、表演、導演和友誼是實體之間的關系。利用KG,電影與用戶之間存在不同的潛關系,有助于提高推薦的精度。基于知識的推薦系統的另一個優點是推薦結果[14]的可解釋性。在同一個示例中,根據user-item圖中的關系序列可以知道向Bob推薦這兩部電影的原因。例如,推薦《阿凡達》的一個原因是,《阿凡達》與鮑勃之前看過的《星際穿越》屬于同一類型。最近提出了多種KGs,如Freebase[15]、DBpedia[16]、YAGO[17]、谷歌的知識圖譜[18],方便了KGs的推薦構建。

圖1 一個基于kg的推薦的例子

本次綜述的目的是提供一個全面的文獻綜述利用KGs作為側信息的推薦系統。在我們的研究過程中,我們發現現有的基于KG的推薦系統以三種方式應用KGs: 基于嵌入的方法、基于路徑的方法和統一的方法。我們詳細說明了這些方法的異同。除了更準確的推薦之外,基于KG的推薦的另一個好處是可解釋性。我們討論了不同的作品如何使用KG來進行可解釋的推薦。此外,根據我們的綜述,我們發現KGs在多個場景中充當了輔助信息,包括電影、書籍、新聞、產品、興趣點(POIs)、音樂和社交平臺的推薦。我們收集最近的作品,根據應用程序對它們進行分類,并收集在這些作品中評估的數據集。

本次綜述的組織如下: 在第二部分,我們介紹了KGs和推薦系統的基礎;在第3節中,我們介紹了本文中使用的符號和概念;在第4節和第5節中,我們分別從方法和評價數據集的角度對基于知識的推薦系統進行了綜述;第六部分提出了該領域的一些潛在研究方向;最后,我們在第7節總結了這次調查。

術語概念

圖2 常用知識圖譜集合

圖3 符號

知識圖譜推薦系統方法

Embedding-based方法

基于嵌入的方法通常直接使用來自KG的信息來豐富項目或用戶的表示。為了利用KG信息,需要使用知識圖嵌入(KGE)算法將KG編碼為低秩嵌入。KGE算法可分為兩類[98]:翻譯距離模型,如TransE[99]、TransH[100]、TransR[101]、TransD[102]等;語義匹配模型,如DistMult[103]等。

根據KG中是否包含用戶,可以將基于嵌入的方法分為兩個類。在第一種方法中,KGs由項目及其相關屬性構成,這些屬性是從數據集或外部知識庫中提取的。我們將這樣的圖命名為項目圖。注意,用戶不包括在這樣的項目圖中。遵循這一策略的論文利用知識圖嵌入(KGE)算法對圖進行編碼,以更全面地表示項目,然后將項目側信息集成到推薦框架中。其大意可以如下所示。

另一種embedding-based方法直接建立user-item圖,用戶,項目,以及相關屬性函數作為節點。在用戶-項目圖中,屬性級關系(品牌、類別等)和用戶級關系(共同購買、共同查看等)都是邊。

Path-based Methods

基于路徑的方法構建一個用戶-項目圖,并利用圖中實體的連接模式進行推薦。基于路徑的方法在2013年就已經開發出來了,傳統的論文將這種方法稱為HIN中的推薦方法。通常,這些模型利用用戶和/或項的連接性相似性來增強推薦。

統一方法

基于嵌入的方法利用KG中用戶/項的語義表示進行推薦,而基于路徑的方法使用語義連接信息,并且兩種方法都只利用圖中信息的一個方面。為了更好地利用KG中的信息,提出了將實體和關系的語義表示和連通性信息結合起來的統一方法。統一的方法是基于嵌入傳播的思想。這些方法以KG中的連接結構為指導,對實體表示進行細化。

總結:

基于嵌入的方法使用KGE方法對KG(項目圖或用戶-項目圖)進行預處理,以獲得實體和關系的嵌入,并將其進一步集成到推薦框架中。然而,這種方法忽略了圖中信息的連通性模式,很少有文獻能夠給出有原因的推薦結果。基于路徑的方法利用用戶-項圖,通過預先定義元路徑或自動挖掘連接模式來發現項的路徑級相似性。基于路徑的方法還可以為用戶提供對結果的解釋。將基于嵌入的方法與基于路徑的方法相結合,充分利用雙方的信息是當前的研究趨勢。此外,統一的方法還具有解釋推薦過程的能力。

圖4 收集論文表。在表格中,Emb代表基于嵌入的方法,Uni代表統一方法,Att’代表注意力機制,’RL’代表強化學習,’AE’代表自動編碼器,’MF’代表矩陣分解。

代表數據集

圖5 不同應用場景和相應論文的數據集集合

未來方向

在以上幾節中,我們從更準確的推薦和可解釋性方面展示了基于知識的推薦系統的優勢。雖然已經提出了許多利用KG作為側信息進行推薦的新模型,但仍然存在一些改進的機會。在這一部分中,我們概述并討論了一些未來的研究方向。

  • 動態推薦。雖然基于KG的推薦系統在GNN或GCN架構下取得了良好的性能,但是訓練過程是耗時的。因此,這些模型可以看作是靜態的偏好推薦。然而,在某些情況下,如網上購物、新聞推薦、Twitter和論壇,用戶的興趣會很快受到社會事件或朋友的影響。在這種情況下,使用靜態偏好建模的推薦可能不足以理解實時興趣。為了捕獲動態偏好,利用動態圖網絡可以是一個解決方案。最近,Song等[127]設計了一個動態圖-注意力網絡,通過結合來自朋友的長期和短期興趣來捕捉用戶快速變化的興趣。按照這種方法,很自然地要集成其他類型的側信息,并構建一個KG來進行動態推薦。

  • 多任務學習。基于kg的推薦系統可以看作是圖中鏈接預測。因此,考慮到KG的性質,有可能提高基于圖的推薦的性能。例如,KG中可能存在缺失的事實,從而導致關系或實體的缺失。然而,用戶的偏好可能會被忽略,因為這些事實是缺失的,這可能會惡化推薦結果。[70]、[95]已經證明了聯合訓練KG完成模塊和推薦模塊以獲得更好的推薦是有效的。其他的工作利用多任務學習,將推薦模塊與KGE task[45]和item relation regulation task聯合訓練[73]。利用從其他kg相關任務(例如實體分類和解析)遷移知識來獲得更好的推薦性能,這是很有趣的。

  • 跨域推薦。最近,關于跨域推薦的研究已經出現。其動機是跨域的交互數據不相等。例如,在Amazon平臺上,圖書評級比其他域更密集。使用遷移學習技術,可以共享來自具有相對豐富數據的源域的交互數據,以便在目標域內進行更好的推薦。Zhang等[128]提出了一種基于矩陣的跨域推薦方法。后來,Zhao等人[129]引入了PPGN,將來自不同領域的用戶和產品放在一個圖中,并利用user item交互圖進行跨領域推薦。雖然PPGN的性能顯著優于SOTA,但是user item圖只包含交互關系,并不考慮用戶和項目之間的其他關系。通過將不同類型的用戶和項目端信息合并到用戶-項目交互圖中,以獲得更好的跨域推薦性能。

  • 知識增強語言表示。為了提高各種自然語言處理任務的性能,有將外部知識集成到語言表示模型中的趨勢。知識表示和文本表示可以相互細化。例如,Chen等人[130]提出了短文本分類的STCKA,利用來自KGs(如YAGO)的先驗知識,豐富了短文本的語義表征。Zhang等人[131]提出了ERNIE,該方法融合了Wikidata的知識,增強了語言的表示能力,該方法已被證明在關系分類任務中是有效的。雖然DKN模型[48]既利用了文本嵌入,也利用了新聞中的實體嵌入,但這兩種嵌入方式只是簡單地串聯起來,得到新聞的最終表現形式,而沒有考慮兩個向量之間的信息融合。因此,將知識增強的文本表示策略應用于新聞推薦任務和其他基于文本的推薦任務中,能夠更好地表示學習,從而獲得更準確的推薦結果,是很有前景的。

  • 知識圖譜嵌入方法。基于不同約束條件的KGE方法有兩種:翻譯距離模型和語義匹配模型。在本次綜述中,這兩種類型的KGE方法被用于三種基于KGE的推薦系統和推薦任務中。但是,還沒有全面的工作建議在什么情況下,包括數據源、推薦場景和模型架構,應該采用特定的KGE方法。因此,另一個研究方向是比較不同KGE方法在不同條件下的優勢。

  • 用戶端信息。目前,大多數基于KG的推薦系統都是通過合并項目側信息來構建圖的,而很少有模型考慮用戶側信息。然而,用戶側信息,如用戶網絡和用戶的人口統計信息,也可以很自然地集成到當前基于KGbased的推薦系統框架中。最近,Fan等人[132]使用GNN分別表示用戶-用戶社交網絡和用戶-項目交互圖,該方法在用戶社交信息方面優于傳統的基于cf的推薦系統。在我們最近的調查[96]中,一篇論文將用戶關系整合到圖表中,并展示了這種策略的有效性。因此,在KG中考慮用戶側信息可能是另一個研究方向。

付費5元查看完整內容
北京阿比特科技有限公司