2022年6月美國防部副部長凱瑟琳-希克斯簽署了美國防部負責任的人工智能戰略和實施途徑(RAI S&I Pathway),該途徑指導國防部(DoD)實現其可信人工智能(AI)生態系統的目標。美國防部必須將自己轉變為一個為人工智能做好準備的組織,將負責任的人工智能(RAI)作為一個突出的特征,以保持其競爭優勢。
美國時間2022年10月27日,美國國防部一舉發布了3份頂層戰略:國防戰略(NDS)、核態勢評估(NPR)和導彈防御評估(MDR)。這是國防部有史以來第一次一攬子發布三份重大戰略,并與國家安全戰略保持一致,目的是使頂層戰略更融合,以整合資源,實現目標。
為美國國防部確定了聯合部隊的戰略方向和優先事項,明確了美國軍方將如何應對美國國家安全利益和穩定開放的國際體系所面臨的日益增長的威脅,確定了國防部為加強威懾力,必須追求的四個最高級別的國防優先事項:
應對“大國”日益增長的多領域威脅;
阻止對美國、盟國和合作伙伴的戰略襲擊;
遏制侵略,同時準備在必要時戰勝沖突——優先考慮“大國”在印度洋-太平洋地區的挑戰,然后是俄羅斯在歐洲的挑戰;
建立有彈性的聯合部隊和國防生態系統。
2022年國防戰略確定了國防部實現其上述目標的三種方式——綜合威懾、戰役行動和建立持久優勢。
報告目錄:
I. 介紹
II. 安全環境
III. 國防重點
IV. 綜合威懾
V. 參加競選
VI. 將我們的戰略建立在盟友和合作伙伴的基礎上,推進地區目標
VII. 部隊規劃
VIII. 建立持久優勢
IX. 風險管理
X. 結論
澳大利亞海軍能力主管奎因少將強調了快速交付能力的必要性,以應對澳大利亞海軍在一個動態和不確定的戰略環境中所面臨的挑戰。他還明確指出,海軍需要通過 "常青"過程不斷地尋求優勢。該計劃提出了一個可執行的過程來實現這一目標。
圖1. 工作路線
RAS-AI 2040戰略提出了四個LOE(人、發掘、開發和交付),作為海軍實現RAS-AI愿景的手段。海軍的RAS-AI戰略計劃確定了一個將發掘活動與交付聯系起來的過程。該計劃中涉及的這些LOE的關鍵方面是:
人(people):未來的澳大利亞海軍勞動力正在進行大量的工作,以預測對RAS-AI系統的需求,然后由合格和有經驗的人員來操作和維護。此外,澳大利亞海軍將繼續通過第二條工作路線,即 "發掘",增加我們對人機協作的理解。
發掘(discover):發掘活動是工業界和學術界與海軍在RAS-AI領域進行合作的絕佳方式。發掘活動與海軍正在尋求解決的差距和機會直接相關。參與這些活動是工業界了解海軍RAS-AI優先事項的一種方式。“自主戰士” 將繼續作為海軍發掘的旗艦項目,并將持續開發。
開發(develop):隨著海軍繼續開發和使用RAS-AI,它將促進知識體系(BOK)不斷增長,這些知識將被收集起來,形成RAS-AI協作環境(RACE)。RACE由 "發掘"提供信息并支持交付。RACE已經包括了諸如RAS-AI架構的元素,它為海上力量提供了一個客觀的設計,不受具體任務場景的影響。這些架構指導能力開發,同時提供對海軍RAS-AI優先事項的理解。它還包括提供共同控制環境(CCE)的路線圖和海軍開發成熟度模型的概要,以及許多其他仍在開發的資源。盡管RACE包含不同級別的人工制品,但其目的是為交付海軍RAS-AI提供資源。
交付(deliver):海軍的能力項目發起人將繼續與交付機構一起,通過海事項目和計劃來支持RAS-AI的交付。除了支持現有的IIP項目和計劃外,鑒于技術發展的快速步伐,海軍還可能在IIP下實施專門的RAS-AI計劃。
海軍是一個負責解決海洋領域中復雜、動態問題的組織。海軍面臨著許多復雜的挑戰,這些挑戰造成了差距和機遇,需要創新。盡管本計劃規定了對差距、風險、問題和機會(GRIO)清單的補充,但 "有目的的創新 "是本計劃的核心所在。因此,它規定了一個過程,以確定RAS-AI可以解決的現有的GRIO;實施發掘活動來解決這些問題;并支持能力開發者和用戶來實施這些活動。
“SEA 1905海上防雷措施和軍事調查”,代表了海軍對RAS-AI能力的重大投資。作為海軍最大和最復雜的RAS-AI項目之一,SEA 1905項目將被用作實施這一活動計劃的典范。支持SEA 1905的GRIO將在創新浪潮的第一次執行中被優先考慮。
當海軍總司令發布RAS-AI戰略2040時,他明確表示,這個活動計劃將是非保密的,并可向工業界發布。發掘、開發和交付過程比海軍要大,需要國防、聯盟、工業和學術界的合作。有一些內容,由于它們的分類,將是內部的人工制品。然而,本計劃旨在創造機會,使聯合部隊、聯盟、工業和學術界能夠在一個促進創新的環境中進行合作,同時適當地管理安全和知識產權。重要的是,本計劃還描述了海軍將使用的各種活動,以使合作伙伴更好地了解海軍的優先事項,從而使他們反過來支持海軍實現這些優先事項。
這個戰略計劃構成了海軍準備海軍力量的任務的一個重要組成部分,以使聯合部隊成為可能。例如,戰爭創新性海軍處(WIN)與整個聯合部隊密切協作,并主持澳國防部的RAS-AI圓桌會議,這是一個分享前沿思想和確定聯合活動機會的論壇。海軍創新處還贊助了一個專門的聯盟聯絡功能,以了解伙伴國的計劃,并向盟友通報進展。該計劃的關鍵支柱,特別是CCE、成熟度模型和架構,代表了海軍的思想領導力。它們將成為互操作性的基礎,并將為聯合能力的發展提供信息,同時也為其提供信息。
最后一章 "執行"是一個行動計劃,列出了海軍將用來收集和定義差距和機會的行動節奏,對發掘活動進行優先排序和安排,并將其與海上能力的交付聯系起來。在這一過程中,為不斷增長的RAS-AI知識體系提供信息,并從中獲得信息。這種行動節奏是以 "行動研究"模式為基礎的,并被表述為 "創新浪潮",它捕捉到了發掘、開發和交付的間斷性但持續重復的性質。
創新浪潮將提供一個有資源的前瞻性工作計劃;整合整個國防、工業、學術界和聯合聯盟伙伴;與海軍的優先事項保持一致;最重要的是,直接告知并加速RAS-AI能力。
海軍將繼續發展這一行動計劃,這包括開發支持性的程序和產品,其中一些將是保密的,包括:
1.RAS-AI路線圖,確定具體的聯系和依賴性(由CASG提供)。
2.RAS-AI的聯合工作
3.有資源的前瞻性工作計劃
4.分類級的RAS-AI架構
5.海軍RAS-AI成熟度評估
6.以SEA1905-1為例,實施戰略計劃。
小型無人駕駛飛機系統(sUAS)的指數式增長為美國防部帶來了新的風險。技術趨勢正極大地改變著小型無人機系統的合法應用,同時也使它們成為國家行為者、非國家行為者和犯罪分子手中日益強大的武器。如果被疏忽或魯莽的操作者控制,小型無人機系統也可能對美國防部在空中、陸地和海洋領域的行動構成危害。越來越多的 sUAS 將與美國防部飛機共享天空,此外美國對手可能在美國防部設施上空運行,在此環境下美國防部必須保護和保衛人員、設施和資產。
為了應對這一挑戰,美國防部最初強調部署和使用政府和商業建造的物資,以解決無人機系統帶來的直接風險;然而,這導致了許多非整合的、多余的解決方案。雖然最初的方法解決了近期的需求,但它也帶來了挑戰,使美國防部跟上不斷變化問題的能力變得復雜。為了應對這些挑戰,美國防部需要一個全局性的戰略來應對無人機系統的危害和威脅。
2019年11月,美國防部長指定陸軍部長(SECARMY)為國防部反小型無人機系統(C-sUAS,無人機1、2、3組)的執行機構(EA)。作為執行機構,SECARMY建立了C-sUAS聯合辦公室(JCO),該辦公室將領導、同步和指導C-sUAS活動,以促進整個部門的統一努力。
美國防部的C-sUAS戰略提供了一個框架,以解決國土、東道國和應急地點的sUAS從危險到威脅的全過程。國防部的利益相關者將合作實現三個戰略目標:(1)通過創新和合作加強聯合部隊,以保護國土、東道國和應急地點的國防部人員、資產和設施;(2)開發物資和非物資解決方案,以促進國防部任務的安全和可靠執行,并剝奪對手阻礙實現目標的能力;以及(3)建立和擴大美國與盟友和合作伙伴的關系,保護其在國內外的利益。
美國防部將通過重點關注三個方面的工作來實現這些目標:準備好部隊;保衛部隊;和建立團隊。為了準備好部隊,國防部將最大限度地提高現有的C-sUAS能力,并使用基于風險的方法來指導高效和快速地開發一套物質和非物質解決方案,以滿足新的需求。為了保衛部隊,國防部將協調以DOTMLPF-P考慮為基礎的聯合能力的交付,并同步發展作戰概念和理論。最后,作為全球首選的軍事伙伴,國防部將通過利用其現有的關系來建設團隊,建立新的伙伴關系,并擴大信息共享,以應對新的挑戰。
通過實施這一戰略,美國防部將成功地應對在美國本土、東道國和應急地點出現的無人機系統威脅所帶來的挑戰。在這些不同操作環境中的指揮官將擁有他們需要的解決方案,以保護國防部人員、設施、資產和任務免受當前和未來的無人機系統威脅。
2022年6月美國防部副部長凱瑟琳-希克斯簽署了國防部負責任的人工智能戰略和實施途徑(RAI S&I Pathway),該途徑指導國防部(DoD)實現其可信人工智能(AI)生態系統的目標。美國防部必須將自己轉變為一個為人工智能做好準備的組織,將負責任的人工智能(RAI)作為一個突出的特征,以保持其競爭優勢。
負責任的人工智能方法意味著什么?
RAI是一個信任之旅。它是一種設計、開發、部署和使用的方法,可以確保我們系統的安全,并合乎道德的使用RAI。RAI體現在道德準則、測試標準、問責檢查、使用指導、人類系統整合和安全考慮上。
正如美國防部長奧斯汀所說:"負責任的人工智能是尖端科技與永恒價值的結合點。我們不相信我們需要在它們之間做出選擇,我們也不相信這樣做會成功。我們對人工智能的使用必須加強我們的民主價值觀,保護我們的權利,確保我們的安全,并捍衛我們的隱私。"
RAI S&I路徑是DoD為確保建設一個可信人工智能生態系統,以發展和加速人工智能而采取的前進方向。國防部的人工智能任務是建立強大的、有彈性的和可靠的人工智能系統,同時在人工智能道德的全球對話中成為領導者和倡導者。該指南通過RAI管理、作戰人員信任、人工智能產品和采購生命周期、需求驗證和人工智能勞動力等RAI實施宗旨,灌輸并實施國防部人工智能道德原則。這種整體方法詳細說明了目標、關鍵的努力方向,以及加強每個領域的一套初步工具。
這一旅程始于2018年,美國防戰略呼吁 "以合法和道德的方式使用人工智能,以促進我們的價值觀",同時國會授權 "為該部制定適當的道德、法律和其他政策,管理人工智能的發展和使用"。國防部于2020年2月正式通過了《國防部人工智能倫理原則》--世界上第一個這樣做的軍隊。為了幫助將人工智能植入整個部門,聯合人工智能中心(JAIC)于2020年9月發布了國防部人工智能教育戰略。從那時起,RAI已經向國防部各級人員進行了教育和培訓。2021年5月26日,國防部重申了國防部對RAI的承諾,并指示根據其RAI實施宗旨,"國防部對RAI采取整體的、綜合的、有紀律的方法 "進行實施,而S&I路徑正是建立在這些宗旨之上的。
RAI S&I途徑促進了國防部在追求人工智能加速的過程中對負責任的行為、過程和結果的承諾。最終,它提供了國防部推進人工智能的戰略方法,同時促進了操作的靈活性,保障了能力部署,并支持可擴展性。鑒于這一成就和其他成就,國防部已經準備好穿越軍事現代化的漫長道路,同時確保美國公民和全球合作伙伴的信心。
RAI實施宗旨包括:(1)調整管理結構和流程,持續監督國防部人工智能使用;(2)系統操作員需達到標準水平的技術熟練程度,以創建可信的人工智能系統和人工智能賦能系統;(3)考慮人工智能采辦風險,并使人工智能開發速度滿足國防部需求;(4)使用需求驗證程序,確保人工智能能力與作戰需求保持一致,同時解決相關的人工智能風險;(5)通過國內和國際合作促進對設計、開發、部署和使用負責任人工智能的共同理解;(6)確保所有美國防部人工智能人員理解實施人工智能的技術、開發過程和操作方法。
雖然人工智能(AI)并不新鮮,但過去十年的技術突破已經大大改變了國家安全格局。我們的對手和競爭者正在大量投資于人工智能和人工智能支持的能力,威脅到全球安全、和平和穩定。為了在一個數字競爭的世界中保持軍事優勢,美國國防部(DoD)必須接受人工智能技術,以跟上這些不斷變化的威脅。以合法、合乎道德、負責任的方式利用新技術是我們的核心精神。
為了確保我們的公民、作戰人員和領導人能夠信任美國防部人工智能能力的產出,國防部必須申明,在設計、開發、測試、采購、部署和使用人工智能時,我們的軍隊對合法和道德行為的堅定承諾。負責任的人工智能(RAI)戰略和實施(S&I)途徑通過定義和溝通我們利用人工智能的框架,照亮了我們的前進道路。它有助于消除不確定性和猶豫不決--并使我們能夠更快地前進。在我們與盟友和聯盟伙伴并肩工作以促進民主規范和國際標準的過程中,從立場上整合道德規范也使國防部有能力保持盟友和聯盟伙伴的信任。
RAI S&I路徑使我們的RAI政策易于實施。它指導了DoD實施道德原則的戰略方法,以及更廣泛地推進RAI--同時確保操作的靈活性,保持能力部署的速度,提供可擴展性,并優先考慮資源的有效分配。這份文件是我們在加速RAI的過程中邁出的關鍵一步,并進一步推動了國防部在追求人工智能技術過程中對負責任的行為、過程和結果的承諾。
美國防部常務副部長希克斯(Kathleen I I. llicks )
人工智能的進步已經證明有能力改變現代社會的每個行業。這些影響擴展到商業、金融、生產和社會行為。美國防部對人工智能的投入,專注于采用符合美國的價值觀、共同的民主理想和軍隊對合法和道德行為的堅定承諾的方式利用這一技術。
2021年5月,美國防部副部長發布了一份備忘錄("RAI備忘錄"),確立并指導該部對RAI開發采取整體、綜合和有紀律的方法。這份RAI備忘錄提出了以下基本原則,作為指導整個部門實施RAI的優先領域:RAI管理、作戰人員信任、AI產品和采購生命周期、需求驗證、負責任的AI生態系統和勞動力。
由此產生的美國防部RAI S&I途徑是圍繞六個原則組織的,并確定了努力的方向:
調整管理結構和流程,持續監督國防部人工智能使用,同時考慮到技術的使用環境。
系統操作員需達到標準水平的技術熟練程度,以創建可信的人工智能系統和人工智能賦能系統。
在人工智能產品和采購生命周期中保持適當的謹慎,以確保從人工智能項目一開始就考慮到潛在的人工智能風險,并努力減輕或改善這種風險,減少意外后果,同時以美國防部所需的速度扶持人工智能發展,以滿足國防戰略。
利用需求驗證過程,確保利用人工智能的能力與業務需求相一致,同時解決相關的人工智能風險。
通過國內和國際參與,促進對RAI設計、開發、部署和使用的共同理解。
確保所有美國防部人工智能工作人員對技術、其開發過程和適用于實施人工智能的操作方法有適當的了解,與他們在2020年美國防部教育戰略中概述的原型角色的職責相稱。
通過在軍事道德和人工智能安全方面的領導,美國防部將贏得我們的服務成員、文職人員和公民的信任。我們也鼓勵RAI在全球范圍內的發展和使用,并加強我們與世界各地的盟友和合作伙伴解決現代國防挑戰。
2022年6月15日,英國國防部在倫敦科技周人工智能峰會上發布了《國防人工智能戰略》,旨在“雄心勃勃、安全和負責任地”使用人工智能的戰略和相關政策。本戰略支持創建新的國防人工智能中心(DAIC),以提供前沿技術樞紐,支撐英軍使用和創新相關技術。本戰略概述了以下內容:一是在國防中使用人工智能的新倫理原則;二是人工智能在國防部加強安全和現代化的地位和應用;三是考慮通過人工智能研究、開發和實驗,通過新概念和尖端技術徹底改變武裝技術能力,并有效、高效、可信地向戰場交付最新裝備。該戰略將將成為英國人工智能戰略的關鍵要素,并加強國防在政府層面通過科學和技術獲取戰略優勢的核心地位。
圖 英國國防部發布《國防人工智能戰略》
(本文根據原文編譯整理,僅供交流參考,觀點不代表本機構立場。)
英國國防部人工智能戰略的愿景是:以英國規模為標準,成為世界上最有效、最高效、最可信和最具影響的國防組織:
有效——提供戰場制勝能力和支持,以及英國與盟友關于人工智能生態系統合作的能力;
高效——通過創新使用技術交付能力,進行作戰并實現生產力效應;
可信——基于人工智能系統的安全性和可靠性受到公眾、盟友和人民的信任,根據英國核心價值觀合法合規地使用人工智能;
影響——積極參與合作和引領人工智能技術的全球發展和管理趨勢;
二**、背景和必要性******
英國國防部《綜合評估(2021)》強調指出,國家在人工智能領域的卓越表現是確保英國在2030年前成為“科技超級大國”的核心。英國國防部《國家人工智能戰略(2021年)》指出,人工智能在改寫整個行業的規則、推動經濟大幅增長和改變生活的所有領域方面具有巨大潛力。英國國防部《綜合作戰概念 (2020年) 》描述了無處不在的信息和快速的技術變革如何改變了戰爭的性質。在軍事作戰的各個領域,沖突正變得愈發復雜。新技術產生大量數據,解鎖新的威脅和漏洞,并通過如蜂群無人機、高速武器和先進網絡攻擊等下一代先進能力擴大潛在攻擊的規模。
人工智能技術以及其影響可能會極大地縮短決策時間,使人類理解負擔加重,而且這些在現代戰場中需要快速做出反應。正如《國防司令部文件(2021)》所指出的,“未來沖突的勝負可能取決于所采用人工智能解決方案的速度和效率”。因此信息作戰變得越來越重要。簡而言之,當代國防正在發生一場根本性的劇變,與人工智能相關的戰略競爭正在加劇,因此必須迅速、主動和全面應對。
本戰略闡述了英國將如何應對這一重大戰略挑戰,其應該引起英國國防部的重視,并參與部隊發展和國防轉型,英國國防部需要明確其機構與人工智能相關的要素并采取相應行動,以在后續執行和交付方面發揮關鍵作用。
三、發展途徑
**一是英國國防部需要轉變為“人工智能就緒”的組織。**具體措施是:1)推動文化、技能和政策變革,培訓領導人,提高人員技能,并加強國防人工智能和自主部門的組織能力;2)創建國防人工智能技能框架和新的人工智能職業發展和晉升路徑;3)將數據視為關鍵戰略資產進行管理和應用,建設新的數字主干網絡和國防人工智能中心。
**二是在速度和規模上采用和利用人工智能,以獲得防御優勢。**具體措施是:1)將人工智能視為能力戰略和部隊發展過程中戰略優勢的關鍵來源;2)短期路線采用成熟的數據科學、機器學習和先進的計算統計技術提升效果和生產力,長期路線進行尖端人工智能技術研發;3)采用多學科多技術將人類認知、創造力和責任與機器速度分析能力相結合以評估人工智能系統的脆弱性和威脅;4)與盟友和伙伴密切合作開發創新能力解決方案以應對共同的挑戰。
**三是推動和支持英國國防和安全人工智能生態系統。**具體措施是:1)通過英國工業和學術人工智能的雄厚基礎以及政府的支持建立信心并明確要求;2)視人工智能生態系統為戰略資產,消除行業壁壘,建立更具活力和一體化的伙伴關系;3)促進行業聯系建立新的國防和國家安全人工智能網絡,促進人才交流和共創,鼓勵業界投資國防相關的人工智能研發,并簡化國防數據和資產的獲取。4)促進中小企業,使監管方法現代化,支持業務增長并最大限度地利用國防人工智能相關知識產權促進相關技術商業化。
**四是塑造全球人工智能發展,以促進安全、穩定和民主價值觀。**具體措施是:1)按照英國的目標和價值觀塑造人工智能的發展,促進倫理方法,并影響符合民主價值觀的全球規范和標準;2)促進安全與穩定,確保英國的技術進步得到適當保護,同時探索建立信心和將軍事人工智能使用風險降至最低的機制;3)考慮可能出現的極端甚至事關生存的風險,并積極與盟友和合作伙伴接觸,制定未來的安全政策,尋求建立對話,以降低戰略錯誤、誤解和誤判的風險。
四、優先效果
通過采用人工智能技術實現本戰略目標,使英國武裝部隊實現現代化,并迅速從工業時代的聯合部隊過渡到敏捷信息時代的綜合部隊,國防部將受益于效率和生產率的提高,其期望的優先效果如下:
決策優勢:通過更充足、更分散的決策制定和基于威脅的機器快速響應,提高作戰節奏和靈活性。
效能:通過智能自主提高靈活性、效能和可用性。
解鎖新能力:通過開發新的作戰方式確保作戰優勢,增強軍事效果,保護人民免受傷害。
武裝部隊:減輕部隊負擔,并將人類決策集中在基于獨創性、背景思維和判斷力的高價值職能上。
五、戰略綜述總結****
**六、**結束語
人工智能必須成為未來必不可少的技術,其也促使著英國國防部改變對現代技術的看法,調整其技術方向和戰略需求,全面擁抱世界領先的人工智能解決方案和能力,推進其國防業務中觀念、文化、規劃和交付方面的持久變化,并將其作為國防戰略融入國防領域,以確保英國軍隊成為敏捷信息時代的綜合部隊。
編譯:船の心
END
世界軍事電子領域2021年度十大進展
毫無疑問,今天圍繞人工智能(AI)的最復雜的治理挑戰涉及國防和安全。CIGI正在促進戰略制定:人工智能對軍事防御和安全的影響項目將這一領域的主要專家與來自國防部的40多名公務員和加拿大武裝部隊的人員聚集在一起,討論人工智能對國家安全和軍事領域的力量倍增效應。
這一努力依賴于一系列的四次研討會,以產生關于數據驅動技術如何引發巨大的技術重組的前瞻性思考,這將對加拿大的國防規劃產生深遠影響。具體來說,這些研討會集中在數據治理和政策(道德、云計算、數據準備和互操作性);決策(可信賴性、人機一體化、生物技術和問責制);模擬工具(培訓、兵棋推演、人機合作、機器人、自主和可信的人工智能);以及信息時代的加拿大情報(將人工智能用于情報)。CIGI還主辦了一個研究生研討會,以激勵整個加拿大在全球公共政策、計算機科學和安全等領域學習的新興學者。
本文探討了在人工智能(AI)和機器學習背景下的軍事特定能力的發展。在加拿大國防政策的基礎上,本文概述了人工智能的軍事應用和管理下一代軍事行動所需的資源,包括多邊參與和技術治理。
維持先進軍事能力的前景現在與人工智能的武器化直接聯系在一起。作為一項通用技術,人工智能代表著一種力量的倍增器,有能力重塑戰爭規則。事實上,在核彈頭仍然是一種單一的技術應用的情況下,人工智能有能力支持許多不同類型的武器和系統。正如北大西洋公約組織(NATO)的指導意見所指出的,人工智能和其他 "智能 "技術現在對加拿大及其盟國的未來安全至關重要。
新技術在改變戰爭的性質方面有著悠久的歷史。從馬匹和盔甲的使用到航空母艦和戰斗機的引進,人工智能和機器人只是代表了軍事技術發展的最新階段。常規武器與人工智能和機器學習的融合,必將重塑決策的性質和軍事戰略轉型中的武力應用。
即使當代人工智能系統的能力被限制在機器學習算法的狹窄范圍內,這種限制可能不會持續太久。與神經科學、量子計算和生物技術相重疊的發現領域正在迅速發展,代表了 "智能機器 "進化的未知領域。在這些新的研究領域中的科學和技術發現給加拿大的國防帶來了巨大的風險,但同時也代表著巨大的機遇。
顯而易見的是,新興技術已經成為高度緊張的地緣政治競爭的基礎,它與一系列商業產業和技術平臺相重疊。中國、俄羅斯、美國和其他國家和非國家行為者正在積極追求人工智能和其他前沿技術的軍事應用。競爭的領域包括云技術、高超音速和新導彈技術、空間應用、量子和生物技術以及人類增強。
盡管技術創新一直塑造著國家間沖突的性質,但新興和顛覆性技術(EDT)的規模和速度是前所未有的。加拿大的國防政策反映了這種擔憂,它呼吁使加拿大武裝部隊(CAF)適應不斷變化的地緣政治環境。加拿大國防規劃已著手擴大和發展加拿大武裝部隊,在新的軍事平臺整合中納入下一代偵察機、遙控系統和天基設施。
基于對不斷變化的技術環境的廣泛評估,加拿大國防部(DND)認識到,這個新時代的特點是全球力量平衡的變化。這包括在快速發展的創新經濟中大國競爭性質的變化。就像石油和鋼鐵為工業時代設定條件一樣,人工智能和機器學習現在也可能為數字時代設定條件。
這種規模的破壞是由技術和制度變化的融合所驅動的,這些變化可以以新的和不可預測的方式觸發復雜的反饋回路。在這個新的環境中,人工智能技術將迫使世界各國軍隊投射力量的能力倍增。確定軍事人工智能發展中的護欄對于避免未來危機至關重要。應用減少風險的措施來識別和減輕軍事人工智能可能帶來的一系列風險將是關鍵。事實上,在這些能力完全嵌入世界上目前和未來的軍隊之前,治理人工智能可能會更容易。
從整體上看,這種轉變預示著從初級機器到數據驅動技術和精密電子的巨大轉變。這種物理、數字和生物技術的加速融合代表了一場巨大技術革命的早期階段。在全球范圍內管理這些新興和顛覆性的技術,對于減少未來沖突的風險至關重要。
從人工智能和機器人到電池存儲、分布式賬本技術(DLT)和物聯網(IoT),新興和顛覆性技術(EDT)現在正在激起一個商業創新的新時代。這一巨大的技術變革景觀正在醞釀一場社會和經濟變革,對中央銀行的發展具有巨大影響。正如北約最近的一份報告所指出的(北約新興和顛覆性技術咨詢小組2020),這些技術包括:
→ 人工智能和機器學習。人工智能/機器學習的發展及其對創新的潛在影響。這包括神經形態計算、生成式對抗網絡,以及人工智能從已經收集或尚未收集的數據中揭示出意想不到的見解的能力。
→ 量子技術。正在進行的從量子過程研究中獲得的知識轉化為量子技術的應用,包括量子計算、量子傳感、量子密碼系統,以及在量子尺度上對材料的操縱和開發。
→ 數據安全。用于保障和損害通信、數據交易和數據存儲安全的算法和系統的設計,包括量子證明加密方法、區塊鏈和分布式賬本架構,以及更廣泛的網絡安全領域。
→ 計算功能的硬件。微型化、電力采集和能源儲存方面的進展,包括在全球范圍內提供數字化關鍵基礎設施所需的物理系統(物聯網)和機器人的廣泛使用及其對全球系統和流程的持續影響。
→ 生物和合成材料。從原子/分子層面的材料設計、合成和操作到中觀和宏觀尺度的創新,支持生物工程、化學工程、基因層面的操作、增材制造和AI介導的生成設計。
正如蒸汽機和印刷術激發了工業革命一樣,人工智能和機器人技術現在也在軍事技術的性質和全球力量平衡方面引發了巨大變革。人工智能的興起并非沒有歷史先例,但伴隨著人工智能的變化表明,需要對國防規劃進行更精確的調整,以適應一個數據驅動的時代。
在大國競爭和多極體系的背景下,人工智能已經成為競爭的一個特別焦點。中國、俄羅斯、美國和其他許多國家都在積極追求人工智能能力,并把重點放在國防和安全方面。例如,中國希望到2030年在人工智能方面領先世界,并期望通過利用大量的豐富數據,擴大其在人工智能產業化方面的領先優勢(Lucas和Feng,2017年)。
事實上,數據和數據驅動的技術現在占據了全球經濟的制高點。整個全球數據經濟的競爭已經與大國競爭密不可分(Mearsheimer 2021)。盡管美國和中國的經濟深深地相互依存,但中國在整個歐亞大陸不斷擴大的投資將很快使其成為世界貿易的中心。
技術優勢仍然是北約國家的關鍵支柱,但中國正在迅速趕超。即使美國在人工智能發現方面建立了強大的領先優勢,中國也越來越有可能在人工智能驅動的應用產業化方面占據主導地位。中國不僅有先進的商業能力,而且還有一個連貫的國家戰略。中國的技術部門正在達到專業知識、人才和資本的臨界質量,正在重新調整全球經濟的指揮高度(Lucas and Waters 2018)(見圖1)。
中國產業部署的大部分技術創新都是 "漸進式 "的,而不是 "顛覆式 "的,但現在這種情況正在改變。將新興市場聚集在其軌道上,中國前所未有的經濟擴張現在對世界經濟產生了引力(The Economist 2018)。標志性項目,價值數萬億美元的 "一帶一路 "倡議(世界銀行2018年)為圍繞電動汽車、電信、機器人、半導體、鐵路基礎設施、海洋工程以及最終的人工智能的廣泛戰略轉變提供了一個全球平臺(McBride和Chatzky 2019年)。
毫不奇怪,中國已經是國際專利申請的世界領導者(世界知識產權組織2020)。隨著自主機器(Etzioni和Etzioni 2017)、可再生能源基礎設施、量子通信(?iljak 2020)、增強型腦機接口(Putze等人2020)和天基武器(Etherington 2020)的出現,重新思考加拿大國家安全,特別是加拿大國防的性質的壓力正在增加。鑒于技術創新的步伐不斷加快,以及亞洲作為世界貿易中心的崛起(Huiyao 2019),來自國外的技術的影響可能是巨大的。
圖1:按購買力平價計算的國內生產總值預測(以萬億美元計)
人工智能的概念已被廣泛討論,但該術語的精確定義仍然是一個移動的目標。與其說人工智能是一項具體的技術或特定的創新,不如說它是一個材料的集合。事實上,即使人工智能技術已經成為廣泛的主流商業應用的基礎,包括網絡搜索、醫療診斷、算法交易、工廠自動化、共享汽車和自動駕駛汽車,人工智能仍然是一個理想的目標。
盡管人工智能領域的研究始于20世紀40年代,但隨著機器學習和計算機處理能力的改進,過去十年對人工智能興趣的爆炸性增長已經加速。人工智能的持續進步被比喻為在人腦中發現的多尺度學習和推理能力。當與大數據和云計算相結合時,預計人工智能將通過將 "智能 "人工智能和機器學習系統與第五代(5G)電信網絡(即物聯網)上的大量聯網設備連接起來,使數字技術 "認知化"。
作為人工智能的一個子集,機器學習代表了人工智能的最突出的應用(見圖2)。機器學習使用統計技術,使機器能夠在沒有明確指令的情況下 "學習",推動許多應用和服務,改善一系列分析和物理任務的自動化。通過使用數據自動提高性能,這個過程被稱為 "訓練 "一個 "模型"。使用一種算法來提高特定任務的性能,機器學習系統分析大量的訓練數據集,以便做人類自然而然的事情:通過實例學習。
今天,機器學習的最常見應用是深度學習。作為更廣泛的機器學習家族的一部分,深度學習利用人工神經網絡層來復制人類智能。深度學習架構,如深度神經網絡、遞歸神經網絡和卷積神經網絡,支持一系列廣泛的研究領域,包括計算機視覺、語音識別、機器翻譯、自然語言處理和藥物設計。
圖2:人工智能的層級
安全人工智能位于新興和顛覆性技術(EDT)星座的中心,包括機器人學、基因組學、電池存儲、區塊鏈、3D打印、量子計算和5G電信。在研究層面,美國仍然是人工智能的全球領導者。目前,國家科學基金會每年在人工智能研究方面的投資超過1億美元(國家科學基金會2018年)。國防高級研究計劃局(DARPA)最近宣布投資20億美元用于一項名為AI Next的計劃,其目標是推進上下文和適應性推理(DARPA 2018)。
與過去的原子武器或隱形飛機的技術發展不同,沒有國家會壟斷軍事人工智能。研究人員和領先的商業企業之間廣泛的全球合作意味著人工智能和機器學習的進步可能會在全球范圍內擴散。事實上,人工智能發展的大多數技術進步是由工業界而不是政府推動的。除了市場主導的技術公司,世界各地廣泛的網絡集群正在孵化新一代的商業創新(Li and Pauwels 2018)。因此,許多未來的軍事應用將可能是為商業產業開發的技術的改編。
幸運的是,加拿大一直是人工智能研究前沿的領導者,并繼續通過2017年推出的泛加拿大人工智能戰略下的幾個項目培育一個強大的人工智能生態系統。加拿大政府積極參與人工智能咨詢委員會和各種國際伙伴關系,包括2020年啟動的全球人工智能伙伴關系;人工智能國防伙伴關系,其第二次對話在2021年舉行;以及重疊人工智能驅動的安全和規劃的多邊協議(五眼,北約)。事實上,加拿大的國防政策,"強大、安全、參與"(SSE),反映了加拿大政府對增加年度國防開支的承諾,重點是技術。
目前的聯邦預算包括對人工智能發展的實質性承諾,承諾在10年內投入4.438億美元(Silcoff 2021)。在政府2021年的預算中,1.85億美元將支持人工智能研究的商業化;1.622億美元將用于在全國范圍內招聘頂尖的學術人才;4800萬美元將用于加拿大高級研究所;五年內4000萬美元將旨在加強埃德蒙頓、多倫多和蒙特利爾的國家人工智能研究所的研究人員的計算能力;五年內860萬美元將幫助推進人工智能相關標準的發展和采用(加拿大政府2021年,148)。
人工智能是一個影響廣泛的商業和軍事技術的模糊領域。像電力或化石燃料一樣,人工智能的廣泛應用意味著人工智能和其他通用技術有能力重新配置現代軍隊的步伐和組織(Bresnahan和Trajtenberg 1995)。從整體上看,人工智能代表了國家安全性質的結構性轉變。出于這個原因,SSE設想了一個未來的軍事態勢,更加注重開發、獲取和整合先進的變革性技術,包括網絡和自主系統。
即使加拿大在傳統聯盟(北美防空司令部、北約和五眼聯盟)中的持續作用仍然是國家安全的基礎,EDT正在從根本上改變沖突的性質。正如格雷格-菲夫(2021年)所觀察到的,人工智能作為戰爭工具的崛起與升級加拿大國家安全架構,特別是加拿大情報部門的日益增長的需求相重疊。技術變革和信息爆炸的復合周期,新的技能組合和新的數據分析戰略對國防規劃的演變變得至關重要。
在數字時代,戰爭正日益成為基于知識的戰爭。隨著沖突進入信息領域,軍事規劃開始重新聚焦于信息/虛假信息行動、網絡行動、情報行動和政治或經濟影響行動。事實上,這種混合戰爭作為一種戰爭工具由來已久,其目的是利用宣傳、破壞、欺騙和其他非動能軍事行動,從內部破壞對手(Bilal 2021)。
網絡仍然是潛在對手、國家代理人、犯罪組織和非國家行為者的一個關鍵目標。這包括對通信、情報和敏感信息的嵌入式監視和偵察。正如Amy Zegart(2021年)所解釋的那樣,技術正在通過極大地擴展數據和信息的獲取,使情報的性質民主化。事實上,今天驅動戰略情報的大部分信息實際上是開放源碼情報(OSINT)或在公共領域。
現代軍隊正變得嚴重依賴安全、及時和準確的數據。隨著數據的急劇膨脹,消化它變得不可能。這種數據爆炸正在推動對新的分析模式和新型網絡工具的需求。在數字時代,安全和情報人員需要新的平臺、新的工具和跨領域工作的新OSINT機構。在這方面,人工智能可能特別有幫助。
隨著數據的重要性增加,在廣闊的數字領域的對抗性競爭也在增加。人工智能和機器學習可以通過篩選巨大的數據庫來極大地提高加拿大的國家情報能力。人工智能不是銀彈。人工智能系統不能產生意義或提供因果分析。然而,人工智能和機器學習可以極大地增強人類在管理數據和數據驅動的分析方面的情報能力。
隨著決策者為數據驅動的世界調整其安全態勢,人工智能有望改變軍事沖突的既定模式。DND/CAF面臨的關鍵挑戰之一是數據驅動的網絡重塑指揮和控制系統的速度(Thatcher 2020)。集中式系統的優勢在于其協調人類活動的效率。在指揮系統中,人員和傳感器推動威脅檢測,將信息向決策堆棧上移,以便決策者可以做出適當的反應。數字技術深刻地加速了這個過程。
人工智能在軍事領域的應用可能被證明對傳統的指揮和控制系統具有挑戰性。例如,在美國,五角大樓的第一位首席軟件官最近辭職,以抗議技術轉型的緩慢步伐。在離開國防部職位后的一次采訪中,尼古拉-沙伊蘭告訴《金融時報》,美國未能對技術變革和其他威脅作出反應,使國家的未來面臨風險(Manson 2021)。
除了變化的速度緩慢,軍事指揮和控制系統的集中性意味著單點故障提供了脆弱的攻擊點。指揮機關和自動或人類控制者往往容易受到利用不良或欺騙性信息的對抗性技術的影響,甚至自上而下的決策在適應復雜的突發挑戰方面也會很緩慢。
神經形態計算、生成式對抗網絡(GANs)、人工智能決策支持、數據分析和情報分析方面的新創新在增強軍事行動的結構和進程方面可能會產生巨大影響。機器學習算法的快速發展已經在商業和軍事領域引發了一波投資熱潮。
超越對損耗和動能攻擊的傳統關注,轉向基于加速和適應的新方法,數據驅動的技術可能是促成國家安全性質徹底轉變的關鍵。人工智能不是一種單一的技術。相反,它是一類可以在一系列軍事和商業應用中整合的技術。這些技術不斷演變的基礎是數據。
數字技術現在由數據推動,并將繼續推動創造越來越多的數據驅動的技術--特別是人工智能。數據是訓練人工智能和先進機器學習算法的基礎。數據既是大規模運行的數字系統產生的 "操作廢氣",也是機器對數據輸入作出反應的過程,它現在推動了機器的 "自主性"。
數據驅動的技術支撐著現代社會的核心社會和經濟功能,涵蓋了基礎設施、能源、醫療保健、金融、貿易、運輸和國防。隨著5G網絡的全球推廣,預計在高度健全的全球信息網絡中創建、收集、處理和存儲的數據將出現爆炸性增長。根據市場研究公司IDC的數據,目前全球數據正以每年61%的速度增長(Patrizio 2018)。預計到2025年,數據將達到175 zettabytes(一萬億吉字節),改變數字經濟的性質和規模(同上)。
出于這個原因,DND/CAF將數據提升到國家資產的水平是明智的。這對經濟增長和加拿大國防都至關重要。將數據作為國家資產加以保護和利用,將意味著重新思考目前構成當代數據架構的大型集中式數字基礎設施。可以肯定的是,網絡時代的數據安全應該是分散的和聯合的,以避免集中式系統的脆弱性。
關于技術破壞的傳統預測往往會犯一個錯誤,即假設這種規模的系統變化只是以一對一的方式取代舊技術。在現實中,這種規模的顛覆往往會不成比例地取代舊的系統,使其具有巨大的新的架構、界限和能力(Arbib和Seba 2020)。
正在進行的人工智能武器化正在助長一場全球軍備競賽,有望重塑加拿大國防戰略的輪廓。事實上,世界上許多國家在人員系統自動化、設備維護、監視系統以及無人機和機器人的部署方面已經遠遠領先(斯坦利和平與安全中心、聯合國裁軍事務廳和史汀生中心2019)。從美國到俄羅斯到以色列再到中國,軍事研究人員正在將人工智能嵌入網絡安全舉措和支持遠程手術、戰斗模擬和數據處理的機器人系統。
以先進的物流、半自動車隊、智能供應鏈管理和預測性維護系統的形式將人工智能應用于軍事行動代表了人工智能的近期應用(Perry 2021)。然而,能夠在陸地、海洋、空中、太空和網絡領域針對個人(無論是否需要人類干預)的自主武器的演變代表了軍事沖突的可能未來(見圖3)。事實上,近100個國家的軍隊目前擁有某種程度的武裝或非武裝無人機能力(Gettinger 2019)。
圖3:全球無人機激增
商業無人機技術在采礦、農業和能源領域的縱橫捭闔,正在助長無人機技術的廣泛擴散。正如最近亞美尼亞和阿塞拜疆之間的沖突所表明的那樣,一群相對便宜的自主和半自主無人機可以被利用來壓倒傳統的軍事系統,使一系列當代平臺變得過時(Shaikh和Rumbaugh 2020)。輕型、可重復使用的武裝無人機,如土耳其的Songar(Uyan?k 2021)可以配備一系列有效載荷,包括迫擊炮、手榴彈和輕機槍。最近對沙特阿拉伯的Abqaiq石油加工設施(Rapier 2019)和俄羅斯的Khmeimim空軍基地(Hambling 2018)的攻擊反映了軍事無人機在不同戰場環境中的應用越來越多。
致命自主武器系統(LAWS)被定義為可以在沒有人類授權的情況下選擇和攻擊目標的武器,它被設計為在獨立識別目標之前在指定的行動區域內長期徘徊。多個無人機或機器人可以并行運作,以克服對手的防御或摧毀一個特定目標。開發人員傾向于將致命性武器系統分為三大類,即觀察、定位、決定和行動(OODA)循環(見圖4)。這些類別包括。"循環中的人"、"循環中的人 "和 "循環外的人"。這種區分也被框定為 "半自主"、"受監督的自主 "和 "完全自主 "的技術系統。不幸的是,受監督的致命性自主武器系統和完全自主的致命性自主武器系統之間的區別,可能只是一個軟件補丁或一個監管程序。
圖4:OODA環
隨著致命性自主武器系統和其他數據驅動的技術變得更便宜和更廣泛,它們可能會給廣泛的國家和非國家行為者提供平臺和工具,以新的和破壞性的方式利用人工智能和機器學習。除了收緊OODA循環外,軍事人員將需要了解人工智能在加速OODA循環方面的影響,以確定在特定情況下哪種模式最合適。
鑒于EDT的范圍和規模,認為我們可以簡單地保持從上個世紀繼承的系統和做法是錯誤的。正如英國查塔姆研究所2018年的一份報告所警告的那樣,美國、英國和其他核武器系統正變得越來越容易受到網絡攻擊(Unal and Lewis 2018)。這些擔憂是有根據的。人工智能和EDT的擴散一起,幾乎肯定會通過利用人工智能和自主系統的規模效應,為小國和非國家行為者帶來好處。
對于許多北約國家來說,網絡平臺已經成為多領域行動的關鍵--海、空、陸、網絡和空間。大規模的網絡使得在復雜環境中可視化和協調大量資源成為可能。在5G電信和云計算的基礎上,信息系統現在可以有效地收集、傳輸和處理大量的戰場數據,提供實時數據分析。
連接設備正在成為協調空襲、駕駛無人機、消化戰斗空間的實時視頻和管理高度復雜的供應鏈的關鍵。在英國,國防數據框架提供了一個結構,以解決軍事組織與數據驅動的企業需求相一致的挑戰(Ministry of Defence 2021)。從戰略到通信到后勤到情報,數字平臺現在是協調復雜軍事行動的基礎。數據現在是所有作戰領域的命脈。
在一個數字化的戰斗空間中,每個士兵、平臺和資源現在都是一個復雜軍事網絡中的節點。從20世紀90年代以網絡為中心的美國軍事行動開始,數字技術已經成為先進武器、戰術和戰略的基礎。從戰場態勢感知和自主無人機到精確制導彈藥和機器驅動的心理行動,網絡正在使戰爭進入網絡時代。
在集中式機構對工業時代至關重要的地方,平臺和網絡正在成為數字時代的關鍵。人工智能本質上是一種 "自下而上 "的技術,依靠不斷 "喂養 "大量的數據來支持機器學習作為 "學習引擎"。隨著數字生態系統的激增,網絡平臺和它們所依賴的數據管理系統成為管理不斷擴大的資源和人員的關鍵。
與金融部門一樣,DND應該尋求區塊鏈等DLT,以加速加拿大軍隊的數字化轉型。通過在分散的網絡中橫向分配數據,CAF區塊鏈可以幫助減少官僚化系統固有的限制和脆弱性。DLT提供了一個高度分散的驗證系統,可以確保所有的通信和數據傳輸免受對手的攻擊,同時消除集中式節點的潛在故障。
人工智能在軍事規劃中的應用正在迅速推進,許多國家在部署無人機和機器人方面已經取得了很大進展。事實上,無人機技術的全球擴散正在順利進行中。
世界各地的軍隊正在加速開發或采購攻擊型無人機(見圖5)。俄羅斯的 "閃電"(BulgarianMilitary.com 2021)、西班牙的Rapaz8以及英國、9美國10和以色列11的各種無人機項目共同代表了軍事技術新時代的早期階段。與工業時代的軍事技術不同,無人機可以以低成本獲得,并需要相對較少的技術技能。
無人機群技術涉及微型/迷你無人機/無人駕駛飛行器或無人機群,利用基于共享信息的自主決策。事實上,當代軍用無人機已經可以被設計成在沒有人參與的情況下定位、識別和攻擊目標。利用蜂群技術,數以百計的非武裝無人機可以從現場收集信息,同時用各種武器(即火器、火炮和/或彈藥)引導數以千計的無人機。
正如簡短的視頻 "Slaugherbots "所展示的那樣,完全自主的武器將使瞄準和殺死獨特的個人變得非常容易和便宜。在面部識別和決策算法的基礎上,國家和非國家行為者都可以廣泛使用致命性武器。數以千計的相對便宜的無人機配備了爆炸性的彈頭,有可能壓倒防空系統,攻擊基礎設施、城市、軍事基地等等。
圖5:無人機對比
無人機群壓倒加拿大軍事設施的威脅,以及對關鍵基礎設施的網絡攻擊或在衛星傳感器檢測到威脅時自動發射的高超音速導彈,代表了一個令人不安但越來越可能的未來。從復雜性科學和對昆蟲的研究中產生的,使用無人機來支持 "集群情報 "代表了一個加速戰爭節奏的新工具集。
為了應對這種不斷變化的環境,DARPA提出了 "馬賽克戰爭"的概念。馬賽克戰爭的中心思想是,模塊化系統可以成為應對高度網絡化環境的廉價、靈活和高度可擴展的工具。就像馬賽克中的瓷片一樣,單個作戰平臺可以被設計成高度可配置的。編隊利用分散的代理在 "殺戮網 "上進行重新配置。殺戮網的目標是避免 "單體系統 "的結構僵化。
與傳統戰爭中需要的復雜棋局不同,馬賽克戰爭利用數字網絡,利用模塊的靈活性和增強的決策(時間壓縮)加快動態響應時間。像自然界中的復雜系統一樣,殺傷性網絡使用算法來消除單點故障,通過模塊化設計加速反應時間。
從主導地位(預測)轉向加速反應(適應),"馬賽克戰爭 "旨在支持混合軍事單位,利用 "決策棧 "上下的橫向網絡。人工智能、無人機、傳感器、數據和人員結合在一起,為地面上的作戰指揮官提供支持,使小型編隊能以更快的速度獲得情報、資源和后勤資產。
像 "馬賽克戰爭 "這樣的模塊化系統表明,未來的戰爭將越來越多地利用現在驅動戰爭游戲和模擬的計算、數據分析和算法。推動高度流動、游戲化和不可預測的環境,未來的人工智能系統可以將戰爭加速到一個隨著結果范圍的擴大而變得極其密集的計算速度和節奏。
DARPA最近的AlphaDogfight(2019-2020年)為這一新現實提供了一個窗口。使用復雜的F-16飛行模擬器讓計算機與有經驗的人類飛行員對決,試驗的目的是為DARPA的空戰進化計劃推進人工智能開發者。毫不奇怪,F-16人工智能代理通過積極和精確的機動性擊敗了人類飛行員,而人類飛行員根本無法與之相提并論,五局為零。
人工智能的武器化也在激起對抗人工智能系統的新戰略和方法。正如網絡行動(無論是間諜活動還是攻擊)可以指示計算機網絡或機器以它們不打算的方式運行,對手也可以對人工智能系統使用同樣的策略。這個過程被稱為對抗性機器學習,旨在找出機器學習模型的弱點并加以利用。攻擊可能發生在開發或部署階段,包括通過提供欺騙性輸入(例如,"毒化"數據)或針對模型本身來誤導模型。
這些方法在國家安全環境中特別危險,因為在許多情況下,它們是微妙的,人類無法察覺。此外,具有挑戰性的是,對手不一定需要對目標模型的具體知識或直接訪問其訓練數據來影響它。隨著人工智能系統變得更加普遍,更多的人可以接觸到,對手的吸引力和攻擊機會將增加。
攻擊者可能試圖修改訓練數據或測試數據。這是通過創造對抗性樣本來實現的,這些樣本被故意 "擾亂 "或改變并提供給模型,從而導致錯誤。例如,通過改變洗衣機圖像的分辨率,研究人員能夠欺騙一個模型,將機器分類為 "安全 "或 "擴音器"(Kurakin, Goodfellow and Bengio 2017)。對人的眼睛來說,對抗性圖像看起來幾乎是一樣的。
在國家安全方面,對手可能會試圖使用同樣的技術來暗示武器系統實際上是一個社區中心。如果這是在孤立的情況下發生的,那么這個問題很可能被識別和解決。如果對手的樣本被長期大規模使用,這可能成為一個重大的挑戰,并影響對情報收集系統的信任。
此外,一些對手可能并不精確--或有技能--并可能試圖迫使一個模型對整個類別而不是特定類別進行錯誤分類。由于我們在國家安全環境中越來越依賴計算機圖像,并不總是能夠實時或在有爭議的空間進行驗證,因此在這種攻擊中出現誤判的風險是很大的。
高后果的人工智能系統并不是對抗性攻擊的唯一目標。受對抗性樣本影響的人工智能系統可以包括生物識別,其中假的生物特征可以被利用來冒充合法用戶,語音識別中攻擊者添加低量級的噪音來混淆系統(Zelasko等人,2021)和計算機安全(包括在網絡數據包中混淆惡意軟件代碼)。
由于DND/CAF尋求通過部署人工智能系統來提高效率--如軍艦上的語音助手(McLeod 2019)--必須在部署前評估對抗性使用的風險并制定對策。
除了改變輸入,另一種攻擊方法可用于逆向工程模型以獲取訓練數據(Heaven 2021)。由于機器學習模型對訓練數據的表現比新的輸入更好,對手可以識別目標模型預測的差異,并與包括個人身份信息在內的已知數據相匹配(Shokri等人,2017)。隨著機器學習即服務變得越來越多--而且在許多情況下,被用作開發更復雜的能力的基礎--DND將需要仔細審查國家安全系統的數據泄漏風險。這甚至適用于看似無害的系統,如語音助手。
人工智能系統的弱點的例子很多(Hadfield-Menell等人,2017)。這些例子包括吸塵器將收集到的灰塵彈回它剛打掃過的地方,以便它能收集更多的灰塵,或者數字游戲中的賽艇在原地循環以收集分數,而不是追求贏得比賽的主要目的。雖然這些例子沒有生命危險,但同樣的技術--被稱為獎勵黑客(當一個模型被指示使其目標函數最大化,但卻以非故意的方式進行)--可以被用于更嚴重的效果。
從旨在用固定的訓練數據解決 "單步決策問題 "的機器學習過渡到解決 "順序決策問題 "和更廣泛的數據集的深度機器學習,將使對抗性攻擊更難發現。這種威脅是如此之大,以至于美國情報高級研究項目活動正在資助一個項目,以檢測木馬人工智能對已完成系統的攻擊。令人擔憂的是,政府可能會在不知情的情況下操作一個產生 "正確 "行為的人工智能系統,直到出現 "觸發 "的情況。例如,在部署過程中,對手可能會攻擊一個系統,并在更晚的時候才導致災難性的故障發生。這些類型的攻擊可能會影響到圖像、文本、音頻和游戲的人工智能系統。
正如對抗性樣本可以用來愚弄人工智能系統一樣,它們可以被納入訓練過程中,以使它們對攻擊更加強大。通過對最重要的國家安全人工智能系統進行清潔和對抗性數據的訓練--要么給它們貼上這樣的標簽,要么指示一個模型將它們分離出來--更大的防御是可能的。但是,復雜的對手很可能會自行躲避這種防御方法,而使用額外的戰術進行深度防御將是必要的。
GANs有各種各樣的用例,從創建深度假說到癌癥預后(Kim, Oh and Ahn 2018)。它們也可用于防御對抗性攻擊(Short, Le Pay and Ghandi 2019),使用一個生成器來創建對抗性樣本,并使用一個判別器來確定它是真的還是假的。一個額外的好處是,使用GANs作為防御,實際上也可能通過規范數據和防止 "過度擬合 "來提高原始模型的性能(IBM云教育2021)。
對抗性攻擊和防御模型進行基準測試--如使用GANs--是一種全面的對策,可以對AI系統進行比較。這種方法為制定和滿足安全標準提供了一個量化的衡量標準,并允許評估人工智能系統的能力和限制。
作為這個測試和評估過程的一部分,博弈論可能有助于建立對手的行為模型,以確定可能的防御策略。由于人工智能系統無法在傳統的信息安全意義上進行 "修補",因此在部署前應仔細分析針對國家安全人工智能系統的對抗性攻擊的風險,并定期進行審查。此外,訓練有素的模型--特別是那些關于機密數據和最敏感應用的模型--應該得到仔細保護。
數據驅動的戰爭的速度和范圍表明,我們正在進入一個新的時代,其中致命性武器系統的潛力--無論是否有人類參與--都可能極大地改變全球力量平衡。從殺手級無人機和人機合作到增強的軍事決策(殺手2020),人工智能技術將使世界各國軍隊投射力量的能力大大增加。正在進行的人工智能武器化也與空間武器化相重疊(《經濟學人》2019年),因為低地球軌道(LEO)日益成為軍事監視、遙感、通信、數據處理(Turner 2021)和彈道武器(Sevastopulo和Hille 2021)的操作環境。
人工智能與低地軌道和致命性自主武器系統的興起,代表了全球安全性質的一個關鍵轉折點。為此,世界各地的學術研究人員、技術企業家和公民都對人工智能的軍事化所帶來的危險表示擔憂。正如他們正確地指出的那樣,在規范負責任地開發和使用人工智能的規范和法律方面缺乏國際共識,有可能造成未來的危機。
除了我們在科幻小說中經常看到的對人工智能的夸張描述,重要的是建立適當的制衡機制,以限制人工智能技術可能提供的權力集中。關于管理人工智能和其他數字技術的共同國際規則和條例將塑造未來幾十年的戰爭和沖突的輪廓。在軍事人工智能的發展中制定護欄,對于減少未來沖突的可能性至關重要。
加拿大和其他北約國家積極參與這一討論可能是未來全球和平與安全的關鍵。在發動戰爭的條件(jus ad bellum)和戰爭中的人工智能行為(jus in bello)方面,規范人工智能使用的戰爭法仍有待確定。鑒于美國和中國之間不斷擴大的競爭,需要制定關于致命性自主武器系統的使用及其擴散的條約是再及時不過了。
正如北約所觀察到的,加拿大及其盟國應尋求促進、參與和建立合作機會,以支持開發和應用人工智能和其他EDT的廣泛、全面的架構(北約新興和顛覆性技術咨詢小組2020)。盡管面臨著艱巨的挑戰,全球治理在規范軍事人工智能方面可以發揮重要作用。盡管對人工智能及其武器化有不同的看法,但過去的談判可以作為未來條約的基礎,特別是在定義戰爭規則方面。這包括關于常規武器、核軍備控制、生物和化學武器、地雷、外層空間和平民保護的條約(見圖6)。
到目前為止,《聯合國特定常規武器公約》(CCW)已經監督了一個討論應對自主武器帶來的人道主義和國際安全挑戰的進程。已經提出了一系列監管致命性自主武器系統的潛在方案,包括《特定常規武器公約》下的一項國際條約,一個不具約束力的行為準則,宣布各國承諾負責任地開發和使用致命性自主武器系統。在聯合國之外,2013年發起了 "停止殺手機器人 "運動,目標是完全禁止致命性自主武器系統。
聯合國秘書長安東尼奧-古特雷斯強調了人工智能和其他數字技術的風險和機遇(聯合國2020),并呼吁禁止致命性自主武器系統(古特雷斯2021)。不幸的是,聯合國成員國,特別是聯合國安理會的觀點存在分歧,一些國家認為監管是民族國家的專屬權限,而另一些國家則側重于更多部門的做法。除了人工智能的武器化,在圍繞人權、算法偏見、監控(公共和私人)以及國家支持的或國家支持的網絡攻擊等問題上也存在廣泛的分歧。
對于世界上的主要軍事大國來說,缺乏互信仍然是追求人工智能集體軍備控制協議的一個重大障礙。即使相當多的國家支持提供新的具有法律約束力的條約,禁止開發和使用致命性自主武器,但世界上大多數主要軍事大國都認為人工智能的武器化具有重大價值。鑒于這些分歧,致命性自主武器系統的多邊管理將需要建立信任措施,作為打開政治僵局的軍控進程的手段。
走向平凡的監管 也許制定管理人工智能的政策和監管制度的最具挑戰性的方面是難以準確地確定這些制度應該監管什么。與生物和化學武器不同,人工智能大多是軟件。事實上,人工智能是一個移動的目標:40年前被定義為人工智能的東西,今天只是傳統的軟件。
人工智能是一個模糊的技術領域,影響著廣泛的商業和軍事應用。例如,機器學習算法是搜索引擎(算法排名)、軍用無人機(機器人技術和決策)和網絡安全軟件(算法優化)的成分。但它們也支撐著平凡的行業,甚至兒童玩具(語義分析、視覺分析和機器人技術)、金融軟件和社交媒體網絡(趨勢分析和預測分析)。
與屬于這些平凡的監管領域的產品和流程一樣,人工智能技術不是被設計成最終實體,而是被設計成在廣泛的產品、服務和系統中使用的成分或組件。例如,一個 "殺手機器人 "不是一種特定技術的結果。相反,它是人工智能 "成分 "重新組合的結果,其中許多成分也被用來檢測癌癥或增加駕駛者的安全。
雖然人們傾向于使用一個專門的不擴散鏡頭來監管人工智能,但雙重用途的挑戰仍然存在。與核擴散或轉基因病原體不同,人工智能不是一種特定的技術。相反,它更類似于一個材料或軟件成分的集合。與大多數二元的核不擴散鏡頭相比,可以在食品監管中找到更相關(盡管不那么令人興奮)的監管模式的靈感,特別是食品安全和材料標準(Araya和Nieto-Gómez 2020)。
鑒于對人工智能進行全面監管存在重大的概念和政治障礙,治理仍然是一項艱巨的挑戰。一方面,如果我們把人工智能理解為一系列復制人類活動的技術實踐,那么就根本沒有一個單一的領域可以監管。相反,人工智能的治理幾乎重疊了每一種使用計算來執行任務的產品或服務。另一方面,如果我們將人工智能理解為大幅改變人民和國家之間權力平衡的基礎,那么我們就會面臨重大挑戰。
幸運的是,這并不是民族國家第一次面臨影響全球安全的新技術。在第二次世界大戰之后,世界上最強大的國家--美國、英國、蘇聯、中國、法國、德國和日本--對核武器、化學制劑和生物戰的全球治理進行監督。當時和現在一樣,世界必須采取集體行動來治理人工智能。
與冷戰時期一樣,包括定期對話、科學合作和分享學術成果在內的建立信任措施可以幫助減少地緣政治的緊張。為管理軍事人工智能帶來的風險制定一個共同的詞匯,可以為隨著時間的推移制定更有力的人工智能多邊條約提供基礎。
在這方面,經濟合作與發展組織(OECD)已經公布了其關于人工智能的建議,作為一套政府間標準,于2020年2月啟動了人工智能政策觀察站。加拿大和法國政府還與經合組織一起領導了一個全球人工智能伙伴關系(GPAI),旨在成為一個人工智能政策的國際論壇。GPAI的成員專注于以 "人權、包容、多樣性、創新和經濟增長原則 "為基礎的負責任的人工智能發展。
除了GPAI,一些歐洲國家已經呼吁歐盟成員開始一個關于負責任地使用新技術的戰略進程--特別是人工智能。美國已經邀請盟國討論人工智能的道德使用問題(JAIC公共事務2020)。北約已經啟動了一個進程,鼓勵成員國就一系列道德原則和具有軍事用途的電子技術關鍵領域的國際軍備控制議程達成一致(Christie 2020;NATO 2020)。認識到EDT對全球安全的深遠影響,北約于2019年12月推出了EDT路線圖(北約科技組織2020)。
從整體上看,二十一世紀需要進行正式監管。從長遠來看,這很可能包括尋求與禁止生物武器、化學武器和殺傷人員地雷一樣的人工智能條約。然而,鑒于人工智能的創新速度和世界超級大國之間日益擴大的分歧,就人工智能的全球治理進行談判的機會之窗可能正在關閉。
圖6:人工智能的全球治理
即使在工業時代即將結束的時候,技術創新也在加速進行(Araya 2020)。自從大約80年前誕生以來,人工智能已經從一個神秘的學術領域發展成為社會和經濟轉型的強大驅動力。人工智能在戰爭中的整合被一些軍事分析家描述為一個不斷發展的 "戰場奇點"(Kania 2017)。在 "技術奇點"(Schulze-Makuch 2020)的概念基礎上,人們越來越多地猜測,人工智能和機器人將超越人類的能力,有效地應對算法驅動的戰爭。
人工智能和其他EDT的演變正在將先進的數據、算法和計算能力匯集起來,以 "認知 "軍事技術。在這種新環境下,現代軍隊正變得嚴重依賴提供安全、及時和準確數據的網絡。數據已經成為數字系統的 "作戰用氣 "和驅動 "智能機器 "的原料。隨著數據重要性的增加,在廣闊的數字領域的對抗性競爭也在增加。事實上,數據的真正價值在于其推動創新的數量和質量。
正如北約關于EDT的年度報告(北約新興和顛覆性技術咨詢小組2020)明確指出,要想跟上技術變革的步伐,就必須在技術的開發、實驗和應用方面保持靈活性和快速迭代。整個CAF的創新能力必須是一個更廣泛的創新生態系統的一部分,該系統有效地整合了公共和私人生態系統的研究和實施。這包括與加拿大工業界合作利用雙重用途的GPT的明確目標,以便利用已經存在的技術。
這種多領域的合作在歷史上被定義為國家創新體系(NSI)(OECD 1997)。事實上,NSI政策和規劃可以采取多種形式,從松散的協調到高度整合的伙伴關系。在美國(Atkinson 2020)、中國(Song 2013)和歐洲(Wirkierman, Ciarli and Savona 2018)應用的各種NSI規劃模式表明,在最大化政府-產業-研究伙伴關系方面可以找到大量的經濟和社會回報。政府應通過稅收優惠、采購和研究資金以及戰略規劃,努力建設加拿大的技術能力。但它不能單獨行動。
國家創新必然取決于機構參與者在一個共享的生態系統中進行合作。出于這個原因,一個協調的加拿大國家統計局將需要在推動長期創新的過程中,人們和機構之間的技術和信息的相互流動。鑒于EDT的許多創新是由工業界主導的,推進公私伙伴關系對加拿大軍隊的發展至關重要。對于國防部/加拿大空軍來說,要推進適合數字時代的軍隊,政府、工業界和學術界將需要以更綜合的方式進行合作。
建立一個強大的加拿大創新生態系統將意味著更廣泛的公私合作和持續的知識和資源的再培訓、培訓和孵化。盡管開發尖端人工智能需要人力資本投資,但大多數人工智能應用現在可以通過開源許可獲得,即使核心學習算法可以在公共平臺和整個學術生態系統中獲得。這種 "開放一切 "環境的影響是對封閉的等級制度和深思熟慮的官方機構的實質性挑戰。
政府程序和規劃將需要適應加速的創新生命周期,以配合EDT積極的淘汰周期。除了與網絡技術相關的巨大的不對稱安全風險外,向數據驅動型軍隊的轉變將需要大量關注數據安全和數據治理。與進行傳統的國家間沖突所需的大量成本和規劃不同,網絡攻擊的破壞性影響可以由僅有一臺個人電腦的小團體對關鍵基礎設施發動。鑒于未來不斷增加的挑戰,大型官僚機構(公司、政府、學術和軍事)的設計變化是不可避免的。
除了對新的和不同的知識、資源和專長的需求,加拿大政府和加拿大軍方將需要平衡硬實力和不斷變化的地緣政治格局的需求。在美國占主導地位的時代之外,二十一世紀正被一個以技術民族主義和后布雷頓森林體系為特征的多極體系所塑造。面對一個快速發展的數字時代,國際合作將是確保和平與安全的關鍵。信息共享、專家會議和多邊對話可以幫助世界各民族國家及其軍隊更好地了解彼此的能力和意圖。作為一個全球中等國家,加拿大可以成為推動這一努力的主要伙伴。
國際治理創新中心(CIGI)是一個獨立的、無黨派的智囊團,其經同行評議的研究和可信的分析影響著政策制定者的創新。其全球多學科研究人員網絡和戰略伙伴關系為數字時代提供政策解決方案,目標只有一個:改善各地人民的生活。CIGI總部設在加拿大滑鐵盧,得到了加拿大政府、安大略省政府和創始人吉姆-巴爾西利的支持。
2018年國防部人工智能戰略將人工智能定義為機器執行通常需要人類智能的任務的能力。戰略和相關計劃包括了全面戰略的一些特點,但不是全部。例如,國防部的9個與人工智能相關的戰略和計劃并不包括與采用人工智能技術相關的資源、投資和風險的完整描述(見圖)。在未來與人工智能相關的戰略中,發布包括綜合戰略的所有特征的指導,可以幫助國防部更好地定位,幫助管理者確保對人工智能的問責和負責任的使用。
國防部已經開始識別并報告其人工智能活動,但其人工智能基線庫存存在局限性,如排除分類活動。國防部官員表示,這些限制將在AI庫存識別過程的后續階段得到解決。然而,國防部還沒有開發一個高層次的計劃或路線圖來捕獲所有的需求和里程碑。該計劃將為國防部提供一個高層次的、端到端對所有必要特征的視圖,以實現該計劃的目標,為國會和國防部決策者提供一個完整、準確的人工智能活動清單。
國防部組織在人工智能活動上進行合作,但可以更充分地納入領先的合作實踐。國防部使用了各種正式和非正式的合作機制,GAO之前的工作已經確定,如跨機構小組。國防部已經部分納入了領先的協作實踐,例如識別領導能力。然而,國防部官員告訴我們,他們正在制定指導方針和協議,明確定義參與人工智能活動的國防部組件的角色和職責。通過最終確定和發布這樣的指南,國防部可以幫助確保所有參與者對整個部門的AI工作的責任和決策達成一致。