編碼器-解碼器模型是功能強大的工具,已在許多NLP任務中獲得成功,但是現有方法仍然存在兩個關鍵問題。首先,由于遞歸神經網絡(RNN)的固有缺陷,它們無法捕獲長期依賴關系,從而導致重要信息的丟失,否則將在句子中反映出來,從而導致模型無法應用更長的文本。第二,缺乏工作致力于生成忠實的三元組,序列到序列的體系結構會產生不忠實的序列,從而產生意義上的矛盾。例如,給定句子“美國總統特朗普在紐約市皇后區長大,并居住在那里直到13歲”,該模型可以生成事實“(特朗普出生于皇后區)”。盡管從邏輯上講是正確的,但我們無法從給定的句子中找到直接的證據來支持它。
為了解決這些問題,我們引入了帶有生成變換器(CGT)的對比學習三元組提取框架,該框架是一個共享的Transformer模塊,支持編碼器-解碼器的生成式三元組對比學習多任務學習。首先,我們使用分隔符和部分因果掩碼機制將輸入序列與目標序列連接起來,以區分編碼器-解碼器表示形式。除了預先訓練的模型之外,我們的模型不需要任何其他參數。然后,我們介紹了一種新穎的三元組對比學習對象,該對象利用真實的三元組作為正實例,并利用隨機令牌采樣將損壞的三元組構造為負實例。為了共同優化三元組生成對象和對比學習對象,我們引入了分批動態注意掩碼機制,該機制允許我們動態選擇不同的對象并共同優化任務。最后,我們介紹了一種新穎的三元組校準算法,以在推理階段濾除虛假三元組。
隨著深度學習的成功,基于圖神經網絡(GNN)的方法[8,12,30]已經證明了它們在分類節點標簽方面的有效性。大多數GNN模型采用消息傳遞策略[7]:每個節點從其鄰域聚合特征,然后將具有非線性激活的分層映射函數應用于聚合信息。這樣,GNN可以在其模型中利用圖結構和節點特征信息。
然而,這些神經模型的預測缺乏透明性,人們難以理解[36],而這對于與安全和道德相關的關鍵決策應用至關重要[5]。此外,圖拓撲、節點特征和映射矩陣的耦合導致復雜的預測機制,無法充分利用數據中的先驗知識。例如,已有研究表明,標簽傳播法采用上述同質性假設來表示的基于結構的先驗,在圖卷積網絡(GCN)[12]中沒有充分使用[15,31]。
作為證據,最近的研究提出通過添加正則化[31]或操縱圖過濾器[15,25]將標簽傳播機制納入GCN。他們的實驗結果表明,通過強調這種基于結構的先驗知識可以改善GCN。然而,這些方法具有三個主要缺點:(1)其模型的主體仍然是GNN,并阻止它們進行更可解釋的預測;(2)它們是單一模型而不是框架,因此與其他高級GNN架構不兼容;(3)他們忽略了另一個重要的先驗知識,即基于特征的先驗知識,這意味著節點的標簽完全由其自身的特征確定。
為了解決這些問題,我們提出了一個有效的知識蒸餾框架,以將任意預訓練的GNN教師模型的知識注入精心設計的學生模型中。學生模型是通過兩個簡單的預測機制構建的,即標簽傳播和特征轉換,它們自然分別保留了基于結構和基于特征的先驗知識。具體來說,我們將學生模型設計為參數化標簽傳播和基于特征的2層感知機(MLP)的可訓練組合。另一方面,已有研究表明,教師模型的知識在于其軟預測[9]。通過模擬教師模型預測的軟標簽,我們的學生模型能夠進一步利用預訓練的GNN中的知識。因此,學習的學生模型具有更可解釋的預測過程,并且可以利用GNN和基于結構/特征的先驗知識。我們的框架概述如圖1所示。 圖片
圖1:我們的知識蒸餾框架的示意圖。學生模型的兩種簡單預測機制可確保充分利用基于結構/功能的先驗知識。在知識蒸餾過程中,將提取GNN教師中的知識并將其注入學生。因此,學生可以超越其相應的老師,得到更有效和可解釋的預測。
我們在五個公共基準數據集上進行了實驗,并采用了幾種流行的GNN模型,包括GCN[12]、GAT[30]、SAGE[8]、APPNP[13]、SGC[33]和最新的深層GCN模型GCNII[4]作為教師模型。實驗結果表明,就分類精度而言,學生模型的表現優于其相應的教師模型1.4%-4.7%。值得注意的是,我們也將框架應用于GLP[15],它通過操縱圖過濾器來統一GCN和標簽傳播。結果,我們仍然可以獲得1.5%-2.3%的相對改進,這表明了我們框架的潛在兼容性。此外,我們通過探究參數化標簽傳播與特征轉換之間的可學習平衡參數以及標簽傳播中每個節點的可學習置信度得分,來研究學生模型的可解釋性。總而言之,改進是一致,并且更重要的是,它具有更好的可解釋性。
本文的貢獻總結如下:
在自然語言處理和知識圖構造的信息提取中,三次提取是必不可少的任務。在本文中,我們將重新審視用于序列生成的端到端三重提取任務。由于生成三元組提取可能難以捕獲長期依賴關系并生成不忠實的三元組,因此我們引入了一種新穎的模型,即使用生成Transformer的對比三元組提取。具體來說,我們介紹了一個共享的Transformer模塊,用于基于編碼器-解碼器的生成。為了產生忠實的結果,我們提出了一種新穎的三重態對比訓練對象。此外,我們引入了兩種機制來進一步提高模型性能(即,批量動態注意遮罩和三級校準)。在三個數據集(即NYT,WebNLG和MIE)上的實驗結果表明,我們的方法比基線具有更好的性能。
//www.zhuanzhi.ai/paper/b8ed53721b7162af43614d558adb9c58
本文旨在從表單文檔中提取零樣本的結構化信息。與傳統的文檔結構話信息提取的不同在于,對于指定的鍵,零樣本學習在訓練集中不需要存在其對應的訓練數據,而在預測過程中,根據鍵的文本描述直接在文檔中尋找該鍵對應的目標值。零樣本結構化信息提取使得模型可以預測數量龐大的鍵對應的值而不需要額外的標注數據。為了達到這個目的,本文提出鍵和觸發詞可感應的基于Transformer框架的兩階段模型(KATA)。第一階段根據鍵的描述在文檔中尋找對應的觸發詞;第二階段根據觸發詞在文檔中預測對應的目標值。為了提升模型的泛化能力,在大量的維基百科數據上進行預訓練。最終在兩個微調數據集上進行測試,英文數據集和中文數據集分別獲得0.73和0.71左右的F1值。實驗結果表明,本文提出的KATA模型能一定程度上能提取零樣本結構化信息。
本文提出一種語義分組網絡通過建立詞組與相關語義視頻幀的映射來減少信息冗余。 本文提出了一個語義分組網絡(SGN)的視頻描述生成網絡,該網絡嘗試(1)使用具有部分已解碼描述的可區分詞組對視頻幀進行分組,然后(2)在預測下一個單詞時使用這些語義對齊的視頻幀組進行解碼。 本文發現連續的幀可能提供了相同的信息,然而現有方法集中于僅基于輸入視頻來丟棄或合并重復信息。語義分組網絡學習了一種算法來捕獲部分已解碼描述中最具區分性的詞組以及將每個詞組與相關視頻幀的映射,通過建立此映射可以將語義上相關的幀聚類,從而減少冗余。與現有方法相反,來自已解碼描述詞的連續反饋使語義分組網絡能夠動態更新適應部分解碼描述的視頻表示。此外,本文提出了一種對比注意損失,以促進單詞短語和視頻幀之間的準確對齊而無需人工注釋。
//www.zhuanzhi.ai/paper/ca2f9fa733ff339f5ca3e10526823d47
圖神經網絡(GNN)已經成為圖表示學習的事實標準,它通過遞歸地聚集圖鄰域的信息來獲得有效的節點表示。盡管 GNN 可以從頭開始訓練,但近來一些研究表明:對 GNN 進行預訓練以學習可用于下游任務的可遷移知識能夠提升 SOTA 性能。但是,傳統的 GNN 預訓練方法遵循以下兩個步驟:
在大量未標注數據上進行預訓練; 在下游標注數據上進行模型微調。 由于這兩個步驟的優化目標不同,因此二者存在很大的差距。
在本文中,我們分析了預訓練和微調之間的差異,并為了緩解這種分歧,我們提出了一種用于GNNs的自監督預訓練策略L2P-GNN。方法的關鍵是L2P-GNN試圖以可轉移的先驗知識的形式學習如何在預訓練過程中進行微調。為了將局部信息和全局信息都編碼到先驗信息中,我們在節點級和圖級設計了一種雙重自適應機制。最后,我們對不同GNN模型的預訓練進行了系統的實證研究,使用了一個蛋白質數據集和一個文獻引用數據集進行了預訓練。實驗結果表明,L2P-GNN能夠學習有效且可轉移的先驗知識,為后續任務提供好的表示信息。我們在//github.com/rootlu/L2P-GNN公開了模型代碼,同時開源了一個大規模圖數據集,可用于GNN預訓練或圖分類等。
總體來說,本文的貢獻如下:
多元序列學習的本質是如何提取數據中的相關性。這些數據集,如重癥監護病房的每小時醫療記錄和多頻語音時間序列,通常不僅在個別成分中表現出強烈的序列依賴性(“邊緣”記憶),而且在橫剖面依賴性中也表現出不可忽略的記憶(“聯合”記憶)。由于聯合分布演化的多元復雜性是數據生成過程的基礎,我們采用數據驅動的方法,構建了一種新的循環網絡結構,稱為記憶門控循環網絡(mGRN),門顯式地調節兩種不同類型的記憶:邊緣記憶和聯合記憶。通過對一系列公共數據集的綜合模擬研究和經驗實驗的結合,我們表明我們提出的mGRN架構始終優于針對多元時間序列的最先進架構。
//www.zhuanzhi.ai/paper/4236df35ff33a6911c4913ac13bb78e0
擁有良好醫學知識的人類醫生,只需與病人進行幾次有關癥狀的對話,就能診斷出疾病。相比之下,現有的以知識為基礎的對話系統往往需要大量對話實例來學習,因為它們無法捕捉不同疾病之間的相關性,忽視了它們之間共享的診斷經驗。為解決這一問題,我們提出了一種更自然、更實用的范式,即低資源的醫療對話生成,它可以將源疾病的診斷經驗轉移到有少量數據可供適應的目標疾病。它利用常識知識圖譜來表征先前的疾病癥狀關系。此外,我們還開發了一個圖演化元學習(GEML)框架,該框架通過學習進化常識圖譜來推理一種新疾病的疾病癥狀相關性,有效地緩解了大量對話的需求。更重要的是,通過動態演變的疾病癥狀圖,GEML還很好地解決了現實世界的挑戰,即每種疾病的疾病癥狀相關性可能隨著更多診斷病例而變化或演變。在CMDD數據集和我們新收集的Chunyu數據集上的大量實驗結果證明了我們的方法優于最先進的方法。此外,GEML還可以在線生成豐富的對話敏感的知識圖譜,對其他基于知識圖譜的任務有借鑒意義。
//www.zhuanzhi.ai/paper/e378691f4b084a18b1a0238815c63fb6
圖神經網絡(gnn)的優勢在于對結構化數據的拓撲信息進行顯式建模。然而,現有的gnn在獲取層次圖表示方面的能力有限,而層次圖表示在圖形分類中起著重要的作用。本文創新性地提出了層次圖膠囊網絡(HGCN),該網絡可以聯合學習節點嵌入和提取圖的層次結構。具體地說,解糾纏圖膠囊是通過識別每個節點下的異構因素建立的,這樣它們的實例化參數代表同一實體的不同屬性。為了學習層次表示,HGCN通過顯式地考慮部件之間的結構信息,刻畫了低層膠囊(部分)和高層膠囊(整體)之間的部分-整體關系。實驗研究證明了HGCN算法的有效性和各組成部分的貢獻。
//www.zhuanzhi.ai/paper/c9930a15b45547cafbee90db8c5612aa
目標檢測器通常在完全標注實例的監督學習情況下獲得很好的結果。但是,對于稀疏實例注釋,它們的性能遠遠不能令人滿意。現有的稀疏標注目標檢測方法主要是對難的負樣本的損失進行重加權,或者將未標注的實例轉換為忽略區域,以減少假陰性的干擾。我們認為這些策略是不夠的,因為它們最多可以減輕由于缺少注釋而造成的負面影響。在本文中,我們提出了一個簡單而有效的機制,稱為協同挖掘,稀疏標注的目標檢測。在協同挖掘中,一個連體網絡的兩個分支相互預測偽標簽集。為了增強多視圖學習和更好地挖掘未標記實例,將原始圖像和相應的增強圖像分別作為Siamese網絡的兩個分支的輸入。協同挖掘可以作為一種通用的訓練機制,應用于大多數現代目標檢測器。在三種不同稀疏注釋設置的MS COCO數據集上進行了實驗,使用兩種典型的框架:基于錨的檢測器RetinaNet和無錨檢測器FCOS。實驗結果表明,與RetinaNet的協同挖掘方法相比,在相同的稀疏標注設置下,相比于不同的基線,改進了1.4%~2.1%,超過了現有的方法。
在場景圖分類的一個主要挑戰是,物體的外觀和關系可以明顯不同于另一幅圖像。以前的工作通過對圖像中所有物體的關系推理,或將先驗知識納入分類來解決這個問題。與之前的工作不同,我們不考慮感知和先驗知識的分離模型。相反,我們采用多任務學習方法,其中分類被實現為一個注意力層。這允許先驗知識在感知模型中出現和傳播。通過使模型也代表先驗,我們實現了歸納偏差。我們表明,我們的模型可以準確地生成常識性知識,并且將這些知識迭代注入到場景表示中可以顯著提高分類性能。此外,我們的模型可以根據作為三元組的外部知識進行微調。當與自監督學習相結合時,這將獲得僅對1%的帶注釋的圖像進行準確的預測。