亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Reinforcement Learning 101

摘要: 強化學習是現代人工智能領域最熱門的研究課題之一,它的普及程度也在不斷提高。讓我們看看開始學習RL需要知道的5件有用的事情:

  • 強化學習是什么?它和其他機器學習相比怎么樣?
  • 如何確切表示一個基本強化學習問題?
  • 一些最有用的強化學習算法是什么?
  • 強化學習有哪些實際應用?
  • 如何開始強化學習?

作者簡介: Shweta Bhatt,理學碩士,數據科學家,谷歌開發人員機器學習專家。

付費5元查看完整內容

相關內容

 是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智能是計算機科學的一個分支。

強化學習(RL)研究的是當環境(即動力和回報)最初未知,但可以通過直接交互學習時的順序決策問題。RL算法最近在許多問題上取得了令人印象深刻的成果,包括游戲和機器人。 然而,大多數最新的RL算法需要大量的數據來學習一個令人滿意的策略,并且不能用于樣本昂貴和/或無法進行長時間模擬的領域(例如,人機交互)。朝著更具樣本效率的算法邁進的一個基本步驟是,設計適當平衡環境探索、收集有用信息的方法,以及利用所學策略收集盡可能多的回報的方法。

本教程的目的是讓您認識到探索性開發困境對于提高現代RL算法的樣本效率的重要性。本教程將向觀眾提供主要算法原理(特別是,面對不確定性和后驗抽樣時的樂觀主義)、精確情況下的理論保證(即表格RL)及其在更復雜環境中的應用,包括參數化MDP、線性二次控制,以及它們與深度學習架構的集成。本教程應提供足夠的理論和算法背景,以使AI和RL的研究人員在現有的RL算法中集成探索原理,并設計新穎的樣本高效的RL方法,能夠處理復雜的應用,例如人機交互(例如,會話代理),醫學應用(例如,藥物優化)和廣告(例如,營銷中的終身價值優化)。在整個教程中,我們將討論開放的問題和未來可能的研究方向。

付費5元查看完整內容

資源標題

強化學習整合:Awesome Reinforcement Learning

資源列表

  • 代碼
  • 理論研究
  • 應用
  • 教程
  • 在線樣例
  • 開源強化學習平臺
付費5元查看完整內容

報告題目:

Deep Reinforcement Learning for Computer Vision

報告簡介:

近年來,深度強化學習作為機器學習的基本技術之一得到了發展,并成功地應用于各種計算機視覺任務(表現出最先進的性能)。在本教程中,我們將概述深度強化學習技術的趨勢,并討論如何使用它們來提高各種計算機視覺任務的性能(解決計算機視覺中的各種問題)。首先,我們簡要介紹了深度強化學習的基本概念,并指出了在不同的計算機視覺任務中所面臨的主要挑戰。其次,介紹了一些用于計算機視覺任務的深度強化學習技術及其種類:策略學習、注意感知學習、不可微優化和多智能體學習。第三,介紹了深度強化學習在計算機視覺不同領域的應用。最后,我們將討論深度強化學習中的一些開放性問題,以說明未來如何進一步發展更先進的計算機視覺算法。

嘉賓介紹:

Jiwen Lu,副教授,中國清華大學,自動化系。清華大學自動化系副教授,2015.11-至今,新加坡高級數字科學中心研究科學家,2011.3-2015.11,2003.7-2007.7西安理工大學信息科學系助理講師。

Liangliang Ren ,清華大學博士生,研究方向是計算機視覺與機器學習、度量學習與深度強化學習

付費5元查看完整內容

報告主題: Reinforcement Learning

報告簡介: 強化學習是智能體(Agent)以“試錯”的方式進行學習,通過與環境進行交互獲得的獎賞指導行為,目標是使智能體獲得最大的獎賞,強化學習不同于連接主義學習中的監督學習,主要表現在強化信號上,強化學習中由環境提供的強化信號是對產生動作的好壞作一種評價(通常為標量信號),而不是告訴強化學習系統RLS(reinforcement learning system)如何去產生正確的動作。由于外部環境提供的信息很少,RLS必須靠自身的經歷進行學習。通過這種方式,RLS在行動-評價的環境中獲得知識,改進行動方案以適應環境。其基本原理是:如果Agent的某個行為策略導致環境正的獎賞(強化信號),那么Agent以后產生這個行為策略的趨勢便會加強。Agent的目標是在每個離散狀態發現最優策略以使期望的折扣獎賞和最大。Nando教授將從強化學習的基礎入手,并結合強化學習的應用展開介紹。

嘉賓介紹: Nando曾在加州大學伯克利分校(UC Berkeley)從事人工智能工作,并于2001年成為加拿大不列顛哥倫比亞大學的教授,隨后于2013年成為英國牛津大學的教授。2017年,他全職加入DeepMind,擔任首席科學家,以幫助他們解決智力問題,使子孫后代可以過上更好的生活。 Nando還是加拿大高級研究所的資深研究員,并曾獲得多個學術獎項。

付費5元查看完整內容

主題: Exploration-Exploitation in Reinforcement Learning

摘要: 強化學習(RL)研究的是當環境(即動力和反饋)最初未知,但可以通過直接交互學習時的順序決策問題。學習問題的一個關鍵步驟是恰當地平衡對環境的探索,以便收集有用的信息,并利用所學的政策來收集盡可能多的回報。最近的理論結果證明,基于樂觀主義或后驗抽樣的方法(如UCRL、PSRL等)成功地解決了勘探開發難題,并且可能需要比簡單(但非常流行)的技術(如epsilon貪心)小指數的樣本來收斂到接近最優的策略。樂觀主義和后驗抽樣原則直接受到多臂bandit文獻的啟發,RL提出了具體的挑戰(例如,“局部”不確定性如何通過Markov動力學傳播),這需要更復雜的理論分析。本教程的重點是提供勘探開發困境的正式定義,討論其挑戰,并回顧不同優化標準(特別是有限時間和平均回報問題)的主要算法原則及其理論保證。在整個教程中,我們將討論開放的問題和未來可能的研究方向。

邀請嘉賓: Ronan Fruit,Inria SequeL團隊的博士生。他目前是蒙特利爾Facebook人工智能研究(FAIR)的研究實習生。他的研究集中在理論上理解強化學習中的探索性開發困境,以及設計具有可證明的良好后悔保證的算法。

Alessandro Lazaric,自2017年以來一直是Facebook AI Research(FAIR)實驗室的研究科學家,他之前是SequeL團隊Inria的研究員。他的主要研究主題是強化學習,在RL的理論和算法方面都做出了巨大貢獻。在過去的十年中,他研究了多臂土匪和強化學習框架中的勘探與開發困境,特別是在遺憾最小化,最佳武器識別,純粹探索和分層RL等問題上。

Matteo Pirotta,巴黎Facebook人工智能研究(FAIR)實驗室的研究科學家。之前,他是SequeL團隊的Inria博士后。2016年,他在米蘭理工大學(意大利)獲得計算機科學博士學位。他在強化學習方面的博士論文獲得了Dimitris N.Chorafas基金會獎和EurAI杰出論文獎。他的主要研究興趣是強化學習。近幾年來,他主要關注的是RL的勘探開發困境。

付費5元查看完整內容

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

北京阿比特科技有限公司