當整合到軍事行動中時,自主蜂群技術有可能緩解苛刻和高度動態環境和問題所帶來的一些挑戰。由異質機器人組成的自主空中蜂群可以通過提供更廣泛的能力進一步提高靈活性。然而,異質蜂群的有效性目前受到系統以全球最優方式分配機器人任務的能力的限制。我們提出了一種基于市場的無人機系統決策方法,用于將最合適的機器人分配到可用的任務中。具體來說,我們評估了拍賣算法在一個區域搜索問題的任務分配中的表現。除了解決蜂群的異質性外,我們的實現還考慮到了二次接觸調查任務異步產生的情況。在美海軍研究生院高級機器人系統工程實驗室的空中蜂群系統中進行了實驗,該系統具有不同的固定翼和旋轉翼無人駕駛飛行器配置,范圍從三個到十個機器人。研究和測試表明,拍賣算法是一種在區域搜索中進行任務分配的可擴展方法,并表明實施可以有效地擴展到具有任意能力分布的蜂群,以解決高度復雜問題。
自動駕駛車輛在公共道路上的部署已取得了巨大的進展,然而在人駕車和自動駕駛車共享道路的情況下進行安全導航對于即使是最先進的系統也是一項挑戰。我們需要算法和系統來為自動駕駛車輛開發和評估符合社會規范的規劃算法。在這篇論文中,我們提出了一個考慮到人類操作員在車輛軌跡規劃和運動控制中的社會效用的半合作自主性框架。此外,我們提出了一個新的機器人平臺,用于在安全的實驗室環境中部署和評估半合作自主性。在這篇論文中,我們結合了來自社會心理學的概念和博弈論規劃算法,以開發半合作自主規劃器。從一個自動駕駛車輛開始,我們提出了一種考慮到每個人駕駛員的社會價值取向,同時實現了可取的博弈論均衡的算法,稱為"想象共享控制的迭代最佳反應"。半合作框架被應用到更大規模的系統,例如為混合人機自主交通提供符合社會規范的交叉口管理器,以及理解社會價值取向對車輛交通流的影響。此外,我們提出了一個能感知可視性的軌跡優化算法,用于圍繞盲點的主動運動規劃,該算法將人類駕駛員的不確定性模型納入到半合作軌跡規劃器中。我們在人類和自動駕駛車輛的模擬中演示了這些算法的有效性,并研究了人類性格對算法性能的影響。其次,我們介紹了 MiniCity,這是一個1/10比例的城市環境,包括逼真的城市景觀、交叉口,以及配備了最先進傳感器和算法的多個完全自動駕駛的1/10比例車輛。我們描述了 MiniCity 機器人平臺如何用于半合作自主性的開發,從評估算法性能到開發新的智能交通系統。首先,我們使用 MiniCity 來評估車輛自主性,既測量上游感知對下游車輛性能的影響,又測量半合作交叉口管理器的效率。其次,我們利用 MiniCity 的人在環路駕駛員界面收集用戶偏好,用于共同設計穿越交叉口的共享控制器。最后,我們提出了一種新的基于基礎設施的故障檢測算法 FailureNet,該算法在 MiniCity 的自動駕駛車輛上進行訓練和部署。在所有這些中,MiniCity 為開發交互式算法提供了一個安全和可擴展的環境,使我們更接近在混合人工自主駕駛的道路上完全部署符合社會規范的自主性。
無源雷達(PR)是加強公共安全和國防有前途的新興技術,可以作為保護關鍵基礎設施和邊界的補充解決方案。本文介紹了一個基于獨立PR節點的傳感器網絡,用于監測沿海邊界的情況。通過完整的覆蓋率分析,研究了部署PR傳感器網絡進行邊境監控的可行性。電磁仿真器被用來包括特定的雷達場景特征和空中和海上軍事目標的雙態雷達截面建模。仿真結果與選定的沿海場景中的真實雷達數據進行了驗證。對不同的目標進行了探測和跟蹤:合作的DJI Phantom 3無人機、船舶和降落在羅塔軍事機場的飛機。結果證實了基于DVB-T的PRs在監測邊境沿海場景方面的可行性。
這項工作提出了一個支持決策過程的算法框架,其中終端用戶在領域專家的協助下解決一個問題。此外,終端用戶和領域專家之間的交流的特點是問題和答案的數量有限。開發的框架可以幫助領域專家向終端用戶精確定位少量的問題,以增加其見解正確的可能性。建議的框架是基于領域專家的知識,包括與領域專家和終端用戶的互動。領域專家的知識由知識圖譜表示,而終端用戶與問題相關的信息作為證據被輸入圖譜。這就觸發了圖中的推理算法,該算法向領域專家建議最終用戶的下一個問題。本文在醫學診斷領域提出了一個詳細的建議框架;然而,它也可以適應具有類似設置的其他領域。我們開發的軟件框架使決策過程以互動和可解釋的方式進行,這包括使用語義技術,因此是創新的。
近年來,"大數據 "世界獲得了巨大的發展動力,并不斷產生機遇和挑戰[1,2]。大數據的各種用途已經滲透到技術世界的幾乎每一個領域。我們對在處理決策過程的技術領域整合大數據的挑戰感興趣,以便利用這些過程。
這些過程可以在各種各樣的內容世界(醫學、商業、教育等)中找到,并且需要了解情況意識、數據建模以及提供智能見解的算法。然而,這些過程為不同的需求提供不同的答案;因此,有幾種類型的決策過程,每一種都有合適的設置[3,4]。
在這項工作中,我們專注于具有以下設置的決策過程:(a)該過程涉及兩個實體:一個最終用戶和一個領域專家,(b)最終用戶啟動該過程,(c)兩個實體之間存在互動,包括(領域專家的)問題和(最終用戶的)答案,(d)兩個實體之間的互動盡可能有限(在時間、問題數量、金錢等方面)。
鑒于上述情況,本報告的目的是提供一個基于語義技術的框架,該框架能夠整合大數據,在決策過程中協助領域專家,向他們建議一套針對最終用戶的問題(從數據中推斷出來的),這將減少問題和答案的循環。 考慮以下兩個領域的例子,其流程自然適合這樣的設置:醫療診斷[5]和家電維修[6](表1)。
如前所述,上述兩個領域包含了一個兩方面的有限互動。這種限制可以用時間、問題的數量等來表示。請注意,醫療和家電維修這兩個領域都是寬泛的領域,可以被專門化為特定的子領域。例如,家電維修領域可以被專業化為建筑服務、互聯網服務、家庭故障服務等。醫療領域也是如此。它也可以包含一些子域,如各領域的醫療咨詢(如心理學)、緊急醫療電話的處理等。
建議的框架包括兩個主要部分:(a) 使用語義技術對相關領域專家的知識進行正式表示,特別是知識圖譜,以及(b) 一套互動的算法,從一組初始領域值(即最終用戶的先驗知識)開始,然后,基于這些先驗知識和知識圖譜表示,它將向最終用戶提出具體問題。這些問題的答案將推動領域專家的決策過程,并成為下一次迭代的輸入。迭代將繼續進行,直到領域專家感到滿意并做出決定。
我們有動力通過知識圖譜來表示專家的知識,因為圖譜已經成為表示連接數據的一種自然方式[7]。在過去的十年中,人們努力將大量的數據組織成節點和邊的集合,特別是在推薦系統、搜索引擎優化和決策過程中[8,9,10]。由此產生的靈活結構,稱為知識圖譜,允許快速適應復雜的數據和通過關系的連接。它們固有的互連性使人們能夠使用圖算法來揭示隱藏的模式和推斷新的知識[11,12,13,14]。此外,知識圖譜在計算上是高效的,并且可以擴展到非常大的規模,社會圖譜分析就是一個例子[15,16]。
我們的框架受到了Musen和他的同事[17]的啟發,他們是生物醫學信息學領域的知名研究者,提出了關于協助臨床決策支持(CDS)的信息技術的看法。Musen等人[17]提出了提供CDS的系統的指導原則:他們的論述是關于交流而不是檢索信息,建議而不是產生報告,以及協助領域專家發展更多的知情判斷。分別來說,引導我們開發框架的概念是為領域專家提供從分析圖表示的相關數據中推斷出的建議,并使他能夠做出明智的決定。然而,另外一個領先的概念是以有限的迭代次數來進行。我們的框架可以擴展到其他領域。
在所提交的工作中,我們為一個交互式框架引入了一種新的方法,以支持以有限的交互次數為特征的決策過程。該框架通過使用圖數據模型、圖算法和語義技術,以通用的方式進行創新。我們在一個真實的數據集上運行我們的算法,并在一個可能的現實場景中展示框架的可行性。因此,我們為我們的框架提供了一個概念證明。
為了說明擬議的框架,我們首先回顧了知識圖譜和決策過程(第2節)。然后,我們定義了該框架的術語和算法(第3節)。隨后,我們在醫學診斷領域使用由疾病和病人癥狀組成的數據集來演示該框架(第4節)。最后,我們總結并考慮潛在的未來方向(第5節)。
這一節中介紹了所提出的框架,其中包括一個算法集合和它們之間的互動。
目標是基于互動的決策過程。互動是在領域專家和終端用戶之間進行的,結果是有限的迭代,由框架建議領域專家問終端用戶的問題組成。決策過程將根據終端用戶的回答而進行。
當分析這些類型的過程時,我們得出結論,它們可以被籠統地建模為一個癥狀和疾病的集合。最終,該過程的目標是協助領域專家決定診斷(即在分析現有數據的基礎上為一組給定的癥狀提供解釋)。Musen將診斷過程描述為決定要問哪些問題,要做哪些測試,或要執行哪些程序[7,17]。診斷過程中可能出現的問題有以下幾種類型。終端用戶是否有一個特定的癥狀?
上述術語(即癥狀、疾病、問題和診斷)產生的行話可以自然地用于醫學診斷領域,然而它也適用于其他領域,如家電維修:癥狀代表問題,疾病代表故障,診斷是一種故障識別,一個典型的問題可以是。終端用戶的電器有什么特別的問題嗎?
當在提議的框架中使用這個行話時,我們用假設一詞來代替診斷,因為該框架并不向領域專家提供診斷,而是提供可能的假設。每個假說實際上是一種潛在的疾病,它伴隨著一個問題,是表明疾病(假說)的癥狀。因此,我們在本文中用來描述框架及其各種算法的行話包括:癥狀、疾病、問題和假設。特別是,該框架推斷出假設及其相關的問題,并將它們提交給領域專家,后者決定是否使用(或不使用)這些問題來確認(或不確認)這些假設(疾病)。
在本節的其余部分,我們將描述該框架及其算法,首先是一般的,然后是詳細的。
一般來說,我們首先從原始數據建立一個知識圖譜,這將有助于探索疾病和癥狀之間的關系。在此之后,我們在KG上使用魯汶分層聚類法[21](算法1)來尋找社區(即具有類似癥狀的疾病群)。然后,給定最終用戶報告的癥狀(稱為證據癥狀),我們使用KG上的推理找到與證據癥狀相匹配的可能疾病(算法2)。在這一點上,我們推斷出最可能的社區,以包括最終用戶的疾病,并向領域專家建議一個表明這個社區的問題(癥狀)(算法3)。最后,我們找到最佳假設建議給領域專家(算法4),也就是說,我們向領域專家建議最終用戶可能有的疾病和癥狀,以解決診斷過程的改進。
整個框架分為兩個主要部分:第一部分,預處理部分,在框架啟動后進行;而第二部分,處理部分,在每次有新請求到達框架時進行。預處理部分包括兩個步驟和一個算法(算法1),而處理部分包括三個步驟和三個算法(算法2-4),正如我們在下面描述的那樣。
我們使用的數據結構包括代表KG的結構(默認是鄰接列表)和運行算法所需的額外結構。在下面描述算法的段落中,我們將詳細介紹這些結構和它們的用途。
預處理部分:
輸入:一個疾病及其癥狀的列表
第1步:構建一個疾病和癥狀的知識圖(KG)(見第3.1節)。
第2步:根據疾病的癥狀將其聚類為一組(稱為社區),即具有類似癥狀的疾病將在同一個社區中(算法1)。
輸出:(1)每一種疾病都與KG中的一個社區相關聯;(2)額外的數據結構,稱為癥狀社區矩陣(SCM),表示疾病組和各種癥狀之間的聯系 處理部分:
輸入:K證據癥狀
第一步:尋找最可能的疾病,即與證據癥狀相匹配的可能疾病(算法2)。
第2步:推斷并向領域專家建議(根據需要重復)一個問題(癥狀),表明最可能的社區包括最終用戶疾病(算法3)。
第3步:推斷并向領域專家建議一個假說(最終用戶可能患有的疾病)及其相關問題(癥狀)的列表,并按相關性排序(算法4)。
圖1顯示了整個建議框架的高級視圖。
這項研究對攻擊者-防御者的蜂群交戰進行了權衡分析,以比較制約蜂群行為因素的相對效率,即目標算法和單個無人機參數。特別是,我們研究了為 "服務學院蜂群挑戰賽"(SASC)開發的算法,這是一項蜂群對蜂群交戰的實戰演習。我們用動態蜂群模擬進行了分析,允許蜂群組成和行為發生變化。這使我們能夠確認SASC中關于蜂群性能的定性結果。此外,使用比例分析方法進行定量權衡分析,并開發了評估防御性蜂群適應性的函數形式。我們的結果為后續研究更復雜的蜂群行為提供了一個框架。
無人機蜂群是由自主飛行器組成的群體,它們通過協調和溝通來實現目標[1]。無人機蜂群的規模可以根據蜂群的能力和后勤支持而任意擴大。在軍事上,大型蜂群對高價值單位(HVU)(如航空母艦)構成高風險,因為蜂群有能力壓倒現有的HVU點防御[2] 。
無人機蜂群的實戰能力在歷史上一直受到計算機處理、無人機與無人機之間的通信以及能量存儲密度的限制[3]。然而,這些領域的發展已經導致了蜂群的發展和可行性的提高。這導致無人機蜂群的風險急劇增加。大型蜂群已變得越來越有可能,中國早在2017年就測試了超過1000架無人機的蜂群[3]。使得無人機蜂群更加實用的技術改進預計將繼續下去。
對高價值單位來說,最大的無人機風險是空中無人機在利用機載炸藥執行自殺式任務。蜂群的目標是,通過數量,使HVU的防御達到飽和,并摧毀或使HVU失效。目前的HVU防御系統,如導彈或近距離武器系統,不足以對付大型無人機蜂群[2],也不經濟。這些旨在對付飛機和導彈的防御系統沒有能力對付無人機及其威脅狀況。蜂群的低成本和大規模使HVU有可能耗盡其有限的防御彈藥,而只能摧毀蜂群的一小部分[2]。在這種情況下,HVU將很容易受到蜂群殘余物或其他單位利用其疲憊的防御系統的攻擊。
HVU的戰略效用和經濟價值也會導致對手以整個無人機蜂群的代價從HVU的破壞中獲益。有能力的無人機可以以低至每架500,000美元的價格投入使用[2]。這個估計包括無人機、發射器和后勤支持的費用。因此,一個600架無人機蜂群,能夠削弱現有的HVU防御系統,將總共花費3億美元[2]。這與一艘航空母艦120億美元的成本相比更有優勢[4]。這種差距使得蜂群可以被用作力量倍增器,以盡量減少美國目前從昂貴的HVU中獲得的優勢[5]。
擬議的反無人機蜂群的方法包括激光和電磁武器以及無人機反集群。激光和電磁武器在技術上比現有的點狀防御系統更適合于反擊無人機蜂群,因為它們能夠耗費幾乎無限的射擊次數。然而,這兩種武器系統目前都沒有被廣泛使用。事實上,激光和電磁武器都面臨著巨大的技術困難,需要相當大的技術進步來提供可靠的反無人機防御[6]。
無人機反集群包括使用防御性無人機群來打擊進攻性的、敵對的無人機群。與進攻性無人機群相比,這種蜂群反制措施的研究相對較少。然而,與其他反制措施相比,防御性無人機群的優勢在于利用了刺激進攻性無人機群發展的相同技術進步。隨著進攻性無人機群的能力越來越強,防御性無人機群也是如此。事實上,防御性無人機群可能比進攻性無人機群更容易實施,因為防御性無人機群在受控空域的友軍中行動[7]。反蜂群還允許防御者破壞進攻型無人機群最重要的優勢,即其規模。防御性無人機群可以有足夠大的規模來減輕進攻性無人機群飽和防御的能力。
美海軍研究生院的研究人員以前的工作重點是將反集群作為一個最優控制問題進行研究[8]-[12]。此前的工作利用了基于潛力的模型、遠程武器和防御者集群戰略。本論文通過實施不同的蜂群合作規則和應用新的分析技術,在這些先前工作的基礎上進行研究。例如,以前的研究集中在遠程武器上,在這種情況下,攻擊蜂群是作為一個整體參與的。本論文著重于使用短程武器的模擬,其中防御者與單個攻擊者交戰。此外,本論文研究的是權衡分析,而不是優化,但這里描述的工具可以在未來的工作中與優化相結合。
發展防御性無人機群需要回答一系列問題。首先,防御型蜂群的最佳戰術是什么,以最好地對抗攻擊型蜂群?第二,什么樣的平臺規格,如速度或武器范圍,將是最有效的?第三,與這些平臺規格相關的成本或技術限制可能會影響到部署最佳蜂群的可行性?這三個分類問題包括許多其他問題。例如,給定一個算法和一套平臺規格,增加更多的機器人有什么好處?是否有一個點,在這個點上增加更多的無人機不再有好處?平臺規格的改進與增加無人機相比有何不同;例如,是速度翻倍還是無人機的數量更有利?
為了回答這些問題,任務規劃者和設計者必須對無人機群參數進行全面的權衡分析,以確定如何在最小化群組成本的同時最大限度地提高群組能力。對諸如蜂群行為、蜂群規模和單個無人機性能(包括其速度和武器射程)等因素進行徹底的提煉,可以使任務規劃人員能夠派出最能勝任、最經濟的無人機群來反制對手的蜂群。如果沒有這種分析,任務規劃者就有可能制造一個不足以擊敗進攻性蜂群的蜂群,從而使HVU處于危險之中。反之,任務規劃者也可能建立一個無人機群,它可以很好地擊敗進攻性機群,但卻是一種低效的資源分配。目前,適合執行這些規劃任務的分析工具很少。本論文的目標是開始填補這一知識空白。
受自然界中蜂群的啟發,蜂群機器人技術已被開發出來,用于執行各種具有挑戰性的任務,如環境監測、災難恢復、物流,甚至軍事行動。盡管蜂群對社會有重大的潛在影響,但對針對蜂群機器人技術的對抗性情景的關注相對較少。
在本文中,我們探索了一種系統化的方法,以找到對手可以利用的蜂群機器人算法的邏輯缺陷。具體來說,我們為蜂群算法開發了一個自動測試系統,蜂群缺陷探測器(SWARMFLAWFINDER)。我們確定并克服了在理解和推理蜂群算法執行方面的各種挑戰。特別是,我們提出了一個新的機器人行為抽象,我們稱之為因果貢獻度(DCC),基于反事實的因果關系的想法。然后,我們建立了一個名為SWARMFLAWFINDER的反饋指導的灰盒模糊測試系統,利用DCC作為反饋指標。我們用四個進行導航、搜索和救援任務的蜂群算法來評估SWARMFLAWFINDER。SWARMFLAWFINDER在蜂群算法中發現了42個邏輯缺陷(并且所有這些缺陷都得到了開發者的承認)。我們對這些缺陷的分析表明,蜂群算法存在關鍵的邏輯錯誤/漏洞,或者存在不完整的實現,可以被對手利用。
這篇論文提出了在自動化制造背景下的多智能體機器人裝配規劃的算法。我們的工作涉及到 "工廠自主權堆棧 "的許多部分。本論文的第一個貢獻是引入了一個離散工廠問題的表述,其中包括時間延長的多機器人任務分配、任務間的優先權約束和避免碰撞的約束。我們提出了一種解決此類問題的有效方法。我們算法效率的兩個關鍵是它將任務分配和路線規劃解耦,以及它能夠利用一些機器人在自己的時間表中被推遲而不對工廠的整體性能造成任何負面影響的情況。
本論文的下一個主要貢獻是針對我們的離散工廠問題的在線版本的重新規劃算法系列。在在線設置中,工廠指揮中心定期收到新的制造工作量,這些工作量必須被迅速納入整體計劃中。我們通過大量的實驗表明,我們的重新規劃方法適用于廣泛的問題。此外,我們提出的方法在應用時可以使工廠在等待收到更新的計劃時永遠不必凍結。
我們最后的貢獻是一個概念驗證系統,用于大規模的多機器人裝配計劃,包括任意形狀和尺寸的裝配體和原材料。我們的系統從原材料和一套關于這些材料如何組合的基本指令開始。然后,規劃器合成一個施工計劃,其中定義了每個有效載荷將如何攜帶(由一個或多個機器人攜帶),每個組件和子組件將在哪里建造,以及哪些特定的機器人將被分配到每個單獨和協作的運輸任務。最后,一個反應式防撞控制策略使機器人能夠以分布式方式執行建造計劃。我們在模擬中證明,我們的系統可以在幾分鐘內合成具有數百個部件的裝配體的施工計劃。雖然我們沒有解決圍繞多機器人制造的所有相關的 "現實世界 "的考慮,但我們的工作是向使用移動機器人的大規模自動化施工邁出的一小步。
對機器人群進行規劃是很困難的,因為系統要求是在機器人群層面(即全球)制定的,而控制規則需要在單個機器人層面(即本地)進行編碼。通過數學建模將全局和局部水平聯系起來,或者反過來預測系統行為,一般被認為是群體機器人技術的巨大挑戰。我們建議通過直接在群體層面規劃來解決這個問題。這個解決方案的關鍵是使用異質群體,結合適當的智能體子集,其硬編碼的智能體行為具有已知的全局影響。我們從全局到局部的設計方法允許為自組織任務分配的實例應用組成異質群。我們定義了大量但有限的局部智能體控制器,并將重點放在行為異質群的全局動力學上。用戶為群體輸入所需的全局任務分配,作為分配給任務智能體的固定概率分布。我們提供了一種通用方法,通過數學上推導出異質群體的適當組合來實現所需的群體行為,這些組合近似于用戶的全局要求。我們在幾種任務分配情況下研究了我們的方法,并通過多智能體模擬驗證了我們的結果。所提出的從全局到局部的設計方法并不局限于任務分配問題,它可以為設計其他群體行為的正式方法鋪平道路。
我們研究了不確定環境中的穩健和適應性的最大網絡流量問題,其中網絡參數(如容量)是已知和確定的,但網絡結構(如邊)容易受到對手的攻擊或失敗。我們提出了一個穩健和可持續的網絡流模型,以有效和主動地對抗在預算約束下運作的對手的合理攻擊行為。具體來說,我們引入了一種新的場景生成方法,該方法基于防御者和對手之間的迭代式雙人博弈。我們假設對手總是采取最佳的近視反應(在一些可行的攻擊中)來對付防御者準備的當前流量場景。另一方面,我們假設防御者考慮到對手在之前的博弈迭代中所揭示的所有攻擊行為,以產生一個新的保守的流量策略,該策略對所有這些攻擊是穩健的(最大化)。這種迭代博弈一直持續到對手和管理員的目標都趨于一致。我們表明,防御者要解決的穩健網絡流量問題是NP-hard,而對手的決策問題的復雜性隨著網絡規模和對手的預算值呈指數級增長。我們提出了兩種原則性的啟發式方法來解決大型城市網絡規模下的對抗者問題。在多個合成和真實世界數據集上的廣泛計算結果表明,與四種最先進的基準方法相比,防御者問題提供的解決方案大大增加了通過網絡推送的流量,并減少了預期的流量損失量。
本文的主要貢獻有以下幾點。
1.我們正式定義了計算關鍵基礎設施網絡的穩健和自適應的最大流量策略的問題,即利用一個被破壞的邊緣的流量可能通過有剩余容量的相鄰的邊緣改道的事實。為了解決這個問題,我們提出了一個網絡管理員和對手之間的迭代式雙人博弈,這被稱為網絡流量博弈(NFG)。
2.我們開發了新的優化模型來解決雙方在博弈的每個迭代中的決策問題。管理者的優化模型考慮到對手在以前的迭代中產生的所有攻擊策略,并計算出一個穩健的流量策略,在所有以前的攻擊中,在最壞的情況下使通過網絡推動的流量最大化。對手的決策問題檢查管理員在當前迭代中產生的流量策略,并產生一個攻擊(在給定預算約束下的可行攻擊中),以最佳方式破壞當前流量策略。
3.我們提出了兩種新的啟發式方法,用于解決大型城市網絡規模下的對手的復雜決策問題。第一種啟發式方法是一種加速的貪婪方法,它可以逐步確定要攻擊的最佳邊緣。第二種啟發式方法是一種基于網絡分區的方法,它迭代地確定網絡中要攻擊的一組最佳候選邊,然后在這些候選邊上解決對手的決策問題。
4.我們在多個合成和真實世界的基準數據集上提供了大量的計算結果,以證明我們提出的解決方法可以優雅地擴展到大規模的問題,并且比四個最先進的基準方法顯著增加了通過網絡推送的流量。
太空一直是一個需要高度自主的領域。所需的自主性帶來的挑戰使其難以在短時間內完成復雜的任務和操作。隨著越來越多地使用多Agent系統來增強空中領域的傳統能力和展示新能力,在軌道上和近距離多Agent操作的發展需求從未如此強烈。本文提出了一個分布式的、合作的多Agent優化控制框架,為在近距離操作環境中執行多Agent任務相關的分配和控制問題提供解決方案。然而,所開發的框架可以應用于各種領域,如空中、太空和海上。所提出的解決方案利用第二價格拍賣分配算法來優化每個衛星的任務,同時實施模型預測控制來優化控制Agent,同時遵守安全和任務約束。該解決方案與直接正交配位法進行了比較,并包括了對調整參數的研究。結果表明,所提出的技術允許用戶用模型預測控制來優化超越相位的控制,并以三個調諧參數實現編隊交會。與傳統的多相MPC相比,這更好地接近了配位技術中的相變。