亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來,機器學習取得了顯著的突破。隨著機器學習逐漸滲透到日常生活的各個方面,個人和組織越來越多地與這些系統互動,表現出各種社交和對抗性行為。這些行為可能對機器學習系統的行為和性能產生顯著影響。具體來說,在這些互動過程中,數據可能由策略性個體生成,由自利的數據收集者收集,甚至可能被對抗性攻擊者污染,并用于創建滿足多重目標的預測器、模型和政策。因此,機器學習系統的輸出可能會退化,例如深度神經網絡對抗性樣本的脆弱性(Shafahi 等, 2018; Szegedy 等, 2013),以及在面對策略性個體時經典算法性能的下降(Ahmadi 等, 2021)。解決這些挑戰對于機器學習在社會環境中的成功至關重要。 本論文分為兩部分:社交數據源下的學習和對抗性數據源下的學習。對于社交數據源,我們考慮了以下問題:(1) 在有限和無限假設類中與策略性個體的學習,其中我們對在線和PAC策略環境中的可學習性進行了理解,(2) 在單輪聯邦學習、多輪聯邦學習和協作主動學習中,自利數據收集者的激勵與背叛,(3) 游戲中的學習,在其中一名玩家運行學習算法而不是做出最佳回應,(4) 在決策制定和在線學習中的多目標學習。對于對抗性數據源,我們研究了以下問題:(1) 在干凈標簽攻擊下的魯棒學習,攻擊者向訓練集中注入一組正確標記的點,以誤導學習者在特定測試點上出錯,(2) 在變換不變性下的學習以及對流行的數據增強方法的分析。

近年來,機器學習取得了顯著的突破。隨著機器學習逐漸滲透到日常生活的各個方面,個人和組織與這些系統的互動日益頻繁,表現出各種社交和對抗性行為,這些行為可能會顯著影響機器學習系統的性能。 策略性個體 在許多領域,機器學習被應用于為各種資源的申請者提供決策依據。然而,當個體有動機從特定的預測結果中獲益時,他們可能會通過修改自身特征來獲取有利的預測結果。這種行為可能損害預測性能,使得學習過程容易受到金融政策制定中的經典原則——古德哈特定律(Goodhart's law)的影響,該定律指出:“一旦某個指標成為公眾的目標,它就不再是一個好的指標。” 這種學習系統與其所應用對象之間的天然張力廣泛存在于貸款審批、大學招生、職位招聘和保險等場景中。在這些情況下,學習系統的目標是進行準確的預測,而個體則無論其真實標簽如何,都有動力被歸類為正面。例如,在大學招生中,申請者可能會重考SAT或選擇更容易的課程以提高GPA,從而誤導分類器。

自利的數據收集者 在許多現實世界的應用中,數據集分布在不同的孤島中,如醫院、學校和銀行,因而需要它們之間的合作。近年來,協作學習(如聯邦學習)被廣泛采用,以促進大量數據收集者之間的合作。然而,決定協作學習成功與影響的關鍵在于能否招募和留住大量的數據收集者。在協作學習協議與數據收集者之間存在一種內在的張力。學習協議旨在找到對所有數據收集者都有利的模型,而每個數據收集者的目標則是找到一個對其本地數據有利且數據貢獻最小的模型。因此,如果學習協議要求數據收集者提供超出其自身目標所需的數據量,他們將不會按協議要求進行貢獻。

多目標用戶 雖然機器學習問題通常涉及優化單一標量獎勵,但在許多領域,同時優化多個(可能互相沖突的)目標是可取的或必要的。例如,自動駕駛汽車用戶希望同時追求安全、速度和舒適性,但速度可能對安全(如延長車輛突然停下的時間)或舒適性(如在快速轉彎時引起不適)產生負面影響。因此,當一個學習系統優化單一標量損失時,它可能忽視這些多重目標,從而為用戶生成不令人滿意的模型或策略。此外,在學習過程中可能存在多個利益相關者,每個利益相關者都有不同的目標。僅關注一個目標可能導致其他目標的性能顯著下降。

對抗性攻擊者 對抗性攻擊在暴露機器學習系統的脆弱性方面發揮了重要作用。許多流行的模型在現實世界場景中缺乏魯棒性。例如,在圖像任務中,向訓練圖像添加不可察覺的噪聲(Szegedy等,2013)或通過添加額外的圖像來污染訓練集(Shafahi等,2018)可以嚴重損害深度神經網絡的性能。 由于這些社交和對抗性數據因素,機器學習系統的輸出可能會退化。應對這些挑戰對于機器學習的成功至關重要。

本論文從理論角度出發,針對由這些社交和對抗性數據因素引發的可信性挑戰作出貢獻。這些數據因素在現有理論中尚未得到充分建模。因此,本論文側重于建模機器學習交互中固有的社交和對抗性方面,分析其對預測器的影響,并開發增強性能的方法和見解。 本論文的核心主題是為社交和對抗性數據源下的可信機器學習建立理論基礎。

付費5元查看完整內容

相關內容

完全自動駕駛汽車有潛力大幅減少車輛事故,并革命性地改變人們的出行方式及我們的貨物運輸方式。自動駕駛系統面臨的許多主要挑戰來源于眾多需要與其他智能體復雜互動的交通情況。在可預見的未來,自動駕駛汽車將不得不與人類駕駛者和行人共享道路,因此不能依賴中央化的通信來應對這些互動場景。因此,自動駕駛系統需要能夠與表現出不確定行為的未知智能體進行協商和響應。為了解決這些問題,大多數商業自動駕駛堆棧采用模塊化方法,將感知、智能體預測和規劃分為獨立開發的模塊。然而,完全分離預測和規劃使得難以推理其他車輛對于控制自我車輛規劃軌跡的響應。因此,為了維持安全,許多模塊化方法在與其他智能體互動時不得不過于保守。理想情況下,我們希望自動駕駛汽車以自然而自信的方式行駛,同時仍然保持安全。

因此,在本論文中,我們將探索如何在自動駕駛中的高度互動和隨機多智能體場景下,使用深度學習和離線強化學習來執行聯合預測和規劃。首先,我們討論了在離線強化學習(RL)框架中使用深度學習進行聯合預測和閉環規劃的工作。其次,我們討論了直接解決在隨機多模態設置中使用學習模型進行規劃的困難的工作。第三,我們討論了如何通過使用基于變換器的交通預測模型作為我們的世界模型,來擴展到更復雜的多智能體駕駛場景,如在密集交通中合并。最后,我們討論了如何借鑒離線模型為基礎的RL,學習一個高層策略,選擇一套離線預訓練的駕駛技能進行有效控制,而無需額外的在線規劃。

想象這樣一個情景:一輛車在足球比賽后離開擁擠的停車場。大多數司機知道,在車輛挨著車輛的交通中,他們應該通過謹慎地主張自己的空間并推動前進來積極地行動。雖然這對于人類駕駛者來說是直覺的,但這些高度互動密集的場景對當前的自動駕駛汽車來說是一個主要挑戰。在這些情況下,我們需要一個健壯的模型來預測其他智能體可能的行為,以及關鍵地,他們可能如何動態地響應我們自己的行動。

然而,許多自動駕駛系統將周圍智能體的預測和自我車輛的運動規劃分為兩個獨立的過程。這種模塊分離限制了自我車輛預測其他智能體對其行動的反應的潛力,以及它如何能夠動態適應周圍交通的不同行為。因此,這些傳統的分離預測和規劃的方法在互動場景中容易導致次優的計劃,例如在停車場出口或高速公路合并時,如果不考慮這些動態的相互作用的話。為了避免這些問題并統一預測與規劃,自動駕駛汽車需要預測周圍智能體將如何與自我車輛的潛在行動互動,并相應地以閉環方式調整自我車輛的計劃。由于行人和交通的復雜多模態隨機性,進行這些互動預測特別具有挑戰性。其他智能體的軌跡往往強烈依賴于自我車輛直接無法獲取的信息,如他們的預定目標或駕駛風格。根據給定的交通情況,相同的自我車輛軌跡可能會從周圍的智能體那里得到截然不同的響應。例如,在合流到高速公路時,目標車道的車輛可能會為自我車輛讓路、加速以為自我車輛騰出空間,或者無視自我車輛,這取決于它們的駕駛風格和自我車輛的行動。在這篇論文中,我們研究如何使用深度學習模型來解決這些問題,并在這些復雜的隨機環境中進行聯合預測和規劃。

付費5元查看完整內容

在機器學習領域,我們致力于開發能夠學習的算法,即在沒有被特別編程完成某項任務的情況下,積累關于如何完成任務的知識。在這篇論文中,我們從兩個不同的角度來探討學習:我們可以應用高效機器學習者的領域以及我們可以通過更有效地解決底層優化問題來改進學習的方式。機器學習方法通常非常依賴數據。雖然現代機器學習在解決實際問題方面取得了巨大成功,但這些成功案例主要局限于有大量相關領域數據可用的設置。元學習領域旨在通過創建“學會如何學習”的模型(即能夠在給出相對較少的示例時迅速適應新任務的模型)來開發具有改進的樣本效率的模型。在本論文中,我們關注使用超網絡進行任務適應的攤銷元學習者,這些學習者成本非常有效,只需通過超網絡進行一次前向傳播即可學會如何執行新任務。我們展示了這些攤銷元學習者可以以超出其在小樣本學習設置中的典型用途的新方式來利用。

我們針對攤銷元學習者開發了一種基于集合的中毒攻擊,這種攻擊讓我們能夠定制一組協同作用的輸入,用作適應新任務的訓練數據(即作為支持集)時,這些輸入能夠欺騙系統的學習算法。這樣共同制作的對抗性輸入可以協同操縱分類器,對于具有可微適應機制的攤銷學習者來說,這種輸入尤其容易計算。我們還在可解釋性領域利用攤銷學習者進行“數據集調試”,在此過程中,我們開發了一種稱為Meta-LOO的數據價值或樣本重要性策略,可用于檢測噪聲或分布外數據;或者將一組示例提煉到其最有用的元素。

從我們的第二個角度看,機器學習和優化是密切相關的;實際上,學習可以被表述為以模型參數為目標的訓練損失最小化問題——盡管實際上我們還需要我們的算法具有泛化能力,這不是更廣泛優化的關注點。選擇的優化策略影響了算法學習的速度以及找到的解決方案(即模型參數)的質量。通過研究優化,我們可以改善我們的模型的學習效果和速度。

在這篇論文中,我們采取了雙管齊下的方法來實現這一目標。首先,我們開發了一種在線超梯度基礎的超參數優化策略,通過支持廣泛的超參數同時保持可擴展性,改進了現有的最佳技術。值得注意的是,我們的方法支持優化算法的超參數,如學習率和動量,這是文獻中類似方法不支持的。其次,我們開發了一種適用于深度學習的非凸損失景觀的二階優化策略。我們的算法近似了一個鞍點是排斥而非吸引的鞍點自由版本的Hessian,以一種適用于深度學習問題的方式。

付費5元查看完整內容

本論文的核心目標是通過提高深度學習模型的標簽和訓練效率來增強深度學習的實用性。為此,我們研究了基于信息論原理的數據子集選擇技術,特別是主動學習和主動采樣。主動學習提高了標簽效率,而主動采樣提高了訓練效率。監督式深度學習模型通常需要大量的帶標簽數據進行訓練。標簽獲取可能既昂貴又耗時,且訓練大型模型資源密集型,這限制了其在學術研究和“大科技”公司之外的應用。深度學習中現有的數據子集選擇方法通常依賴于啟發式方法或缺乏一個原理化的信息論基礎。相比之下,本論文檢查了數據子集選擇的幾種目標及其在深度學習中的應用,力求采用一種由信息論啟發的更原理化的方法。

我們首先在單次前向傳播的深度神經網絡中區分了認知不確定性和隨機不確定性,這提供了有用的直覺和洞見,關于不同形式的不確定性及其對數據子集選擇的相關性。然后,我們提出并研究了在(貝葉斯)深度學習中進行主動學習和數據子集選擇的各種方法。最后,我們將各種現有和提出的方法與在權重或預測空間中信息量的近似聯系起來。

支撐這項工作的是一個原理化且實用的信息論量符號,包括隨機變量和觀察到的結果。這篇論文展示了從統一視角出發工作的好處,并強調了我們的貢獻對深度學習實際應用潛在影響的可能性。

付費5元查看完整內容

近年來,機器學習在許多應用中證明了其極高的用途性。然而,這些成功故事很多都源于在與訓練數據非常相似的數據上評估算法。當應用于新的數據分布時,機器學習算法已被證明會失敗。鑒于現實世界數據的非平穩和異構性質,我們需要更好地掌握算法在分布外(out-of-distribution)的泛化能力,以便算法能被廣泛部署和信任我的論文提出了三個研究課題,旨在調查和發展分布外泛化的領域。這些研究努力的中心目標是產生新的工具,如算法、理論結果、實驗結果和數據集,以提高在數據分布發生變化時機器學習方法的理解和性能。貫穿這三個機器學習場景的高級思想是模塊性——由組合在一起形成一個整體的獨立部分的質量。模塊化方法被假設為引導機器學習方法遠離僵化的記憶示例,走向更靈活和“更智能”的支持泛化的學習。

在我的第一項貢獻中,我從多個訓練分布的學習角度來接近論文目標。對這一研究方向的貢獻有兩方面。首先,我呈現了一組新的標準化任務,用于評估和比較分布外泛化算法。其次,我陳述了一系列新的理論結果,填補了數據中心和算法方法之間在分布外泛化方面的現有差距。這些理論發現引導了一組關于如何采用算法方法的新的實用建議。

在第二項貢獻中,我處理了監督圖像識別中的泛化問題。在這一背景下,我首先調查了多級特征聚合對泛化的影響,并證明了使用其中一種考慮的方法進行增強可以持續提高性能。其次,我提出了一組簡單的圖像數據集,可作為評估和比較圖像分類方法在分布外泛化方面的墊腳石。最后,我深入研究了多個神經網絡通信以解決共享任務的學習場景。這項工作以兩種方式支持論文目標。首先,我提出了一個新的環境,圖引用游戲(graph referential games),并在數據表示和相應的數據表示學習方法對分布外泛化的影響上提出了結果。這些結果連接了之前不相連的圖表示學習和新興通信領域。其次,我解決了基于現實圖像的群體通信這一具有挑戰性的領域。這篇論文中的數據集、算法、定理和實驗結果代表了在機器學習中理解和改進分布外泛化方面的幾個步驟。它們為研究人員提供了旨在促進這一領域研究的新工具和結果,其中一些已被證明對研究社群有用。最后,這項工作提出了機器學習的多個分布學習、圖像分類和多代理通信子領域中重要的未來方向。

//www.repository.cam.ac.uk/items/8680585b-87ca-4196-987f-c4d379259092

記憶與學習是否相同?阿根廷作家豪爾赫·路易斯·博爾赫斯(Jorge Luis Borges)的短篇小說《記憶者富內斯》(Funes the Memorious,由James E. Irby翻譯成英文[71,第59–66頁])描述了一個名叫富內斯的男孩,在頭部受傷后獲得了完美的記憶。他開始詳細地記住他一生的每一個時刻。同時,他失去了泛化的能力:他的記憶彼此是孤立的。例如,他從不同的角度看到同一只狗,卻只把同一只狗的不同側面視為獨立的信息。他甚至不了解自己的身體是什么樣的(‘每次看到鏡中的自己的臉,看到自己的手,都讓他感到驚訝’),這導致了一個結論:‘思考就是忘記一個差異,進行泛化,進行抽象。在富內斯過于充實的世界里,只有細節。’""與富內斯相似,具有數百萬參數的現代神經網絡已被證明會記住訓練樣本,這可能導致一系列問題,例如:(1)對噪聲數據的高度敏感性[150, 221],(2)易受對抗性攻擊的影響[271, 87, 269, 287],(3)與人類學習相比樣本效率低[302, 303, 275],以及(4)對新數據的泛化能力差[62],即使新數據樣本直觀地與模型已經訓練過的數據有相似之處[61, 251]。這些問題可能出現在應用現代機器學習的任何領域。它們可能導致機器學習系統在使用過程中產生不透明的故障模式,從而導致對機器學習系統的信任度下降[297]。"

"標準機器學習方法中缺少對分布外泛化(Out-of-distribution generalisation)的能力。這些方法得到了統計學習理論[279]的支持,該理論證明了使用基于平均值的優化(經驗風險最小化[279])以及使用測試集估計泛化誤差的做法是合理的。然而,這一理論假設訓練(過去)和測試(未來)數據是獨立同分布的。在應用機器學習的許多實際領域中,這一假設是不正確的:現實世界的數據是異構的,其分布通常會隨時間變化。分布變化的實際來源包括機器學習系統用戶特性的變化,或一個有實體的代理(embodied agent)所處環境的變化。另一個常見的分布變化例子是由于語言(包括在線使用的語言)動態性而產生的。自然語言的不斷演變已被證明會改變語言模型的困惑度(perplexity),當這些模型在數月內多次應用時[164]。背景章節的第2.4節更多地涵蓋了分布變化的類型和相應的例子。由于這些變化,即使在常用的分布內測試集上達到接近100%的準確率也不總是能預示未來的性能,這一點已被眾多論文所證明[137, 15, 61, 235, 204, 62]。"

"在機器學習領域,關于分布外泛化(OOD generalisation)的主題實質上與機器學習本身一樣廣泛和復雜,并且在研究社群中同樣容易受到瞬息萬變的趨勢和不同觀點的影響。在我看來,面對分布變化提高泛化能力是必要的,原因如下: ? 工程原因 — 提高樣本效率,并在沒有數千個訓練樣本的低資源領域提高性能[110]; ? 科學原因 — 深入了解神經網絡是如何學習的,并可能讓機器學習更接近人類學習; ? 商業原因 — 在目前由人類執行的越來越復雜的任務中使用神經網絡; ? 社會原因 — 通過控制簡單性偏見[246]來消除機器學習系統的偏見。

利用數據中的‘捷徑’可能會導致不公平的解決方案(例如,這可以在招聘工具中利用性別信息時看到[59])。在我的博士研究期間,我一直在問自己:致力于分布外泛化的機器學習研究社群最需要什么樣的工具?這篇論文旨在以新數據集、新理論結果、新測試平臺、新實驗結果和新算法的形式提供這樣的工具。這些研究努力的具體成果總結在圖1.1中。"

導致這篇論文的研究工作涉及機器學習的三個子領域:多分布學習(第3章)、圖像分類(第4章)和多智能體通信(第5章)。這種廣泛的視角使我能夠收集更多證據來支持中心假設,并探討研究問題(第1.2節)。同時,本論文中介紹的工具旨在對我在博士研究期間有幸與之合作和學習的幾個機器學習社群有所用處:(1)不變學習和群體魯棒性社群(第3章),(2)視覺社群(第4章),以及(3)新興通信社群(第5章)。所有這些社群都在獨立地研究機器學習中的分布外泛化,正如我在背景章節(第2章)以及各自貢獻章節中所回顧的。本論文聯系了我在研究中涉足的之前是分離的社群,例如圖神經網絡[141]與新興通信[43](第5章),以及面向群體魯棒性的數據導向方法[36]與分布魯棒優化[21](第3章)。"

付費5元查看完整內容

深度學習方法在解決計算機視覺任務方面取得了巨大的成功,在人工智能系統中被廣泛應用于圖像處理、分析和理解。然而,深度神經網絡(DNNs)已被證明易受輸入數據的對抗性擾動的影響。因此,深度神經網絡的安全問題浮出了水面。綜合研究深度視覺算法的對抗魯棒性是十分必要的。本文主要研究深度分類模型和深度圖像去噪的魯棒性對于圖像去噪,我們系統地研究了深度圖像去噪器的魯棒性。具體而言,我們提出了一種新的攻擊方法,基于觀測的零均值攻擊(ObsAtk),考慮了自然噪聲的零均值假設,對有噪聲的輸入圖像產生對抗性擾動。我們開發了一種有效的、理論基礎的基于PGD的優化技術來實現ObsAtk。針對ObsAtk,我們提出了混合對抗訓練(HAT)來增強深度圖像去噪器的魯棒性。大量的實驗證明了HAT的有效性。此外,我們探討了降噪器的對抗性魯棒性和對真實世界中不可見的噪聲類型的適應性之間的聯系。我們發現,只有合成噪聲數據經過HAT訓練的深度降噪器可以很好地推廣到不可見的噪聲類型。噪聲去除能力甚至可以與訓練與真實世界的噪聲降噪器相媲美。對于圖像分類,我們探索了除了傳統卷積神經網絡(CNNs)之外的新的魯棒架構。首先,研究了神經常微分方程的魯棒性。我們通過經驗證明,與基于CNN的分類器相比,基于節點的分類器對輸入擾動表現出更好的魯棒性。為了進一步增強基于節點的模型的魯棒性,我們將時不變屬性引入到節點中,并施加一個穩態約束來規范受擾動數據上的ODE流。我們證明了合成模型,稱為時不變穩定神經ODE (TisODE),比vanilla 節點更魯棒。 其次,從通道激活的角度研究了vanilla CNN的魯棒性,并提出了一種特征選擇機制來增強vanilla CNN的魯棒性。特別是,我們比較了正常訓練的分類器在處理自然數據和對抗數據時的通道激活。我們觀察到,對抗性數據通過過度激活負相關(NR)通道而缺乏激活正相關(PR)通道,誤導了深度分類器。我們還比較了正常訓練模型和對抗訓練模型的通道激活,觀察到對抗訓練通過促進未激活的PR通道和抑制過度激活的NR通道來增強模型的魯棒性。因此,我們假設,根據通道與真實類別的相關性,放大通道的激活可以提高魯棒性。為了驗證這一假設,我們開發了一種新的通道操作技術,即基于通道重要性的特征選擇(CIFS),該技術可以根據通道的相關性生成非負乘數來擴展通道的激活。大量的實驗結果驗證了該假設和改進后的CNN具有良好的魯棒性。綜上所述,本文系統研究了深度視覺算法的魯棒性,包括魯棒性評價(ObsAtk)、魯棒性改進(HAT、TisODE和CIFS)以及對抗魯棒性與新領域泛化能力之間的關系。

付費5元查看完整內容

深度學習算法,比如那些用于圖像識別的算法,在自動化醫療診斷和指導臨床決策方面大有前途。與此同時,醫學深度學習系統的開發和臨床轉化還面臨著一些重要的挑戰。首先,開發大型且注釋良好的數據集成本很高。其次,醫學圖像判讀有必要識別病灶的微妙關鍵特征,盡管在人群中生理外觀有很大差異。第三,由于域轉移問題,將深度學習算法的性能從一種設置轉移到另一種設置具有挑戰性。第四,深度學習系統的輸出需要是可解釋的,以便臨床醫生能夠理解系統。本文研究了如何應對這些挑戰,從小型數據集構建可泛化和可解釋的深度學習模型。本文研究了將從非醫療源ImageNet學習到的先驗知識遷移到醫療應用對模型性能的影響,特別是當數據集大小不夠時。與直接從ImageNet轉移學習不同,GrayNet被提議作為一個橋梁數據集,在從ImageNet學習到的通用圖像特征上創建一個預先訓練的豐富醫學圖像表示的模型。分析了GrayNet的優點,包括總體性能和跨不同成像掃描儀的泛化,并與使用小數據從頭開始訓練和從ImageNet轉移學習進行了比較。受放射科醫生如何解釋診斷圖像的啟發,還介紹了特定領域的技術,包括窗口設置優化和切片插值,并展示了進一步增強模型性能的方法。引入了一個新的可視化模塊,能夠在訓練過程中生成一個圖像圖譜,并將其顯示為測試過程中所做的模型預測的基礎,以證明模型預測的合理性,并使臨床醫生更容易理解它們。本論文通過三種不同的應用展示了深度學習在醫學圖像判讀方面的潛力,包括人工智能輔助骨齡評估,以提高人類的準確性和可變性,發現以前未識別的模式,在手部x光片中進行骨性別分類,以及處理原始計算機斷層掃描數據,而不需要圖像重建。本論文的貢獻有望促進各種醫療應用中可推廣和可解釋的深度學習算法的發展,從而加速人工智能系統進入臨床實踐。

付費5元查看完整內容

近年來,機器學習在人工智能中扮演著越來越重要的角色。此外,在網上購物、虛擬個人助理、推薦系統等領域,它正迅速成為我們日常生活的一部分。數據與機器學習算法的結合推動了這些人工智能方法的廣泛應用。然而,對所處理的數據存在敏感性和隱私方面的擔憂。這在醫療保健和金融等領域尤為突出。保護隱私的機器學習通過對敏感數據的私有計算來緩解這些隱私挑戰。然而,這個過程并非微不足道或沒有權衡。

在這篇論文中,我們專注于設計有效和高效的協議,以促進端到端隱私保護機器學習,特別是神經網絡訓練和推理。我們主要關注多方計算和非加密原語,如用于私有計算的聯邦學習。我們首先設計了一個高效的雙方安全訓練和預測框架QUOTIENT。QUOTIENT受益于標準神經網絡訓練的整體適應,使其成為加密友好的訓練過程,同時還提供了用于安全計算的定制混合MPC協議。接下來,我們引入聯邦學習來支持對未標記數據進行高度分散的訓練。我們激發了“豎井”的想法,以確保優越的隱私和跨子群體的隔離。為了完成技術貢獻,我們提出了一個MPC友好的秘密安全承諾方案,以啟用認證預測。更具體地說,這有助于在推理時對訓練過的模型強制執行非功能約束,如公平性、可解釋性和安全性,使過程更公平。我們設計、實現并對所有這些框架進行基準測試,以展示計算、通信和準確性方面的性能提升。我們以一個用戶研究來結束論文,該研究聚焦于增強可用性、效率、協助設計和幫助確保在保護隱私的計算框架中的公平性。這項研究采用半結構化訪談的形式,對隱私保護計算生態系統中的各種利益相關者進行訪談。

對于我們的協議,我們在速度上提高了一個數量級以上的技術水平,同時在準確性和通信方面取得了顯著的進步。用戶研究為純技術貢獻提供了豐富的社會技術視角。本文將理論、實踐和評估相結合,作為一個多角度的框架,激勵有效、高效和公平的隱私保護機器學習的設計、開發和進一步研究。

付費5元查看完整內容

深度神經網絡在學習給定數據集上的表示方面取得了巨大的成功。然而,在許多情況下,學習到的表示是依賴于數據集的,不能轉移到具有不同分布的數據集,即使是對于相同的任務。如何處理域漂移是提高模型泛化能力的關鍵。域適應提供了一個潛在的解決方案,允許我們將具有豐富標簽的源域轉移到只有有限標簽或沒有標簽的目標域。

在本論文中,我將介紹在不同場景下學習可遷移表示的許多方法,包括1) 當源域只有有限的標簽,甚至每個類只有一個標簽時,2) 當有多個標記源域時,3) 當有多個未標記的目標域時。這些方法在不同的數據模態(如視覺和語言)中是通用的,并且可以很容易地組合起來解決其他類似的領域轉移設置(如從具有有限標簽的多個源適應),使模型能夠泛化到源域之外。許多工作將知識從模擬數據轉移到真實數據,以減少對昂貴的手動注釋的需求。最后,介紹了我們在構建LiDAR 點云模擬器方面的開創性工作,進一步實現了LiDAR 點云分割的大量領域適配工作。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-213.html

付費5元查看完整內容

從教育到招聘,社會中的重要決策越來越依賴于數據驅動的算法。然而,算法決策的長期影響在很大程度上沒有得到充分理解,在理論和實踐中,確保公平利益存在嚴重挑戰。在本文中,我從兩個角度考察了機器學習算法的社會動力學:(I)算法決策的長期公平性,以及(ii)匹配市場的長期穩定性。

在計算機科學中,算法公平這個主題受到了廣泛的關注,但最近才認識到算法可以通過各種動態機制對種群產生不同的影響。我們通過提出機器學習算法和感興趣群體的動態交互的兩種不同模型來促進這一不斷發展的理解。首先,我們引入了延遲影響的概念——決策結果被觀察后,決策算法對人口的福利影響,其動機是,例如,在應用新的貸款批準算法后,平均信用分數的變化。我們證明了研究界提出的公平機器學習的幾個統計標準,如果應用于決策約束,可能會對弱勢群體的福利造成損害。t,我們考慮一個動態的環境,在這個環境中,個人投資于一個基于算法決策規則的預期回報的積極結果。我們表明,不良的長期結果是由于群體間的異質性和缺乏可實現性而產生的,并研究了干預措施的有效性,如按群體“脫鉤”決策規則和提供補貼。

除了長期公平的問題,利用機器學習為社會造福面臨的另一個挑戰是社會選擇。在市場中,個人學習目標(通常是構想出來的)可能與實現有效市場結果的長期社會目標相沖突。受在線市場和平臺中重復匹配問題的激勵,我們研究了雙邊匹配市場,參與者重復匹配,并通過匹配獲得關于其偏好的不完全信息。由于競爭,一個參與者試圖了解自己的偏好可能會影響其他參與者的效用。我們為市場平臺設計了一種機器學習算法,使市場作為一個整體能夠足夠有效地學習他們的偏好,從而快速獲得稱為穩定的市場公平概念。此外,我們研究了上述問題的分散化版本,并設計了參與者的學習算法,以在給定過去數據的情況下戰略性地避免競爭,從而消除了對中央平臺的需要。我們還研究了具有獨立行動誘惑的策略參與者是否仍應遵循算法的建議,結果顯示了算法的激勵兼容性方面的幾個積極結果。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-41.pdf

付費5元查看完整內容

人類一生都在學習。他們從一系列的學習經驗中積累知識,記住基本概念,但不會忘記之前所學的知識。同樣,人工神經網絡也在努力學習。他們通常依賴于經過嚴格預處理的數據來學習特定問題的解決方案,如分類或回歸。特別是,如果接受新的訓練,他們會忘記過去的學習經驗。因此,人工神經網絡通常不能處理現實生活中的情況,比如自主機器人必須在線學習以適應新情況并克服新問題,而不忘記過去的學習經驗。持續學習(CL)是機器學習的一個分支,解決了這類問題。持續算法的設計目的是在不遺忘的學習經驗課程中積累和提高知識。在本論文中,我們提出探索具有重放過程的持續算法。重播過程集中了預演方法和生成重播方法。生成式再現是通過生成式模型來記憶過去的學習經驗。排練包括從過去的學習經驗中保存一組核心樣本,以便以后進行排練。回放過程使優化當前學習目標和過去學習目標之間的折衷成為可能,從而在任務設置序列中實現不遺忘的學習。我們表明它們是非常有前途的持續學習方法。值得注意的是,它們能夠用新的知識重新評價過去的數據,并從不同的學習經驗中對抗數據。我們展示了他們通過無監督學習、監督學習和強化學習任務持續學習的能力。

付費5元查看完整內容
北京阿比特科技有限公司