一般來說,區塊鏈是一種數據庫技術,它以鏈接或 "鏈 "在一起的數據塊記錄和存儲信息。存儲在區塊鏈上的數據在網絡中的各個節點之間不斷共享、復制和同步,這些節點是相互通信并存儲和處理信息的單個計算機系統或專門硬件。這個系統可以在沒有中央機構或中介的情況下實現防篡改的記錄。
有多種類型的區塊鏈,根據不同的類型,記錄的數據可能被所有用戶訪問,也可能只有指定的子集。所有區塊鏈都有共同的特點,包括去中心化(即沒有中心化的權威)、不可更改性(即區塊鏈記錄是不可更改的)和假名性(即如何處理用戶的真實世界身份)。某些區塊鏈類型可能比其他類型提供更多的去中心化和假名性。新的區塊鏈應用,如智能合約、不可偽造的代幣和去中心化的自治組織,可能會在各種領域實現流程自動化或取代中介機構。區塊鏈治理協議和共識機制的最新發展,引起了人們對區塊鏈網絡的環境影響、監督和問責的關注。
自2008年創建以來,區塊鏈最常與加密貨幣聯系在一起--用戶通過去中心化的計算機網絡交換的數字貨幣。最近,公共和私營部門的行為者已經在供應鏈管理、身份管理和資產登記等領域使用區塊鏈應用。區塊鏈技術可以確定貨物的來源,并跟蹤其在供應鏈中的進展情況;用數字證書進行身份管理;記錄數字和實物的所有權;以及在沒有第三方中介的情況下轉讓財產、權利或貨物。美國是私營部門區塊鏈發展的中心,許多州和聯邦機構正在試驗新的區塊鏈出處應用,包括食品和藥物管理局和財政部。
支持者聲稱,區塊鏈可以通過實現可審計和不可更改的記錄來提高許多領域的透明度和效率。然而,反對者有很大的擔憂。區塊鏈技術正在成熟,金融領域以外的完全開發的用例相對有限。在一些應用中,與使用傳統數據庫或其他替代品相比,區塊鏈技術可能會增加不必要的復雜性。如果敏感信息被永久地記錄在區塊鏈上,加密算法被破壞,智能合約發生故障,或者數字錢包和其他區塊鏈應用被黑客攻擊,該技術也可能帶來安全和隱私風險。一些區塊鏈還使用能源密集型程序來驗證交易,其消耗的能源可能與小國一樣多。
各個州已經通過立法或建立倡議,以發展、激勵和監管區塊鏈技術。一些州對區塊鏈技術采取了截然不同的方法,因此現有的州級法規差異很大。少數聯邦機構發布了關于金融等特定領域區塊鏈技術的指導意見,但對于其他領域的區塊鏈應用,如供應鏈物流、身份認證或知識產權和資產登記,幾乎沒有指導意見。同時,中國和歐盟對區塊鏈技術進行了大量投資,并制定了各自的監管框架,因此國際法規也可能相互沖突。
國會可以考慮美國政府在區塊鏈技術和應用的發展或監管方面可能發揮的適當作用(如果有的話)。國會可以考慮資助區塊鏈技術的研究,支持標準的制定,或指導聯邦機構制定關于某些區塊鏈應用的指南,以及其他選擇。國會還可以考慮公共和私營部門在解決與區塊鏈技術相關的潛在風險方面的作用,以及在特定部門和特定應用中的作用。例如,國會可以考慮現有的隱私法規是否足以解決因使用區塊鏈技術和區塊鏈啟用的證明應用而產生的潛在問題。
支持者聲稱,區塊鏈技術可用于確保實物和數字物品的出處,而不需要一個集中的權威機構或中介機構。例如,了解一件物品的來源可以證明其歷史,從而確保物品的安全或合法性。由于交易必須通過共識機制批準,區塊隨后被散列,試圖改變數字或實物物品的出處記錄將留下可審計的痕跡,從而提醒用戶注意潛在的篡改。區塊鏈的新型應用可能與以下情況最為相關:
1.各方之間不完全信任的交易。
2.以錯誤、延遲或欺詐為特征的市場。
3.與現有數字基礎設施有關的情況。
在過去的幾年里,人工智能(AI)技術已經被應用到人類生活的幾乎所有垂直領域。然而,人工智能模型產生的結果往往滯后于可解釋性。AI模型經常出現在開發人員無法解釋或追溯特定決策背后的原因的黑箱中。可解釋AI (XAI)是一個快速發展的研究領域,它有助于提取信息,并以最佳的透明度將生成的結果可視化。本研究對XAI在網絡安全中的應用進行了廣泛的綜述。網絡安全能夠保護系統、網絡和程序免受不同類型的攻擊。XAI的使用在預測此類攻擊方面具有巨大的潛力。這篇論文簡要概述了網絡安全和各種形式的攻擊。然后,討論了傳統AI技術的使用及其相關挑戰,這打開了XAI在各種應用中的使用的大門。介紹了XAI在各研究項目和行業中的實施情況。最后,從這些應用中吸取的經驗教訓被強調為未來的研究范圍提供指導。
引言
網絡安全是程序、控制和技術的應用,以保護數據、程序、網絡和系統免受潛在的網絡攻擊。與網絡安全相關的各種工具和技術旨在對抗針對組織內部或外部環境中存在的網絡系統和應用程序的威脅。統計數據顯示,數據泄露造成的平均損失在全球范圍內為386萬美元,在美國上升到864萬美元[2]。這些成本不僅包括違約的直接影響,還包括后續調查,以確定違約的原因、相關的應對措施、收入損失、停機時間,以及最重要的聲譽品牌損害[3]。
考慮到這些成本,大多數組織都采用了基于主流最佳實踐的網絡安全策略。有效的網絡安全策略通常包括分層保護,對網絡攻擊提供防御,以保持網絡資產的機密性、完整性和可用性。這類戰略的實施還旨在防止對用戶或知名組織進行財務勒索,妨礙正常的商業運作。因此,在這方面部署明智、有效和高效的應對措施是絕對必要的。例如,美國國家標準與技術研究所(NIST)開發了一個網絡安全框架,幫助各組織保護它們的計算機系統、網絡和用于實現國家安全、公共衛生、安全和各種其他行政活動的各種其他資產。國際標準組織,即ISO27000系列資訊保安標準,旨在滿足類似的需要。盡管存在這樣的方法和標準,攻擊者仍然在安全框架中發現漏洞,這些漏洞可以繞過極其強大的防御措施。在大流行危機期間,當專業規范從辦公室變為在家工作時,網絡安全威脅還觀察到與遠程訪問工具、云服務和其他遠程工作工具相關的漏洞也發生了變化。[4]。這些不斷發展的威脅包括惡意軟件、勒索軟件、網絡釣魚、內部威脅、分布式拒絕服務(DDOS)威脅、高級持續威脅(APTs)、中間人攻擊和各種其他[5]。
網絡安全框架和相關最佳實踐能夠在不損害用戶隱私和客戶體驗的情況下保護機密信息,從而有效減少網絡漏洞。更具體地說,身份和訪問管理(IAM),例如,框架用戶角色和訪問權限,建立標準,訪問權限可以被監控。IAM技術包括單點登錄功能,其中用戶訪問網絡時無需多次重新輸入證書。IAM還可以提供多因素認證和特權用戶帳戶,只提供對特定合法用戶的訪問,減少欺騙性訪問的可能性。這些工具增強了終端用戶設備中異常活動的可見性。此外,在出現安全漏洞的情況下,這些工具可確保加速調查、響應、隔離和遏制與安全漏洞相關的所有組件。
有各種綜合的數據安全平臺,包括分類、權限分析、行為分析和合規報告等功能。這些平臺的主要目標包括在混合云和多云環境中保護敏感信息。這些平臺提供自動、實時的可見性、入侵警報和對數據漏洞[6]的監控。例如,安全信息和事件管理(Security information and event management, SIEM)是安全信息管理(Security information management, SIM)和安全事件管理(Security event management, SEM)的結合,對應用程序和網絡硬件產生的安全告警進行自動化實時分析。這些產品包括智能和先進的檢測方法,用戶行為分析和人工智能/機器智能(AI/ML),以檢測軟件產品和服務領域的異常[7]。
網絡安全風險管理有助于理解安全威脅的各種特征,以及個人和組織層面的相關內部互動。最低合理可行(ALARP)是一個類似的風險管理原則,強調網絡風險。這一原則確保通過將風險與解決相同問題所需的時間和資源進行比較來減少剩余風險。其理念是分析降低風險所涉及的成本,并確保其與所獲得的利益不成比例。網絡/信息安全的所有現代風險管理解決方案都著眼于降低風險影響,從而平衡減少或緩解風險影響的相關成本。
值得一提的是,ISO27000這類國際標準家族的范圍,強調了與網絡安全風險相關的信息安全管理系統文檔的創建和管理。該標準由14個組和35個控制類別的114個控制組成,涵蓋了組織網絡安全的所有方面。為了適用該標準,必須評估現有風險,確定適用的控制措施,評估這些控制措施帶來的緩解效果,評估應用這些控制措施的成本,還必須評估所引入的任何次級風險的緩解效果。控件將被應用于: (1)該風險經評估超過該組織的風險承受能力; (2)成本控制的應用被認為是可以接受的; (3)二次風險不排除應用。
人工智能如何幫助網絡安全
機器學習(ML)算法是在以往經驗的基礎上訓練的,以便做出類似人類行為的決定。此外,ML算法還被用于檢測與安全威脅和[8]漏洞相關的異常和威脅。此外,在過去幾年中,基于機器學習的自動化安全工具已經得到了發展,它們可以自動響應威脅,執行諸如聚類、分類和回歸[9]等任務。聚類是一種將數據根據其特征的相似性進行分組的過程。聚類中的數據對象彼此相似,但又不同于其他聚類中的數據對象。因此,聚類分析可以對沒有預定義類的數據進行無監督分類。另一方面,分類有助于預測給定數據點的類別。分類器使用訓練數據來理解輸入變量是否屬于一個特定的類別,使用無監督學習技術。回歸分析是一種統計技術,它建立因變量和獨立預測變量之間的關系與許多獨立變量之一。
AI和ML也被用于主動的漏洞管理。基于AI/機器學習的用戶和事件行為分析(UEBA)工具分析服務端點和服務器上的用戶交互,以檢測異常行為。這有助于在[10]漏洞報告或修補之前為組織提供提前保護。
反病毒檢測是人工智能技術發揮重要作用的一個領域。最主要的方法是啟發式技術、數據挖掘、代理技術和人工神經網絡[11]。例如,Cylance智能防病毒產品是為了滿足類似的目標,為家庭從合法數據中檢測惡意軟件提供企業級的基于人工智能的安全。該產品完全在執行點消除了威脅,而不需要任何人工干預[12]。有許多傳統的身份驗證系統使用用戶名或電子郵件和密碼作為一種身份驗證方法。人工智能的使用有助于檢測易受攻擊的密碼,并用于基于生物識別的認證系統,提供更強的保護層,黑客難以入侵。生物識別系統主要用于企業和政府組織的安全和訪問控制。生物識別系統可分為物理識別系統和行為識別系統。物理生物識別系統使用人體的物理、可測量和獨特的信息,如DNA、靜脈、指紋、虹膜等,并將這些信息轉換為人工智能系統可以理解的代碼。相反,行為識別系統捕捉獨特的行為特征,如聲音、個人打字節奏、與物體的交互方式,然后將這些編碼信息存儲在數據庫中。在身份驗證和驗證過程[13]期間對該信息進行數字戳記。
AI在網絡安全方面的局限性使XAI成為必要
人工智能在網絡安全領域的應用帶來了許多挑戰。特別是,人工智能應用引入了大量的反指示和次級風險,它們成為惡意行為者發起攻擊的載體。例如,攻擊者可能會成功地避開基于ML的檢測。更具體地說,攻擊者可能會操縱惡意軟件文件,使基于人工智能的檢測框架無法識別任何惡意或異常活動,這就是通常所說的規避攻擊。類似地,基于人工智能的網絡安全應用也存在各種威脅,如圖1所示,涉及通信攔截、服務失敗、事故、災難、法律問題、攻擊、停電和物理損害。
基于人工智能的系統的成功取決于數據的可用性。基于人工智能的系統引發了兩類次級風險。第一種類型包括產生假陰性結果導致不準確決策的風險。第二種包括產生假陽性結果的風險,其中存在不準確的通知或假警報的可能性。[14]。在這種情況下,迫切需要確保采取必要的緩解措施,確保更準確地處理違約或異常事件的情況,從而保持所作決定的可解釋性和合理性。
實時AI系統通常會消耗大量的計算能力、數據和原始內存資源需求。這些系統還需要更高水平的專業知識來構建和維護[16],因此部署成本非常高。人工智能生物測量系統也面臨著類似的挑戰,與上述問題相關,這些系統也容易受到信息泄露風險的影響。網絡安全公司主要使用人工智能來開發魯棒和安全的系統。相反,這些系統經常被黑客出于不道德的目的而破壞,這些黑客訓練或變異惡意軟件,使其具有AI免疫力,其行為與傳統系統相比異常。人工智能的使用使黑客能夠挫敗安全算法,使數據操作不被發現,從而使組織極其難以糾正輸入基于人工智能的安全系統的數據。因此,當前基于人工智能的系統面臨的挑戰在于,與基于模型的傳統算法[17]相比,它們的決策缺乏合理性和合理性。如果系統不能理解并從網絡安全事件中吸取教訓,那么無論基于人工智能的系統多么強大和準確,網絡安全都將成為一個具有普遍二級風險的黑匣子。
人工智能威脅體系
在深度強化學習的情況下,被確定為某些反應的原因的顯著特征,通常仍然無法解釋。例如,可以考慮貝葉斯推斷的計算,其中產生的結果的準確性往往受到數據不足的問題的影響。這就需要統計AI算法來幫助量化這些不確定性。但是這種統計AI算法的結果往往難以解釋,因此,XAI通過為基于AI的統計模型產生的結果提供可解釋性來發揮其作用,為研究人員和專家提供理解因果推理和原始數據證據[18]的能力。同樣,在醫療保健領域,XAI的實施首先允許機器分析數據并得出結論。其次,它使醫生和其他醫療保健提供者能夠獲得解釋如何做出特定的決策。在制造業中,基于人工智能的自然語言處理(AI-based natural language processing, NLP)幫助分析與設備和維護標準相關的非結構化數據,這些數據與結構化數據相關聯,即工單、傳感器讀數等業務流程數據。這有助于技術人員在他們的工作流相關操作方面做出最佳決策。
XAI能提供什么幫助
人工智能模型已經成功地應用于許多日益復雜的領域,通過其基于復雜數據集的合成能力補充和增強人類的能力。計算能力的提高進一步擴大了通過人工智能提供解決方案的范圍,人工智能應用的增長呈可視化指數增長。因此,在關鍵任務設置中對此類AI應用的需求迅速增長,其中AI被嵌入到眾多硬件智能設備中,從而實現無監督或遠程控制使用。然而,人工智能的應用帶來了相關的重大問題。過擬合,是監督式ML中的一個基本問題,其中統計模型與訓練數據完美匹配,阻礙了其在數據未知情況下的準確分析能力。當它捕捉到數據中的噪聲和不準確的值時,模型的效率和精度會下降(Ying, 2019)。過度擬合模型的使用會導致AI性能下降,在關鍵任務設置中,可能會導致不準確的決策、經濟損失、身體傷害甚至死亡。
通過對模型的機制和推理的理解,可以在一定程度上減輕這些風險。不幸的是,傳統AI系統的黑箱特性成為瓶頸,即使是AI專家也無法提供合理的解決方案[19,20]。因此,透明度是必要的,它將使明智和合理的決策制定成為可能,并有助于為模型的行為提供準確的解釋。例如,在網絡安全系統的情況下,不合理和誤導性的預測可能會使系統非常容易受到攻擊,導致完全不安全的關鍵系統。隨著可解釋人工智能的實施,提供實用的、實時的基于人工智能的解決方案將變得更加容易,因為數據集中的偏見可以完全消除,從而導致公正的決策。解釋性結果使人工智能解決方案更加穩健和可信,確保有意義的變量推理和模型推理的基礎。傳統的基于深度神經網絡的模型(DNN)非常流行,但其可解釋性滯后。例如,對于id,網絡管理員很難理解入侵檢測背后的原因,并將其轉化為黑盒模型。在這種黑盒模型中,涉及決策制定的過程是具有挑戰性的,因為DNN在試錯過程中編輯特征,以生成理想的解決方案。盡管對基于ML的入侵檢測系統進行了大量的研究,但在得出與攻擊分類、異常流量行為識別和模型自動構建相關的結論時,很少對結果的基本推理或解釋進行探討。決策樹(DT)作為一個完美的模型來支持對結果預測的解釋。DT分析的結果不基于任何與數據分布相關的假設,并且有效地處理了特征共線性問題。因此,可解釋AI系統的實現使網絡管理員能夠分析、解釋和洞察IDS系統的安全策略[21,22]。在本文中,我們探討了網絡和人工智能風險的競爭本質,并探討了XAI作為人工智能風險的主要控制手段的潛力。關于XAI在網絡安全中的應用已經進行了大量的研究。本節將討論其中一些研究。[23]的研究提出了一種新穎的黑盒攻擊,該攻擊實現了XAI,損害了相關分類器的隱私和安全性。本研究采用反事實解釋(CF)生成方法實現基于梯度的優化。本研究中使用的CF方法包括潛在CF技術、多元反事實解釋(DiCE)技術和permute攻擊(對反病毒引擎執行端到端規避攻擊)。他們還執行成員推斷攻擊,這有助于鏈接用戶,并從泄露的數據集竊取他們的密碼,從而對同一數據集發起中毒和模型提取攻擊。該研究評估了與每種攻擊有關的安全威脅,并向用戶和攻擊者提供了能夠避免和減輕風險的范圍。[24]的研究提出了一種方法來解釋由面向數據的IDSs產生的不準確的分類。采用對抗性技術來識別輸入屬性中的最小修改,以準確分類錯誤分類的數據集樣本。在[22]中,提出了一個基于深度學習的入侵檢測框架。研究中可解釋的人工智能技術,有助于實現ML模型的每個層次的透明度。
該研究中使用的XAI方法包括SHAP和BRCG,能夠完全理解模型的行為。XAI的SHAP和CHEM技術有助于理解輸入的特征,從而將決策導出為輸出。考慮到分析師的視角,使用Protodash方法來識別訓練數據樣本之間的異同。[25]的作者提出了一種創新的方法來管理網絡安全系統報警系統中的超載問題。本研究考慮實施的系統包括安全資訊及事件管理系統(SIEM)及入侵偵測系統(IDS)。將零樣本學習技術與ML相結合,在框架內計算異常預測的解釋。該框架的獨特方法包括在沒有任何先驗知識的情況下識別攻擊,破譯導致分類的特征,然后使用XAI技術將攻擊分組到特定類別中。XAI的使用有助于識別、量化因素,并了解其對特定網絡攻擊預測的貢獻。[21]的研究提出了一種基于決策樹的XAI模型的IDS增強信任管理系統。研究中使用的決策樹算法幫助IDS在多個子選擇中分割選擇,從而為基準數據集生成規則。與傳統的支持向量機(SVM)系統相比,基于決策樹的XAI方法提高了精度。
雖然有各種綜述文章關注AI在網絡安全中的應用,但目前還沒有對可解釋AI在網絡安全中的應用進行全面的綜述,其中包括明確和廣泛的信息。因此,為了彌補這一差距**,本文著重對XAI在網絡安全領域的研究現狀、現有人工智能實施所面臨的挑戰、XAI的需求及其在各個領域的潛在應用范圍進行了全面的綜述**。表2重點分析了XAI和本論文的現有工作。從用戶的角度來看,使用XAI比使用AI的好處在圖3中得到了強調。
綜上所述,本研究的具體貢獻包括:
由美國導彈防御局(MDA)和海軍實施的宙斯盾彈道導彈防御(BMD)計劃,使海軍宙斯盾巡洋艦和驅逐艦有能力進行BMD行動。具備BMD能力的宙斯盾艦在歐洲水域作戰,保衛歐洲免受來自伊朗等國家的潛在彈道導彈攻擊,并在西太平洋和波斯灣提供區域防御,防止來自朝鮮和伊朗等國家的潛在彈道導彈攻擊。隨著時間的推移,具有BMD能力的宙斯盾艦的數量一直在增加。MDA提交的2023財政年度預算報告指出,"到2023財政年度末,將有50艘具有BMDS[BMD系統]能力的[宙斯盾]艦需要維護支持"。
宙斯盾BMD項目的資金主要來自MDA的預算。海軍的預算為BMD相關工作提供了額外的資金。MDA的2023財年擬議預算要求為宙斯盾BMD工作提供總計16.591億美元(即約17億美元)的采購和研發資金,包括為波蘭和羅馬尼亞的兩個宙斯盾岸上基地提供資金。MDA的預算還包括宙斯盾BMD項目的運營和維護(O&M)以及軍事建設(MilCon)資金。
國會關于宙斯盾BMD計劃的問題包括以下內容:
是否批準、拒絕或修改MDA為該項目提出的年度采購和研究與開發資金申請。
MDA的成本估算和成本報告是否充分。
宙斯盾BMD計劃在保衛美國本土免受洲際彈道導彈攻擊方面應發揮什么作用。
具備BMD能力的宙斯盾艦的所需數量與可用數量。
BMD行動可能給海軍的宙斯盾艦隊帶來的負擔,以及是否有其他方法來執行現在由美國海軍宙斯盾艦執行的BMD任務,如建立更多的宙斯盾岸上基地。
盟國負擔的分擔--盟國對區域BMD能力和行動的貢獻與美國海軍對海外區域BMD能力和行動的貢獻相比。
宙斯盾BMD項目在關島新的導彈防御系統架構中的作用。
是否將夏威夷的 "宙斯盾 "試驗設施轉換為陸基 "宙斯盾 "BMD作戰地點。
艦載激光器在未來幾年內對海軍終端階段BMD行動的貢獻,以及這最終可能對所需的艦載BMD攔截導彈數量產生的影響。
宙斯盾BMD計劃中的技術風險和測試與評估問題。
自軍事航空業誕生以來,美國軍方一直對遙控飛機感興趣。今天的無人機系統(UAS)通常由一個無人駕駛飛行器(UAV)和一個地面控制站組成。自20世紀90年代,隨著MQ-1 "捕食者 "的推出,無人機系統在美國軍事行動中已變得無處不在。
美國軍方目前采用了幾種不同的大型無人機系統,包括
此外,其他幾個報告的項目計劃要么正在開發,要么目前正在進行試驗。這些計劃包括空軍的B-21突擊機和空軍的RQ-180。
當國會履行其監督和授權職能時,它可能會考慮與無人機系統有關的幾個潛在問題,項目相關的幾個潛在問題,包括
在美國軍方,遙控飛行器(RPV)最常被稱為無人駕駛飛行器(UAV),被描述為單一的飛行器(帶有相關的監視傳感器)或無人駕駛飛行器系統(UAS,或無人機系統),通常由一個飛行器與一個地面控制站(飛行員實際坐在那里)和支持設備組成。當與地面控制站和通信數據鏈相結合時,無人機形成了無人機系統或UAS。
美國國防部(DOD)對無人機的定義,并延伸至無人機系統,是指涵蓋下列特征的飛機:
根據國防部的定義,彈道或半彈道載具、巡航導彈和炮彈不被視為無人機系統。
無人機系統的作用和任務已經隨著時間的推移而演變,從收集情報、監視和偵察到執行空對地攻擊任務。此外,一些分析家預測了無人機系統的未來作用,如空對空戰斗和戰斗搜索和救援。然而,對無人機系統的未來概念和任務的詳細討論超出了本報告的范圍。
無人機系統在第一次世界大戰期間首次進行了測試,盡管美國在那場戰爭中沒有在戰斗中使用它們。美國在越南戰爭期間首次在戰斗中使用了無人機系統,包括AQM-34 Firebee,這一系統體現了無人機系統的多功能性。例如,"火蜂 "最初在20世紀50年代作為空中炮擊靶機飛行,然后在20世紀60年代作為情報收集無人機飛行,并最終在2002年被改裝為有效載荷。
美國軍隊在科索沃(1999年)、伊拉克(2003年至今)和阿富汗(2001年至今)等沖突中使用無人機系統,說明了無人機的優勢和劣勢。(下面討論的MQ-1 "捕食者 "進一步體現了這些優勢和劣勢)。當無人機系統執行歷史上由有人駕駛飛機執行的任務時,它們經常獲得媒體的關注。與有人駕駛飛機相比,它們似乎還具有兩個主要優勢:(1)它們消除了飛行員的生命風險(見關于MQ-4C的討論);(2)它們的航空能力,如續航能力,不受人類限制的約束,并使用對人類來說可能太危險的固有不穩定設計,改進低可觀察技術。此外,無人機系統可以通過執行不需要飛行員在駕駛艙內的 "枯燥、骯臟或危險 "的任務,潛在地保護飛行員的生命。這些任務的例子包括1999年由B-2轟炸機執行的30小時長航時任務(枯燥的任務);空軍和海軍的B-17飛機穿過核云收集放射性樣品(骯臟的任務);以及在存在主動威脅的情況下進行的情報監視和偵察飛行,如便攜式防空系統或綜合防空系統(危險任務)。
此外,無人機系統的采購和操作可能比有人駕駛的飛機更便宜。然而,較低的采購成本可能會與國防部的意見相權衡,即無人駕駛平臺比有人駕駛平臺更有可能發生A類事故,即造成250萬美元的損失、生命損失或飛機毀壞的事故(表1)。當比較事故率時,即以每10萬小時飛行的事故報告,以便對不同類型的飛機進行比較,與有人駕駛的飛機相比,無人駕駛的飛機發生A級事故的可能性要高92%;當MQ-1的事故率從無人駕駛的子類別中刪除時,與有人駕駛的飛機相比,MQ-9和RQ-4發生A級事故的可能性高15%(見表1)。雖然與無人駕駛平臺相比,有人駕駛飛機通常有更多的A類事故,但這一結果可能是由于有人駕駛飛機的數量更多。
表1. 1998至2021財年的軍用飛機失事和毀壞率
國防部通常使用三種模式來操作無人機系統:(1)政府擁有和操作的系統,(2)政府擁有但由承包商操作的系統,以及(3)承包商擁有和操作的系統。當無人機系統首次被引入部隊時,國防部使用了承包商擁有和操作的模式,因為國防部培訓軍事人員來操作這些新型飛機。在培訓了足夠的人員后,國防部過渡到了政府擁有和經營的模式。然而,國防部對分配給承包商運營的飛機(包括政府和承包商擁有的飛機)的任務類型進行了限制,將這些類型的行動限制在情報、監視和偵察的作用。
最早進入軍隊服役的無人機系統之一是MQ-1 "捕食者",當時國防部在1996年選擇了空軍來操作 "捕食者"。根據空軍的說法,"捕食者 "的設計目的是 "向作戰人員提供持久的情報、監視和偵察信息,并結合打擊能力"。20作為國防部高級研究計劃局(DARPA)合同下的先進概念技術示范機,"捕食者 "在1995年仍作為技術示范機進行了首次作戰部署,支持北約對塞爾維亞的空襲。從1999年3月到7月,"捕食者 "在科索沃上空飛行了600多架次,進行實時監視和戰損評估。2001年9月,"捕食者 "被部署到阿富汗,在2001年9月11日的恐怖襲擊之后,為支持 "持久自由行動 "提供長期的情報、監視和偵查。美國軍隊對 "捕食者 "的廣泛使用促進了其他密切相關的無人機系統(如下所述)的發展,這些系統旨在執行各種類型的任務。盡管 "捕食者 "于2018年3月9日正式退役,但美軍目前的大部分無人機系統機隊都是基于相同的技術,包括源自 "捕食者 "的機體。
“捕食者”由加利福尼亞州圣地亞哥的通用原子航空系統公司開發,以其綜合監視有效載荷和武器裝備能力幫助定義了無人機系統的現代作用。捕食者的主要功能是對潛在的地面目標進行偵察和目標獲取。為了完成這一任務,"捕食者 "配備了450磅的監視有效載荷,其中包括兩臺電子光學(EO)相機和一臺用于夜間的紅外(IR)相機。這些攝像機被安置在車頭下的球狀炮塔中。掠奪者 "還配備了一個多光譜瞄準系統(MTS)傳感器球,它在EO/IR有效載荷中增加了一個激光指示器,使掠奪者能夠跟蹤移動目標。此外,"捕食者 "的有效載荷包括一個合成孔徑雷達(SAR),它使無人機系統能夠在惡劣的天氣中 "看到"。捕食者的衛星通信提供了超越(地面)視距無線電的操作。
MQ-1捕食者的物理特征:"捕食者"是一種中高度、長壽命的無人機系統。它長27英尺,高7英尺,翼展48英尺,有細長的機翼和一個倒 "V "形的尾翼。"捕食者"通常在10,000到15,000英尺的高度運行,以便從其視頻攝像機獲得最佳圖像,盡管它能夠達到25,000英尺的最大高度。每輛飛行器可以在離其基地500多海里的地方停留24小時,然后返回家園。"捕食者"的飛行員和傳感器操作員從地面控制系統中駕駛飛機。
2001年,作為一項輔助功能,"捕食者 "配備了攜帶兩枚地獄火導彈的能力。以前,"捕食者 "識別目標并將坐標轉發給一架有人駕駛的飛機,然后與目標交戰,但增加反坦克彈藥后,無人機系統能夠對時間敏感的目標發動精確攻擊,并將 "傳感器到射擊 "的時間周期降至最低。因此,空軍將 "捕食者 "的軍事名稱從RQ-1B(偵察型無人機)改為MQ-1(多任務無人機)。
在 "捕食者 "作戰成功后,陸軍和空軍都開發了變種飛機,包括MQ-1C "灰鷹 "和MQ-9 "收割者"(下文討論)。這些飛機使用了原來的 "捕食者 "機身,同時增加了發動機功率和武器裝備。
以下各節概述了國防部目前選定的無人機系統項目。
除了RQ-170 "哨兵 "是一個公認的機密無人機系統項目外,這些選定的系統都有國防部發布的選定采購報告,其中提供了詳細的信息和系統特征。表2提供了這些選定的無人機系統的特征摘要。
表2. 選定的無人駕駛飛機的特征摘要
MQ-1C“灰鷹”(圖1)是MQ-1 "捕食者 "的陸軍衍生產品。根據陸軍的說法,MQ-1C“灰鷹”為作戰人員提供了專用的、有保障的、多任務的無人機系統能力,涵蓋所有10個陸軍師,以支持指揮官的作戰行動和陸軍特種部隊及情報和安全指揮部。 陸軍表示,MQ1C灰鷹能夠以150節的最大速度在25,000英尺的高度飛行至少27小時。它可以攜帶四枚地獄火導彈,以及光電傳感器、合成孔徑雷達和通信中繼器。根據2021財年選定的采購報告,陸軍的MQ-1C“灰鷹”在2019財年飛行了超過494,000小時,實現了92%的戰斗行動可用性。
圖1. MQ-1C “灰鷹”
陸軍總共采購了204架飛機,其中11架是訓練飛機,13架是 "戰備浮動飛機"(即備件)。平均采購單位成本(基本上是每架飛機的成本)為1.275億美元。36 陸軍在2018年8月完成了MQ-1C "灰鷹 "的作戰測試和評估,目前在15個陸軍連隊運營該無人機系統。
MQ-9 "死神"(圖2)--以前是 "捕食者B"--是通用原子公司對MQ-1 "捕食者 "的替代。根據空軍的說法,MQ-9 "死神 "是一種中高海拔、長續航時間的無人機系統,能夠進行監視、目標獲取和武裝對抗。盡管MQ-9 "死神 "借鑒了MQ-1 "捕食者 "的整體設計,但MQ-9 "死神 "長13英尺,翼展長16英尺。MQ-9 "死神 "還采用了900馬力的渦輪螺旋槳發動機,比MQ-1 "捕食者 "的115馬力發動機功率大得多。這些升級使MQ-9 "死神 "能夠達到最大50,000英尺的高度,240節的空速,24小時的續航時間,以及1,400海里的航程。然而,MQ-9 "死神 "與其前輩最不同的特點是其軍械能力。MQ1捕食者能夠攜帶兩枚100磅的地獄火導彈,而MQ-9死神可以攜帶多達16枚地獄火導彈,相當于陸軍阿帕奇直升機的有效載荷能力,或者混合500磅的武器和小直徑炸彈。在2018日歷年,MQ9 "死神 "總共飛行了325,000小時--其中91%的小時,即約296,000小時,是為了支持作戰行動而飛行的。
圖2. MQ-9 "死神"
2021年1月,通用原子公司披露了MQ-9 "死神 "的一個新的海上反水面戰變體。據報道,MQ-9B "海上衛士 "配備了聲納浮標投放(投放旨在識別潛艇的傳感器)和遙感能力(很可能是指 "海上衛士 "用于搜索水面艦艇的合成孔徑雷達),目前正在太平洋地區進行測試。
根據2020財年選定的采購報告,空軍已與通用原子公司簽訂合同,在該計劃的有效期內建造366架MQ-9 "死神"。按2008年美元計算,平均采購單位成本為2230萬美元(或按2022財年美元計算約為2800萬美元)。在2022財年,空軍沒有要求采購任何MQ-9 "死神",但眾議院軍事委員會在其標記中授權額外采購6架飛機。
由波音公司制造的MQ-25 "黃貂魚"(圖3)旨在為海軍的航母航空隊提供空中加油。根據海軍的說法,MQ-25將率先實現有人和無人操作的整合,展示成熟的復雜的海基C4I[指揮、控制、通信、計算機和情報]無人機系統技術,并為未來多方面的多任務無人機系統鋪平道路,以超越新興威脅。MQ-25的要求是解決基于航母的加油和持久的情報、監視和偵察能力的需要。
MQ-25 "黃貂魚 "由一個飛行器和一個控制系統組成,旨在適合航空母艦。它的首次飛行是在2019年9月進行的。MQ-25 "黃貂魚 "目前正處于采購過程的工程、制造和設計階段,海軍計劃在2023財政年度開始采購。根據2021財年的選定采購報告,海軍打算采購76架飛機,平均采購單位成本為1.21億美元。海軍在確定將加油作為其第一個航母上的無人機系統任務之前,研究了幾個無人戰斗飛行器概念。
圖3. MQ-25 "黃貂魚"
諾斯羅普-格魯曼公司的RQ-4 "全球鷹"(圖4)是美國空軍目前投入使用的最大和最昂貴的無人機系統之一。RQ-4 "全球鷹 "集成了多樣化的監視有效載荷,其性能被廣泛認為可與大多數有人駕駛的間諜飛機相媲美或超越。RQ-4全球鷹長47.6英尺,重32,250磅,與一架中等規模的公司飛機差不多大。根據空軍的說法,RQ-4全球鷹的飛行高度幾乎是商業客機的兩倍,可以在65,000英尺的高空停留超過34小時。它可以飛到5,400海里外的目標區域,在60,000英尺高空徘徊,同時監測一個伊利諾伊州大小的區域(近58,000平方英里)24小時,然后返回。RQ-4 "全球鷹 "最初被設計為一種自主的無人機,能夠根據預先編入飛機飛行計算機的輸入進行起飛、飛行和降落;然而,空軍通常在任務控制飛行員和傳感器操作員的配合下操作這些飛機。
圖4. RQ-4 "全球鷹"
RQ-4全球鷹目前以三種配置部署。Block 20、Block 30和Block 40:
20號機被稱為戰場機載通信節點(BACN,發音為 "bacon"),充當地面部隊的通信中繼。目前有四架飛機采用這種配置。
30號機使用合成孔徑雷達(SAR)、光電/紅外(EO/IR)傳感器、增強型綜合傳感器套件(EISS)和機載信號情報有效載荷(ASIP)的組合。Block 30的初衷是為了取代U-2間諜飛機。目前有20架Block 30飛機正在服役。
40號機整合了具有地面跟蹤能力的多平臺雷達技術(可跟蹤地面部隊的雷達,類似于E-8C JSTARS飛機)。10架Block 40飛機正在服役。
截至2016財年的選定采購報告,RQ-4全球鷹已經飛行了14萬小時(其中10萬小時支持作戰行動)。2014年,79.7%的飛機可用于執行任務。2014財年的平均采購單位成本為1.228億美元(或按2022財年調整后的美元計算為1.411億美元)。總統的2022財年預算請求重申了空軍計劃在2021財年退役所有Block 20飛機,并在2022財年退役所有Block 30飛機。
海軍的MQ-4C "海神"(圖5)也被稱為廣域海上監視(BAMS)系統,它以 "全球鷹 "Block 20機身為基礎,但使用不同的傳感器,與P-8 "海神 "有人駕駛飛機一起支持海上巡邏行動。根據2020財年選定的采購報告,"安裝在MQ-4C天龍上的任務傳感器提供360度的雷達和光電/紅外覆蓋"。報告稱,海軍打算在2020年10月達到初始作戰能力,并在2021年5月做出全速生產的決定。在2019年的年度報告中,作戰測試和評估主任表示,海軍結束了對該飛機的作戰評估,這支持了早期的實戰決定。MQ-4C "海獅 "的平均采購單位成本在2016財年為1.461億美元(或在2022財年約為1.626億美元)。
圖5. MQ-4C "海獅"
2019年6月,伊朗軍方在阿曼灣擊落了一架MQ-4C "海獅",國防部稱其為BAMS飛機。根據海軍的新聞簡報,這架飛機當時正在該地區飛行,監測霍爾木茲海峽是否有伊朗對商業航運的威脅。國防部官員表示,"這次襲擊是在最近國際航運和商業自由流動受到威脅之后,試圖破壞我們監測該地區的能力。" 當時,特朗普政府似乎考慮對伊朗摧毀一架美國飛機進行報復性打擊,但據報道,在回應一架無人駕駛飛機的損失時,升級風險是不值得的。
盡管RQ-170 "哨兵"(媒體也稱之為 "坎大哈的野獸")被公開承認存在,但關于它的大部分信息都是保密的。RQ-170 "哨兵 "首次在阿富汗上空被拍到,但據說也曾在韓國作戰,它是一種無尾的 "飛翼",比美國目前的其他無人機系統更隱蔽。 據報道,一架RQ-170 "哨兵 "在2011年5月1日對奧薩馬-本-拉登的駐地進行了監視和數據中繼。伊朗政府在2011年12月2日聲稱擁有一架完整的RQ-170 "哨兵",因為它被指控侵入了伊朗領空。
RQ-170 "哨兵 "由洛克希德-馬丁公司制造,翼展約65英尺,長近15英尺,由一臺噴氣式發動機驅動。它的上翼表面似乎有兩個傳感器托架(或衛星天線外殼)。雖然該機具有像B-2隱形轟炸機那樣的固有的低可觀察性混合機翼/機身設計,但RQ-170 "哨兵 "的常規進氣口、排氣口和起落架門表明其設計可能沒有完全針對隱形進行優化。
根據空軍的說法,"RQ-170哨兵是空軍正在開發、測試和投入使用的低可觀察性無人駕駛飛機系統(UAS)"。 沒有進一步的官方狀態。
盡管其他無人機系統項目正在開發中,但它們在很大程度上是保密的,因此有關它們的信息并不公開。這些項目包括B-21 "突襲者"(據說是一種能夠進行遠程駕駛的載人轟炸機)和RQ-180。2021年12月4日,空軍部長弗蘭克-肯德爾透露,空軍打算在2023財政年度啟動兩個新的無人機系統項目,但沒有其他信息。
B-21 "突襲者"
即將推出的B-21 "突襲者 "不是一個純粹的無人機系統;這種遠程轟炸機預計將由遠程或機上人員操作。B-21(圖6)打算在常規和核方面發揮作用,有能力穿透先進的防空環境并在其中生存。預計它將在20世紀20年代中期開始服役,建立一個由100架飛機組成的初始機隊。B-21將駐扎在德克薩斯州的戴斯空軍基地、密蘇里州的懷特曼空軍基地和南卡羅來納州的埃爾斯沃思空軍基地,其中埃爾斯沃思是訓練基地。
圖6. 對B-21的渲染圖
B-21是圍繞三個具體的能力而設計的:
1.一個大而靈活的有效載荷艙,能夠攜帶目前和未來的各種武器裝備。
2.航程(盡管是保密的)。
3.預計每架飛機的平均采購單位成本為5.5億美元(2010財政年度),這是公開宣布的,以鼓勵競爭廠商限制其設計。
盡管空軍已經發布了轟炸機的藝術效果圖,但具體設計仍然是機密。
為了實現5.5億美元的目標,單位成本被指定為采購戰略中的一個關鍵性能參數,這意味著達不到這個價格就會失去投標資格。(該價格是基于采購100架飛機;數量的變化可能會影響實際的單位成本)。在授標公告中,空軍透露,諾斯羅普公司中標的獨立成本估計為每架飛機5.11億美元,相當于2016財年的5.64億美元。空軍表示,截至2021年的平均采購單位成本在2010財政年度為5.5億美元,或在2022年為6.7億美元。
RQ-180
據報道,另一個正在開發的無人機系統項目是RQ-180,據說是一種轟炸機大小的無人機系統。 2014年6月9日,前空軍負責情報、監視和偵察的副參謀長羅伯特-奧托中將說,空軍正在 "研究RQ-180遙控飛機,以使其更好地進入有爭議的空域,在那里,無人駕駛的RQ-4全球鷹和有人駕駛的U-2S平臺是很脆弱的。" 關于RQ-180的其他細節幾乎沒有公開發布,空軍也沒有正式承認該計劃。
本節討論了國會在考慮國防立法時可能出現的問題,包括與載人系統的成本比較,缺乏后續的記錄項目,組織管理,與現有部隊結構的互操作性,以及出口管制。
在2021年6月的一份報告中,美國國會預算辦公室(CBO)研究了有人和無人的情報、監視和偵察(ISR)飛機之間的成本、可靠性和出動率。值得注意的是,CBO確定RQ-4全球鷹每飛行小時的成本約為18,700美元,或載人P-8海神的62%,后者可執行類似任務,每飛行小時的成本為29,900美元。報告還指出:
與P-8相比,RQ-4全球鷹預計每年多飛行356小時
RQ-4全球鷹的預計壽命為20年,而P-8的預計壽命為50年
RQ-4全球鷹的采購成本為2.39億美元,而P-8海神的采購成本為3.07億美元(約為該載人平臺采購成本的78%)。
同樣,其他UAS飛機的購置成本和每飛行小時的成本也比有人駕駛飛機低。然而,UAS飛機通常比有人駕駛飛機有更高的事故率。國會在比較飛機系統時可以考慮這種權衡--較低的成本與較高的風險。
在伊拉克和阿富汗沖突期間,美國軍方每年購買數百個無人機系統,主要是MQ-1 "捕食者 "和MQ-9 "死神",但也有RQ-4 "全球鷹 "和MQ-4 "海獅"。當這些沖突結束后,采購量驟然下降。例如,各部門在2012財政年度采購了1211架中型或大型無人機系統,但到2014年,每年的數量下降到54架無人機系統,而且這個數字還在繼續下降。2022財年的預算報告要求采購6套UAS。
國防部沒有對這一變化進行正式的評論;然而,有幾個因素可能影響了這一下降趨勢。一個是在伊拉克和阿富汗沖突期間獲得的許多無人機系統共享類似的技術,軍方可能沒有設定新的要求來納入新技術。另外,盡管那些第一代和第二代無人機系統在寬松的空中環境(如伊拉克和阿富汗的環境,那里沒有對手的空軍或防空部隊)下運行良好,但在與先進的防空部隊和飛機的近距離沖突中,它們會面臨更大的挑戰,而這些飛機越來越成為美國國防規劃的一部分。國防部也可能在更先進的技術(如噴氣動力無人機系統)成熟時,有意識地在采購方面采取戰略暫停。最后,許多無人機系統的開發被認為在這一時期轉移到了不被承認的機密系統。因此,國防部的采購可能沒有如此急劇下降,而是從非機密或公認的機密項目轉移到公共預算文件中看不到的非公認的機密項目。
盡管大多數美國軍用無人機系統是基于MQ-1 "捕食者 "機身的,但各軍種都有無人機系統項目。在授權和監督方面,國會可以考慮以下問題。誰應該管理國防部無人機系統的開發和采購?這些項目中至少有一部分的管理應該集中起來嗎?如果是這樣,國防部的中央機構應該設在哪里?
前空軍參謀長諾頓-施瓦茨將軍提出:"理想情況下,你想做的是讓美國政府以一種能夠讓我們獲得最佳能力的方式。一個例子是BAMS[MQ-4 Triton]和[RQ-4]全球鷹。為什么海軍和空軍要有兩個獨立的倉庫、地面站和訓練管道,來處理本質上是相同的飛機和不同的傳感器?我認為我們雙方有很多機會可以更好地利用資源。" 蘭德公司2013年的一項研究發現,從歷史上看,聯合載人飛機項目并沒有帶來生命周期的成本節約,但通過一個辦公室管理多個項目而不完全合并這些項目可能是可能的。
無人機系統在與有人駕駛飛機執行任務時帶來了潛在的互操作性挑戰,因為飛行員并不直接在飛機上,而是位于機場上,用于起飛和降落,或者位于美國的一個設施。例如,UAS飛行員依靠攝像機或傳感器與編隊中的有人飛機進行視覺接觸。在過去的20年里,陸軍和空軍都展示了將無人機系統整合到其行動中的方法;最近,陸軍在其2021財政年度的項目匯合中試驗了新的概念。然而,海軍和海軍陸戰隊在將無人機系統整合到他們目前的機隊和行動中的經驗有限,特別是在航空母艦和兩棲艦上的大型無人機系統。隨著新的無人機系統的開發,以及使用這些飛機的新概念,有人駕駛的飛機和無人機系統將如何整合仍有待觀察。同樣,目前還不清楚與空域沖突有關的問題在多大程度上會給國防部帶來挑戰。
美國通過多邊出口管制制度和國家出口管制來控制無人機系統的出口。
導彈技術管制制度
導彈技術管制制度(MTCR)"尋求限制 "核生化武器擴散的風險,"通過管制可能有助于此類武器運載系統(除有人駕駛飛機外)的貨物和技術的出口"。1987年由美國和其他六個國家成立的MTCR,每年舉行幾次會議,目前由35個伙伴國組成,是一個非正式的自愿安排,其伙伴國同意對一個包含兩類受控物品的附件適用共同的出口政策準則。伙伴國根據國家立法執行這些準則,并定期交流有關出口許可證問題的信息,包括拒絕技術轉讓。MTCR準則適用于武裝和非武裝無人機系統。
第一類MTCR項目是最敏感的,包括 "能夠在至少300公里范圍內運送至少500公斤有效載荷的完整無人機系統,其主要的完整子系統......以及相關的軟件和技術",以及為這些無人機系統和子系統 "專門設計的 "生產設施。伙伴國政府應 "強烈推定拒絕 "此類轉讓,無論其目的如何,但可在 "罕見情況下 "轉讓此類項目。 該準則禁止出口第一類物品的生產設施。制度伙伴在授權出口第二類物品方面有更大的靈活性,其中包括不太敏感和兩用的導彈相關部件。這一類別還包括完整的無人機系統,無論有效載荷如何,射程至少為300公里,以及具有某些特征的其他無人機系統。
MTCR準則指出,各國政府在考慮MTCR附件物品的出口請求時應考慮六個因素。(1) 對核生化擴散的關注;(2) 接受國 "導彈和空間計劃的能力和目標";(3) 轉讓對核生化運載系統的 "潛在發展意義";(4) "對轉讓的最終用途的評估",包括下文所述的政府保證;(5) "相關多邊協定的適用性";以及(6) "受控物品落入恐怖團體和個人手中的風險"。 " 該準則還規定,如果伙伴國政府 "根據所有可用的、有說服力的信息 "判斷該物品 "打算用于 "核生化武器的運載,則強烈推定拒絕轉讓MTCR附件中的任何物品或任何未列入清單的導彈。
此外,MTCR準則指出,如果出口國政府不判斷擬議的第一類無人機系統的轉讓是用于核生化運載,政府將從接受國獲得 "有約束力的政府對政府的承諾",即 "未經 "出口國政府的同意,"該項目或其復制品或衍生品都不會被再次轉讓。出口國政府還必須承擔 "采取一切必要步驟,確保該物品只用于其既定的最終用途 "的責任。此外,政府只有在得到 "接受國政府的適當保證",即接受國將只為其既定目的使用這些物品,并在未經出口國政府事先同意的情況下不修改、復制或重新轉讓這些物品的情況下,才可批準轉讓 "可能有助于[核生化]運載系統 "的物品。伙伴國政府的出口管制必須要求在政府通知出口商此類物品 "可能全部或部分用于......載人飛機以外的[核生化]運載系統 "的情況下,授權轉讓未列入清單的物品。這些限制被稱為 "全面 "管制。
其他多邊出口管制制度
其他多邊制度限制可能使無人機系統開發核生化有效載荷的技術的出口。例如,核供應國集團管理與核有關的出口,而瓦森納安排在常規武器和某些兩用貨物和技術方面發揮著類似的作用。澳大利亞集團是與化學和生物武器有關的技術的類似組織。
美國的出口管制
從2017年開始,美國向MTCR合作伙伴提交了一系列建議,以放寬該制度對某些無人機系統的出口準則。 這些政府以協商一致的方式作出決定,但沒有同意采納任何這些建議。2020年7月24日,特朗普政府宣布了一項新的無人機系統出口政策,將 "精心挑選的MTCR第一類無人機系統的子類,其飛行速度不能超過每小時800公里(大約每小時500英里),視為第二類",從而克服了MTCR對這些系統的 "強烈拒絕推定"。美國已經向法國、意大利、日本、德國、韓國、西班牙和英國出口了MTCR第一類無人機系統。
美國商務部工業與安全局(BIS)2021年1月12日的最終規則實施了對美國兩用許可程序的相關修改。BIS向國會提交的2020財政年度報告指出,取消了所有2020年MTCR會議,并解釋說,美國單方面采取這一政策是因為 "在可預見的未來,MTCR沒有進一步進展的場所"。 國務院的一位官員說,該提案 "仍然是我們在MTCR中的一項優先努力,但這--與其他許多事情一樣--受到了旅行限制的阻礙",該限制是為了應對COVID-19病毒帶來的風險。MTCR成員在2021年10月舉行了一次全體會議,但沒有通過美國的提案。
美國對無人機系統的出口施加了一些其他限制。美國務院負責管理對軍用無人機系統和其他國防物品的出口管制;這一制度的法定依據是《武器出口管制法》(AECA;P.L. 94-329)。該法第71(a)條要求國務卿保持一份MTCR附件中所有不受美國雙重用途管制的物品清單。美國出口管制法》還限制了原產于美國的國防物品的用途,并禁止未經美國政府許可向第三方轉讓此類物品。2018年出口管制法》(P.L. 115-232,B副標題,第一部分)為總統提供了廣泛而詳細的立法授權,以實施對兩用物品出口的控制,包括兩用無人機系統和相關組件。美國關于兩用物品出口的法規包含對無人機系統的全面控制。
美國政府還實施了一些法規,以確保原產于美國的無人機系統的接收者將這些物品用于其申報的目的。根據2019年5月國務院的一份概況介紹,美國將轉讓軍用無人機系統,"只有采取適當的技術安全措施"。 國務院和商務部都會進行最終監測,以確定接受國是否適當地使用出口物品。概況介紹說,一些軍用無人機系統 "可能要接受強化的最終使用監測",以及 "額外的安全條件"。根據國務院的概況介紹,美國轉讓MTCR第一類無人機系統也 "應要求與 "美國政府就該系統的使用進行定期磋商。
美國防部(DOD)正在對其指揮軍事力量的方法進行現代化改造。國防部高級領導人已經表示,現有的指揮和控制架構不足以滿足2018年國防戰略(NDS)要求。全域聯合指揮與控制(JADC2)是國防部的概念,將所有軍種--空軍、陸軍、海軍陸戰隊、海軍和太空部隊的傳感器連接到一個網絡中。
DOD指出,用Uber共享服務來比喻其對JADC2的期望最終狀態。Uber結合了兩個不同的應用程序--一個是乘客,另一個是司機。使用各自的位置,Uber算法根據距離、旅行時間和乘客(以及其他變量)來確定最佳匹配。在JADC2的情況下,這種邏輯將找到攻擊特定目標的最佳武器平臺,或應對新出現威脅的最佳單位。為了使JADC2有效工作,DOD正在追求三種新的或新興的技術:自動化和人工智能、云環境和新的通信方法。
DOD的一些機構和組織參與了與JADC2相關的工作。下面的清單突出了與JADC2開發有關的部分組織和項目:
國防部首席信息官:第五代(5G)信息通信技術。
國防部長辦公室(研究與工程):全網絡化指揮、控制和通信(FNC3)。
國防高級研究計劃局:馬賽克戰爭。
空軍:高級戰斗管理系統(ABMS)。
陸軍:項目融合(Project Convergence)。
海軍:項目超配(Project Overmatch)
隨著國防部開發指揮和控制軍事力量的新方法,國會可能會考慮幾個潛在的問題:
國會如何在驗證需求或成本估算之前考慮JADC2的相關活動?
在沒有正式的計劃或預算申請的情況下,國防部為JADC2的預算是多少?
JADC2的支出重點是什么,是否有國防部可能沒有投資的舉措?
國防部如何確保每個軍種和盟國的通信系統之間的互操作性?
國防部應如何優先考慮其未來網絡中相互競爭的通信需求?
人工智能將在未來的指揮和控制決策系統中發揮什么作用?
為了滿足JADC2的要求,有哪些潛在的部隊結構變化是必要的?
國防部應如何管理與JADC2相關的工作?
全域聯合指揮與控制(JADC2)是美國國防部(DOD)的概念,即把所有軍種--空軍、陸軍、海軍陸戰隊、海軍和太空部隊的傳感器連接成一個網絡。傳統上,每個軍種都開發了自己的戰術網絡,與其他軍種的網絡不兼容(例如,陸軍網絡無法與海軍或空軍網絡連接)。通過JADC2,國防部設想建立一個 "物聯網"網絡,將眾多傳感器與武器系統連接起來,利用人工智能算法幫助改善決策。
DOD官員認為,未來的沖突可能需要領導人在幾小時、幾分鐘或可能幾秒鐘內做出決定,而目前分析作戰環境和發布命令的過程需要數天時間。國防戰略(NDS)委員會報告的非保密概要指出,目前的C2系統與潛在的同行競爭對手相比已經"惡化"。國會可能對JADC2概念感興趣,因為它正被用來制定許多高調的采購計劃,以及確定美國軍隊對潛在對手的有效性和競爭力。
圖 1. JADC2 的概念愿景
JADC2設想為聯合部隊提供一個類似云的環境,以共享情報、監視和偵察數據,在許多通信網絡中傳輸,從而實現更快的決策(見圖1)。JADC2打算通過收集來自眾多傳感器的數據,利用人工智能算法處理數據以識別目標,然后推薦最佳武器--包括動能和非動能武器(如網絡或電子武器)--來打擊目標,從而幫助指揮官做出更好的決策。
DOD指出,用Uber共享服務作為類比來描述其對JADC2的期望最終狀態。使用各自的位置,Uber算法根據距離、旅行時間和乘客(以及其他變量)來確定最佳匹配。然后,該應用程序為司機提供指示,讓他們按照指示將乘客送到目的地。Uber依靠蜂窩和Wi-Fi網絡來傳輸數據,以匹配乘客并提供駕駛指示。
一些分析家對JADC2采取了更加懷疑的態度。他們對JADC2的技術成熟度和可負擔性提出了疑問,以及是否有可能在一個致命的、充滿電子戰的環境中部署一個能夠安全可靠地連接傳感器和射手并支持指揮和控制的網絡。分析人士還詢問誰將擁有跨領域的決策權,因為傳統上,指揮權是在每個領域內而不是從整體戰役的角度下放的。
什么是指揮與控制?C2的維度和人工智能的影響 | |
---|---|
人們可以通過五個問題來看待指揮和控制:誰、什么、何時、何地和如何。傳統上,國會通過兩個不同但相關的問題來關注指揮與控制:權力("誰")與技術("如何")。 | |
國會傳統上關注的第一個問題反映了指揮官執行行動的權力。這一討論的重點是指揮系統,反映了負責組織、訓練和裝備美國部隊的軍種與有權在國外使用部隊的作戰司令部之間的差異。這個問題可以用一個問題來概括:"誰指揮部隊?" | |
第二個問題是使指揮官能夠做出這些決定并將其傳遞給戰場的技術方面。指揮、控制、通信(C3)、C3加計算機(C4)以及情報、監視和偵察(ISR)等術語進入了討論。指揮和控制的這一技術問題著眼于指揮官用于決策的數據(和收集方法)(即ISR是促成決策的數據),將數據轉化為信息的處理能力,以及使指揮官將其決策傳達給地理上分布的部隊系統。這種指揮和控制的技術方法可以概括為:"你如何指揮部隊?" | |
指揮和控制的其他動態回答了其他問題:哪些系統和單位被指揮(什么),時間方面(何時),以及地理方面(何處)。國會在歷史上對這些問題中的每一個都是在具體的,而不是一般的問題上表示了興趣。例如,國會沒有考慮一般用途的部隊,而是關注與核部隊和特種作戰相關的權力問題。與核和網絡戰的快速反應相關的指揮和控制問題,以及在有限的程度上與電磁頻譜戰相關的問題,這些都是及時性問題,引起國會關注的其他領域。 | |
關于 "何時",國會已表示對與核和網絡戰的快速反應有關的指揮和控制感興趣,并在有限的程度上對電磁頻譜戰感興趣。然而,對 "何時"的最大敏感度似乎更側重于戰術(例如,何時讓飛機進入目標,何時開始對建筑物進行攻擊);這些決定往往被授權給指揮官。最后,地理因素對指揮美軍提出了獨特的挑戰;只要行政部門和國會繼續支持全球國家安全戰略,地理決策在很大程度上代表了戰術問題,往往被授權給各個指揮官。 | |
圖2. 指揮與控制的維度和人工智能的影響 | |
圖2描述了這些問題是如何通過引入人工智能(AI)來優化各方面的結果。隨著編隊復雜性的增加--特別是為全域聯合作戰設計的編隊,控制這些部隊有可能超越人類的認知能力,并使用算法來幫助管理這些部隊。美國軍方表示,它打算讓人類參與整個決策過程,但隨著美國軍隊將更多的人工智能技術引入其決策機構,各方面的區別開始變得模糊不清。例如,"誰"和 "如何"開始變得相似,特別是當計算機或算法向指揮官提出建議時,他們可能不了解信息或產生建議的過程。 | |
人工智能還可以影響指揮和控制的其他方面,包括 "什么"、"什么時候 "和 "在哪里"。將 "什么 "和 "哪里 "這兩個要素結合起來,可以挑戰對手尋找和與美國部隊交戰的能力;這樣做也可以挑戰指揮官及其參謀部在沒有系統幫助管理復雜情況下保持對部隊的控制能力。從 "何時 "的角度來看,需要快速決策的行動,特別是電磁頻譜戰或網絡戰,可能超過人類的決策能力。這就提出了一個重要的問題,即指揮官能在多大程度上信任人工智能,以及人類作戰員需要理解人工智能系統為什么建議采取特定行動。 |
DOD目前使用戰斗空間的不同部分來執行C2--主要是沿著確定的軍事領域:空中、陸地、海上、太空和網絡空間。這種結構的存在是因為傳統的威脅來自單一系統,如飛機和坦克編隊。作為回應,軍方開發了高度復雜(但昂貴)的傳感器來監視戰斗空間,向集中式指揮中心(如空中作戰中心或陸軍指揮所)提供信息。E-3高級預警和指揮系統(AWACS)和E-8聯合監視目標攻擊雷達系統(JSTARS)等系統經過優化,為這些中央前哨的指揮官提供態勢感知,然后他們可以在那里指揮軍事力量。
2018年國防戰略(NDS)、審查它的 NDS 委員會和其他來源闡述的未來作戰環境描述了潛在對手如何發展復雜的反介入/區域拒止 (A2/AD) 能力(見圖 3)。這些能力包括電子戰、網絡武器、遠程導彈和先進的防空系統。 美國競爭對手將 A2/AD 能力作為對抗美國傳統軍事優勢(例如投射力量的能力)的一種手段,并提高他們贏得快速、決定性交戰的能力。
圖 3. A2/AD 環境的可視化
美國防部高級領導人已經表示,在未來的作戰環境中,獲取信息將是至關重要的。此外,這些領導人還表示,為了挑戰潛在的同等對手,需要采取多領域的方法(美國部隊將使用地面、空中、海上、太空和網絡力量來挑戰對手的目標計算)。因此,全領域聯合作戰的概念為指揮官提供了獲取信息的機會,可以利用突襲進行同步和連續的行動,并在所有領域快速和持續地整合能力,從而獲得物質和心理優勢以及對作戰環境的影響和控制。
空中陸戰概念設想將空軍和陸軍的努力結合在一起,在20世紀80年代對抗蘇聯,自該概念提出以來,技術上的進步使美國防部能夠繼續發展全領域聯合作戰的概念。這些技術進步包括增加了攻擊目標的方法(包括電子和網絡手段),相對低成本的傳感器的擴散,以及將這些傳感器的數據轉化為信息的處理能力的提高。維持對所有領域行動的控制所面臨的挑戰是,美國的軍事C2機構并不是為做出這些類型的決定而組織的,26而且正在使用的技術的復雜性和速度可能超過人類的認知能力。
指揮與控制是如何演變的? | |
---|---|
美軍傳統的指揮和控制概念源于德軍的 "任務型命令"(auftragstaktik)。認識到軍事行動中的混亂和 "戰爭迷霧 "是不可避免的,下級指揮官被委托半自主地行動以實現其指揮官的意圖(即任務的總體目標),而不是有預先規定的行動。情報來源和偵察的信息需要很長的時間,甚至可能需要幾天才能到達指揮官手中。為了保持對部隊的控制,指揮官們依靠無線電通訊和紙質信件。有限的信息量使得指揮官可以在兩個方面指揮部隊--使用單一的領域來應對對手的行動。 | |
在冷戰的高峰期,蘇軍給軍事力量提出了一個新的問題:如何對抗一支數量上占優勢的坦克部隊。為了應對這一威脅,陸軍和空軍提出了一種新穎的方法,通過開發新技術來確定增援地點,將空中和陸地力量結合起來。這一概念被稱為 "空地戰"。這種三維方法試圖利用情報、監視和偵察方面的優勢,"深入觀察",將火力集中打擊增援部隊(即 "深入打擊")。為了支持這種利用深度打擊來防止增援部隊的設想,美軍需要改進指揮所,以提高指揮部隊的決策速度,同時仍然保持遵循指揮官意圖的傳統。這種需要導致了新系統的開發,如JSTARS和ATACMS。這些系統使指揮官能夠更快地了解戰斗空間,并提高對敵軍直接開火的反應時間。 | |
在過去的20年里,中國和俄羅斯觀察了美國的戰爭方法,確定了挑戰美國優勢的不對稱方法。中國的軍事現代化尤其注重防止美國建立大量的戰斗力(限制后勤),增加高價值飛機(油輪、間諜飛機、指揮和控制飛機)的風險,并增加其海軍足跡(限制美國的海軍優勢)。為了應對這些新威脅,國防部最初提出了使用多域作戰的想法(后來過渡到全域作戰一詞)。國防部認為,使用一個或甚至兩個維度來攻擊對手是不夠的,因此挑戰對手的目標計算需要更復雜的編隊(額外維度)。國防部認為,不斷增加的復雜性,加上應對新興技術威脅的時間可能減少,需要新的方法來管理部隊。 | |
圖4. 指揮和控制的復雜性的變化 |
在國防部發展JADC2概念的過程中,有三類技術在這種指揮和控制軍事力量的方法中起著不可或缺的作用:自動化、云環境和通信。
許多DOD高級領導人已經明確表示,JADC2是一個概念(或許是一個愿景),而不是任何具體的計劃。在2021年1月的一篇文章中,聯合人工智能中心主任Michael Groen中將說:"JADC2不是一個IT(信息技術)系統,它是一個作戰系統。從歷史上看,你會有一個大型的國防項目,你會花數年時間來完善需求,你會收集大包大包的錢,然后你會去找國防承包商,花更多的時間來建造、測試,然后在多年后最終投入使用"。在這篇文章中,Groen中將描述了人工智能(AI)的作用,以及延伸到數據和數據結構的作用,使這些算法能夠為指揮官提供信息。根據Dennis Crall中將(聯合參謀部指揮、控制、通信和計算機/網絡首席信息官[JS J6]主任)的說法,人工智能和機器學習對于實現JADC2至關重要。Dennis Crall說道:"JADC2是關于將所有這些自動化....。它是關于利用傳感器豐富的環境--查看數據標準等事情;確保我們可以將這些信息轉移到一個我們可以正確處理的區域; 帶來了云;帶來了人工智能、預測分析;然后用一個能夠處理這些的網絡來支撐所有領域和合作伙伴。"
DOD表示,擁有多分類的云環境對于實現JADC2是必要的。DOD設想,用戶能夠根據他們的需要和信息要求,在不同的分類下訪問信息。在2021年6月的新聞發布會上,克拉爾中將說,"戰術邊緣 "的云能力是用于數據存儲和處理,實現人工智能算法。作為一個例子,空軍討論了其高級戰斗管理系統(ABMS)項目對云環境的需求--空軍部對JADC2的貢獻,這將在下文討論。根據空軍的預算說明,ABSM將需要一套云系統、應用程序(即軟件)和網絡(包括商業和政府擁有的),這將 "了解環境并應用由人工智能和機器學習輔助的先進算法"。
根據DOD的說法,開發JADC2將需要新的通信方法。DOD目前的通信網絡已經為中東地區的行動進行了優化。因此,DOD使用衛星作為與海外部隊通信的主要方法。這些系統面臨著延遲(時間延遲)問題,并且在設計上不能在有電子戰的情況下有效運行。這些舊的架構依賴于地球同步軌道上的衛星,這些衛星在地球上空大約22200英里(35800公里)處運行。新的應用,如人工智能,將有可能需要額外的數據速率,而目前的通信網絡可能無法支持--特別是當DOD增加傳感器的數量,以提供額外的數據來改進算法。自主系統的引入,如海軍的大型無人水面和海底航行器,以及陸軍對機器人飛行器越來越感興趣而產生的系統,可能需要安全的通信和短時延來維持對這些系統的控制。
聯合參謀部是負責制定全域聯合指揮與控制概念戰略的國防部組織。此外,還有一些正在進行的研究和努力與JADC2概念有關。每個軍事部門(陸軍、海軍、空軍)以及國防部機構,如國防高級研究計劃局(DARPA)和負責研究和工程的國防部副部長辦公室(OSD[R&E]),都在開發技術和概念。以下各節簡要介紹一些組織的工作。
國防部負責制定JADC2戰略的領導機構是聯合參謀部J6指揮、控制、通信和計算機/網絡局。JADC2戰略最初的設想是改善聯合部隊的互操作性(例如,確保無線電系統能夠相互通信),后來擴大了這一重點,制定了一種信息共享方法,通過為決策提供數據來實現聯合行動。除了制定戰略,J6還組織了一個JADC2跨職能小組,各軍種和國防部機構通過該小組協調他們的實驗和計劃。這與國防部數據戰略和國防部副部長創造數據優勢的努力相一致。該戰略確定了五條工作路線以實現JADC2框架:
1.數據組織
2.人力組織
3.技術組織
4.核指揮、控制和通信(NC3)
5.任務伙伴信息共享
在2021年6月4日的新聞發布會上,克拉爾中將表示國防部長奧斯汀已經批準了JADC2戰略。
根據R&E辦公室的說法,"FNC3確定、啟動和協調指揮、控制和通信關鍵使能技術的研究、開發和降低風險活動。這些活動將包括整個國防企業不同但相互關聯的努力,由FNC3在OUSD(R&E)的工作人員監督和同步進行。" FNC3的主要負責人邁克爾-扎特曼博士描述了FNC3的整體愿景,包括三個層次--物理層、網絡層和應用層--它們為開發指揮、控制和通信系統提供了一種量身定做的方法,與商業部門的最佳實踐相一致。物理層代表無線電和發射器本身,而網絡層則通過開發國防部優化的新興商業軟件定義網絡技術(如網絡切片)來管理應用對物理層的訪問。所有這三層都旨在提高互操作性和彈性(即防止網絡被干擾或中斷的能力),并為每個應用提供適當的服務質量。
根據扎特曼博士的說法,FNC3是JADC2的中長期技術愿景,而每個部門(在以下章節中概述)都有專注于發展近期采購戰略的引人注目的努力。例如,空軍部的先進戰斗管理計劃旨在通過關注成熟技術在未來三年內部署。OUSD R&E利用其投資組合中不太成熟的技術,包括由DARPA、國防創新部門、戰略能力辦公室、各部門和其他部門開發的技術,為實施JADC2提供長期的技術手段。
國防部提出,5G無線技術的商業進展提供了傳輸更多數據(通常稱為數據吞吐量)和更低延遲的能力。國防部認為,它需要這些能力來處理來自眾多傳感器(如衛星、飛機、船只、地面雷達)的更多數據,并在 "邊緣"(與無線電接收器在同一地點)處理這些信息。5G技術的另一個方面可以實現新的指揮和控制概念,即動態頻譜共享。隨著電磁頻譜變得更加擁擠,聯邦政府已經開始允許多個用戶在同一頻段上運行(稱為頻譜共享)。國防部首席信息官認為,頻譜共享技術允許通信系統在有干擾的情況下傳輸和接收數據。2020年9月,國防部CIO向工業界發出了一個信息請求,即如何對待動態頻譜共享。2021年1月21日,已經公布了67份對信息請求的回應。
馬賽克戰爭代表了一系列由DARPA贊助的項目,旨在利用人工智能將傳統上不被設計為互操作的系統和網絡相結合。從概念上講(見圖5),這些項目將能夠利用從衛星上收集的原始情報,并將這些數據轉化為傳遞給 "射手 "的目標信息--在這種情況下,網絡武器、電子干擾器、導彈、飛機或任何其他可能影響預期目標的武器。正如哈德遜研究所的分析家布萊恩-克拉克和丹-帕特所解釋的那樣,"馬賽克戰爭 "試圖將多種重疊的困境強加給敵軍,擾亂他們的行動,從而阻止他們及時到達目標。
圖5:DARPA的馬賽克戰愿景
DARPA的馬賽克計劃之一,稱為異質電子系統的技術集成工具鏈(STITCHES),已被用于空軍和陸軍的實驗。據DARPA稱,STITCHES是一種軟件,旨在通過自主創建允許低延遲和高吞吐量的軟件,快速整合任何領域的通信系統,而無需升級硬件或修改現有的系統軟件。根據空軍的一份新聞稿,該部門已在幾個高級戰斗管理系統的 "上線 "中測試了該技術,并已開始將該計劃從DARPA過渡到空軍部。
高級戰斗管理系統最初的設想是取代E-8聯合監視和目標攻擊雷達系統(JSTARS)。空軍在2019年將ABMS項目從開發飛機或雷達之類的東西過渡到 "數字網絡環境,連接所有領域和每個梯隊的作戰能力,以實現全球決策優勢。" 換句話說,空軍從建立一個支持指揮和決策的平臺(如E-8 JSTARS)轉向建立一個安全的、"類似云"的環境,利用人工智能和預測分析為指揮官提供近實時數據。根據空軍的說法,ABMS項目將沿著六條產品線開發能力:傳感器集成、數據、安全處理、連接、應用和效果集成。
空軍已經舉行了三次 "on-ramps"(空軍用來描述演示的術語),以展示其ABMS的方法。2019年12月舉行的第一次on-ramps,展示了該部門從F-22戰斗機使用的安全通信向陸軍和海軍系統傳輸數據的能力。第二次上線使陸軍榴彈炮能夠擊落一枚代用巡航導彈。此外,空軍向美國北方司令部提供了這種 "類似云 "的零信任平板電腦--一種不在設備上存儲敏感數據的安全功能,以協助其在2020年春季應對COVID大流行。
2020年11月,空軍部確定了首席架構師辦公室,負責評估架構上線和整合企業數字架構。同時,空軍確定空軍部快速能力辦公室為ABMS整合項目執行辦公室。快速能力辦公室的工作重點是快速向現場交付項目,它的參與可以被看作是將ABMS從實驗轉向系統開發。
根據陸軍的說法,"項目融合是陸軍圍繞一系列連續的、結構化的演示和實驗而組織的新的學習活動",旨在應對JADC2所帶來的挑戰。
1.確保陸軍擁有合適的人員和人才;
2.將當前的陸軍現代化工作與陸軍未來司令部的跨職能團隊聯系起來,并與陸軍現代化的六個優先事項保持一致;
3.擁有合適的指揮和控制,以應對節奏越來越快的威脅;
4.利用人工智能分析和分類信息,并在陸軍網絡中傳輸;
5.在 "最嚴峻的地形 "中測試能力。
項目融合2020在三個軍事設施中使用了大約750名士兵、平民和承包商,最終在亞利桑那州的尤馬試驗場進行了兩次現場頂點演習。在這次演習中,陸軍展示了幾種技術,包括人工智能、自主性和機器人技術,以測試新的方法來指揮和控制地理上分散的部隊。陸軍計劃將空軍和海軍的系統作為2021年項目融合的一部分,并打算在2022年項目融合中納入外國軍隊。這其中有3370萬美元用于運營和維護,以及7310萬美元用于研究、開發、測試和評估,由陸軍撥款。
項目超配是海軍為建立一個 "海軍作戰架構",將艦艇與陸軍和空軍資產聯系起來而做出的努力。2020年10月1日,海軍作戰部部長吉爾德伊上將責成一名二星上將領導海軍的"項目超配"工作。在他的備忘錄中,吉爾德伊上將指示 "項目超配"采取類似于海軍發展核動力和AEGIS系統的工程和開發方法。其主要目標是 "使海軍能夠在海上形成集群,從近處和遠處、每個軸線和每個領域提供同步的致命和非致命效果。具體來說,你[斯莫爾海軍司令]要開發網絡、基礎設施、數據架構工具和分析。" 在一個平行的努力中,吉爾德伊上將責成基爾比副上將(負責作戰要求和能力的海軍作戰部副部長)制定一項計劃,將無人系統,包括艦艇和飛機,納入海軍作戰架構。根據新聞聲明,海軍打算在2023年達到初始作戰能力(即有能力部署初始系統)。海軍在2022財政年度為 "項目超配 "申請了三個分類項目元素的資金。
在2021年6月舉行的2021年AFCEA西部會議上,吉爾德伊上將討論了項目超配目前的工作。在這次活動中,吉爾德伊表示,自2020年10月項目啟動以來,項目超配已經完成了三個螺旋式發展周期。吉爾德伊進一步解釋說:"我們實際上正在試驗一種方式,使我們基本上可以將任何網絡上的任何數據傳遞給作戰人員。這是一個軟件定義的通信系統,使我們能夠以一種前所未有的方式拆開我們所有的網絡"。根據新聞報道,吉爾德表示,他預計在2022年底或2023年初將 "項目超配"的測試規模擴大到一個航母打擊群。
以下各節討論了國會的潛在問題,包括需求和成本估算、互操作性挑戰、平衡通信能力、人工智能在決策中的角色,以及實施JADC2所需的潛在部隊結構變化。
美國防部已經為JADC2的相關工作申請了幾個財政年度的資金,特別是在概念的早期發展階段。國防部正在積極制定JADC2戰略,預計將在2021年春季發布。國會中的一些人對國防部沒有像傳統采購項目那樣提供成本估算或驗證需求表示關切。因此,各軍種委員會和撥款委員會已經減少了對這些工作,特別是ABMS和5G研究和開發的要求資金。2021財年國防授權法案(NDAA)要求國防部在2021年4月前為JADC2提出要求。
國防部還沒有正式公布關于JADC2的支出預算數據,該項目在各軍種和國防機構的一些項目中都有資金。根據聯合參謀部J6(JS J6)的說法,JADC2不是一個記錄項目,JS J6也不打算過渡到一個記錄項目。因此,除非國會要求國防部提供JADC2資金的詳細概述,否則國防部可能不太可能這樣做。
一些分析家推測了與JADC2有關的所有項目的年度成本。一位分析家估計,國防部在2022財政年度為與JADC2直接相關的項目編列了大約12億美元的預算。Govini估計,自2017財政年度以來,國防部在JADC2上花費了大約225億美元;這平均每年大約為45億美元。Govini的估計包括其他聯邦機構的資金--如國家航空和航天局(NASA)--以及國防部可能認為與JADC2無關的技術,因此可能高估了JADC2獲得的資金總額。
根據JS J6,有五條與JADC2相關的工作線:
1.數據組織
2.人力組織
3.技術組織
4.核指揮、控制和通信(NC3)
5.任務伙伴信息共享
以數據為中心的方法側重于國防部系統傳輸所需的數據類型和結構,創建一個共同的數據框架,為數據的發送和接收提供一個商定的標準。換句話說,數據的格式化、組織化和結構化的方式影響著數據從傳感器到決策者再到武器的高效和無縫傳輸。另一方面,網絡中心化和互操作性側重于通信標準,如無線電頻率、波形、通信加密等,以確保一個無線電能與另一個無線電通話。通過采用這種方法,JS J6專注于開發軟件應用,以改善指揮和控制。然而,該戰略可能缺少幾個方面,包括:
通信系統的硬件和軟件的功能,
網絡需要傳輸的數據量,
對手的行動對網絡的影響,
以及指揮和控制部隊的模塊化。
隨著國防部繼續改革其JADC2概念和要求,其他觀察家也注意到,在JADC2戰略中存在一些沒有被認定的領域,國防部應將其支出主要集中在研究和開發方面。一位觀察家認為,國防部應將其研發支出集中在改善網絡互操作性上。這種方法支持優先升級軍事通信系統,以便在整個聯合部隊中傳輸數據。它建議國防部在軟件和硬件方面投入更多資金,以提高所有類型的數據鏈路和網絡(例如,Link 16、多功能高級數據鏈路、態勢感知數據鏈路以及綜合海上網絡和事業服務)的互操作性。網絡互操作性方法的重點是,創建網絡是困難的;但是,利用軟件定義的網絡和通用電子設備(如類似的芯片架構)可以使每個軍種無縫共享信息。換句話說,這種方法更注重通信網絡的構建方式,而不是在這些網絡內發送數據的組織方式。軟件定義的無線電和網絡使無線電可以很容易地被編程,并因此更容易地相互通信。微電子(即物理硬件)最終定義了無線電的物理和軟件能力。
其他分析家認為,JADC2的支出應更多地集中在改變決策方式上。這一論點強調了通過利用人工智能(AI)實現決策過程自動化的必要性,正如國防高級研究計劃局(DARPA)的馬賽克戰爭概念所設想的。在這種方法中,優先利用人工智能系統的支出(如空軍的STiTCHES計劃),可以建立主要集中在需要傳輸的數據和數據結構的特設網絡。這一論點假設人工智能也可以分析情報、監視和偵察(ISR)數據,以確定人類可能錯過的趨勢,從而向軍事指揮官提出潛在的更好的建議。
其他觀察家認為,優先考慮如何使用和管理電磁波譜的決策對于支持JADC2至關重要。這些觀察家認為,像國防信息系統局的電磁戰管理計劃--旨在利用情報方法評估電磁波譜環境,然后自動決定如何使用頻譜來減輕對手的電子戰影響--對于實現全域指揮和控制是必要的。這些觀察家還認為,對手的電子戰效應將需要近乎即時地被緩解,因此需要一個強大的電磁環境部分(以及自動化),以便在對網絡的潛在攻擊中管理國防部網絡。
由于國防部設想使用JADC2來同時指揮多個領域的部隊,因此連接不同類型部隊的需求也在增加。國防部擁有并運營著許多通信系統,每個系統都使用不同的無線電頻率、標準和數據鏈,這些系統往往不能相互 "交談",因此需要一個網關將一種無線電協議 "翻譯 "成另一種協議。盟友和合作伙伴的加入增加了互操作性的挑戰。前國防部副部長邁克爾-格里芬在2020年3月向眾議院軍事委員會情報、新興威脅和能力小組委員會作證時,指出這個問題是繼續為FNC3進行OSD R&E努力的理由。
使國防部能夠共享來自不同部門和單位的信息的挑戰可以通過三種互操作性的方法來解決:
圖 6:E-11 戰場機載通信節點 (BACN)
新的通信設備。這種方法采用 "自上而下 "的方式(即由OSD或聯合參謀部確定解決方案,然后要求各軍種采用該方案)。使用與聯合戰術無線電系統(JTRS)開發類似的模式,這種方案將購買一個新的通信架構,重點是互操作性。例如,FNC3的努力似乎就是采用這種方法。盡管這種方法可以確保聯合部隊開發的通信系統可以無縫共享信息,而且可能是安全的,但它可能需要大量的投資,并可能遇到時間表的延誤。這種方法的另一個可能的缺點是,隨著系統的投入使用,它們可能對對手的技術不那么有效。
開發軟件來創建網絡。第三種方法是使用軟件,使用戶能夠創建自定義網絡。DARPA的 "馬賽克戰爭 "和ABMS計劃的某些方面就是這種方法的例子。與其他互操作性解決方案相比,這種方法更加模塊化,使為特定行動定制的單位和系統能夠相互通信。這種方法的一個主要風險是技術上的不成熟,特別是用于創建這些網絡的軟件。另一個風險涉及到與不同系統共享的信息量和分類,這些系統經過認證,具有不同的保密級別(例如,可釋放的秘密、不可釋放的秘密、最高機密)。
國防部和國會可以選擇這些方法中的一種或多種。一種特定的方法可能提供短期的好處,而國防部則追求一種長期的方法來解決互操作性的挑戰。
國防部為滿足JADC2的要求而開發通信網絡的方法包括三種相互競爭的能力:
數據吞吐量(即數據傳輸的速度)
延遲(即接收信息/數據的時間延遲)
彈性(在自然或故意中斷的情況下保持通信信號的能力)
軍事作戰新技術的興起,如人工智能、戰術數據鏈(如Link 16和多功能先進數據鏈[MADL])和對手的電子戰能力,為5G和FNC3等未來通信系統平衡這些能力帶來了明顯的挑戰。人工智能和信息戰可能需要大量的數據來實現預測分析,并讓指揮官對戰斗空間有一個準確的了解。與所有可用用戶共享數據的數據鏈并不一定需要高數據速率;然而,數據鏈確實需要低延遲,以確保傳感器能夠證明 "目標級數據",特別是對于像巡航導彈和飛機這樣快速移動的系統。最后,電子干擾器的擴散需要彈性(或抗干擾性能),以便在被主動干擾時保持通信。圖7說明了在開發新的波形時必須平衡這三個相互競爭的要求(無論該波形是為民用還是軍用而設計)。無線電信號能夠提供每一種能力;然而,優先考慮一種要求意味著其他兩種要求可能會受到影響,這可能會給決策者帶來兩難選擇,即在采購中優先考慮哪些能力。
圖7:平衡通信要求
隨著國防部對其通信系統的現代化改造,它可能會考慮技術特點和限制,以選擇在保護其網絡安全的同時推進任務目標的要求。例如,像5G這樣的技術可以提供高數據容量和低延遲,但目前還不清楚這些信號可能受到對手干擾的影響。另一方面,FNC3的設計似乎是為了提供具有高數據率的彈性;但是,由于它依賴于衛星,延遲將增加。
人工智能是實現JADC2的一個潛在的關鍵組成部分。隨著人工智能被引入軍事決策中,出現了幾個潛在的問題。首先,人工智能在決策中的作用應該達到什么程度?在使用致命武器時,人類的判斷力需要達到什么適當的水平?
第二,國防部如何確保用于人工智能算法協助決策的數據的安全性?盡管國防部把重點放在了數據結構上,但它沒有討論它計劃如何具體確保JADC2的數據有效性和安全性。錯誤的數據可能導致指揮官選擇損害任務目標的選項(如算法推薦可能浪費高價值彈藥的目標)。與此相關的是,國防部打算如何保護云環境中的這些數據,以防止對手操縱它們?這些安全計劃是否足以防止對手的操縱?
由于JADC2可能需要不同類型的部隊和武器系統,每個軍種都可能尋求改變其訓練、組織和裝備部隊的方式。例如,海軍陸戰隊在其部隊重新設計中宣布,它將取消它認為不符合國防戰略指導的部隊,并將資金重新投入到其他更適合未來作戰環境的項目中。
現役和預備役部隊的能力平衡是部隊結構調整的另一個方面。例如,陸軍在歷史上決定將后勤能力從現役部門轉移到預備役部門。因此,如果美國要開戰,陸軍大概需要啟動預備役部隊來實現行動。當國防部和各軍種準備迎接JADC2帶來的挑戰時,這些組織將如何選擇平衡現役和預備役部隊的能力和部隊結構?
聯合參謀部J6是國防部JADC2工作的主要協調者,每個軍種和一些國防部機構都在進行各種活動。國會中的一些人過去曾表示有興趣建立國防部范圍內的項目辦公室(如F-35聯合項目辦公室)來集中管理大規模的工作。國防部的研究和開發工作將隨著時間的推移而增加,因此,管理這些工作可能會變得更具挑戰性。國會在未來可能會尋求確定或建立一個負責項目管理、網絡架構開發和財務管理的組織。
聯合戰術無線電系統(JTRS)是一個通信項目,旨在通過在所有軍種中部署無線電設備來提高通信的互操作性。該計劃于20世紀90年代中期開始,最終于2011年被前國防部負責采購、技術和后勤的副部長弗蘭克-肯德爾取消。在他的理由中,肯德爾副部長指出,"由于當時技術不成熟,移動特設網絡和可擴展性的技術挑戰沒有得到很好的理解......從JTRS GMR[地面移動無線電]開發計劃中產生的產品不太可能在經濟上滿足各軍種的要求。" 在15年的開發工作中,國防部花費了大約150億美元,在終止時還需要130億美元。
JTRS計劃旨在用可在大部分無線電頻譜上運行的基于軟件的無線電取代軍隊使用的25至30個系列的無線電系統--其中許多系統不能相互通信。根據設想,JTRS將使各軍種與選定的盟國一起,通過各級指揮部的無線語音、視頻和數據通信,包括直接獲取來自機載和戰場傳感器的近實時信息,以 "無縫 "方式運作。被描述為 "軟件定義的無線電",JTRS的功能更像一臺計算機,而不是傳統的無線電;例如,它可以通過添加軟件而不是重新設計硬件來升級和修改,以便與其他通信系統一起運行--這是一個更昂貴和費時的過程。國防部聲稱,"在許多情況下,一個具有多種波形的JTRS無線電臺可以取代許多單獨的無線電臺,簡化了維護工作",而且由于JTRS是 "軟件可編程的,它們也將提供更長的功能壽命",這兩個特點都提供了潛在的長期成本節約。JTRS計劃最初被分成五個 "集群",每個集群都有一個特定的服務 "領導"(見表A-1),并由一個聯合項目辦公室管理整個架構。
注:外形尺寸無線電臺基本上是士兵攜帶的小型化無線電臺,以及重量和功率受限的無線電臺。
正如下文所討論的,JTRS在開發過程中遇到了一些困難。這些問題可能與未來的JADC2開發有關。
根據政府問責局(GAO) 2005年的一份報告: 為了實現寬帶網絡波形的全部功能,包括傳輸范圍,Cluster One無線電需要大量的內存和處理能力,這增加了無線電的尺寸、重量和功耗。增加的尺寸和重量是努力確保無線電中的電子部件不會因額外的內存和處理所需的電力而過熱的結果。到目前為止,該計劃還未能開發出符合尺寸、重量和功率要求的無線電,而且目前預計的傳輸范圍只有三公里--遠遠低于寬帶網絡波形所要求的10公里范圍....。Cluster One無線電的尺寸、重量和峰值功率消耗超過直升機平臺要求的80%之多。
由于無法滿足這些基本的設計和性能標準,人們擔心Cluster One可能無法按計劃容納更多的波形(計劃中Cluster One有4到8個存儲波形),而且它可能過于笨重,無法裝入重量和尺寸都受到嚴格限制的未來戰斗系統(FCS)載人地面車輛(MGVs)以及陸軍的直升機機群。一些觀察家擔心,為了滿足這些物理要求,陸軍將大大 "削弱 "第一組的性能規格。然而,根據陸軍的說法,它在減少Cluster One的重量和尺寸以及增加其傳輸范圍方面取得了進展;然而,將所有需要的波形納入Cluster One證明是困難的。據報道,Cluster Five無線電臺也遇到了類似的尺寸、重量和功率方面的困難;這些困難更加明顯,因為有些Cluster Five版本的重量不超過1磅。
JTRS的安全問題成為發展中的一個重要困難。據一位專家說,該計劃最大的問題之一是安全,"即加密,因為JTRS的加密是基于軟件的,因此容易受到黑客攻擊"。 計算機安全專家普遍認為,用于任何目的的軟件都是脆弱的,因為目前沒有一種計算機安全形式能提供絕對的安全或信息保證。據美國政府問責局稱,JTRS要求應用程序在多個安全級別上運行;為了滿足這一要求,開發人員不僅要考慮傳統的無線電安全措施,還要考慮計算機和網絡安全措施。此外,國家安全局(NSA)對JTRS與美國盟友的無線電系統接口的安全擔憂也帶來了發展上的挑戰。
一些分析家表示擔心,使JTRS與傳統無線電 "向后兼容 "的目標在技術上可能是不可行的。據報道,早期的計劃試圖通過交叉頻段來同步不兼容的傳統無線電信號,這被證明過于復雜。目前陸軍的努力集中在使用寬帶網絡波形來連接傳統的無線電頻率。一份報告指出,雖然寬帶網絡波形可以接收來自傳統無線電的信號,但傳統無線電不能接收來自JTRS的信號。為了糾正這種情況,陸軍考慮使用19種不同的波形來促進JTRS向遺留系統的傳輸。在JTRS無線電中加入如此多的不同波形會大大增加內存和處理能力的要求,這反過來又會增加JTRS的尺寸、重量和功率要求。
作者:John R. Hoehn,軍事能力和計劃分析師
本報告總結了聯合研究中心就能源系統區塊鏈解決方案進行的幾項實驗研究的主要成果。它為歐洲政策制定者提出了關于跨能源價值鏈部署區塊鏈的考慮和建議。
本報告的成果來自一個多年項目,該項目由歐洲議會向歐盟委員會提出明確要求資助,并在聯合研究中心智能電網和網絡安全實驗室進行了實驗。
歐洲的未來將受到實現數字化和綠色雙重轉型的強烈影響。 Covid-19 大流行危機清楚地放大了數字和能源技術對人、企業和經濟的作用。我們看到了我們對數字和能源解決方案的依賴程度,使我們能夠遠程辦公、為家庭供暖、管理醫院和經營業務。監測數字技術的發展以識別最有前途的技術對于支持和加速歐盟朝著更綠色和更可持續的未來邁進至關重要。
在眾多正在使用和開發的數字技術中,區塊鏈技術正在證明它們在支持和簡化氣候和可持續能源領域的循證決策方面可以提供很多幫助。區塊鏈可以想象成一個分布在無數計算機和節點上的電子登記簿,每個節點都可以更新和存儲登記簿的副本。
區塊鏈在氣候和能源領域具有吸引力的一些原因是:
去中介化:目前世界上大多數金融、能源和其他業務都是由銀行和市場運營商等中介機構實現的。區塊鏈消除了此類受信任的第三方監督和驗證信息/價值交換的需要。
透明度和可驗證性:記錄在區塊鏈上的交易能夠被獨立檢查。非法交易被檢測到并被排除在區塊鏈之外,使相關各方無法執行惡意操作。
不變性和安全性:幾乎不可能修改或篡改記錄在區塊鏈上的信息(即使許多節點同時受到攻擊)。
2018 年,歐洲議會要求委員會調查區塊鏈對能源行業的影響。因此,聯合研究中心(歐盟委員會的科學和知識服務機構)對區塊鏈如何啟用并可能徹底改變能源市場和系統運營進行了桌面和實驗項目分析。
研究發現:
能源和數字行業對挖掘區塊鏈的潛力有著明顯的興趣。試點和用例已經在歐洲各地蓬勃發展。對技術性能和可擴展性的內部測試證實了這些行業使用區塊鏈的潛力。然而,消費者尚未充分參與數字能源項目,獨立開發商仍面臨參與電力市場的進入壁壘。
區塊鏈的可持續性和能源足跡是一個備受爭議但并不總是經過充分分析的問題。
用于更高級別能源系統功能的區塊鏈應用程序(即在不處理物理電網操作的層上運行的應用程序)數量更多且成熟。
與能源系統運營(即直接影響物理電網運營,如電力調度)相關的區塊鏈應用開發較少,這主要是由于在安全、認證和標準化方面缺乏足夠的保證。
區塊鏈顯示出作為能源社區分布式驅動大腦的巨大潛力。區塊鏈似乎適合支持能源交易的財務結算、本地或更廣泛市場的能源交易、能源管理和靈活性服務供應以及多個認證和計費流程。
充足且可互操作的智能計量基礎設施對于為能源社區和點對點能源交易激活區塊鏈服務是必不可少的。
在研究過程中,很明顯,仍然必須澄清幾個方面,以成功管理基于區塊鏈的電力輸送選項和服務的引入。為此,根據所進行的桌面和實驗研究,確定了以下針對新出現的趨勢和問題的建議組:
1、安全、隱私和身份
應定義確保區塊鏈應用程序保持足夠的網絡安全和電力供應安全級別的要求。
應進一步發展保障數據安全和完整性的機制。
數據應該受到“設計”的保護,并且只在需要激活同意的區塊鏈服務時共享。
數據保護和網絡安全計劃之間需要有效的整合策略。
應從網絡安全的角度評估現代電信網絡和互聯網的彈性和安全性,以評估能源數字化的影響。
網絡安全認證計劃應越來越多地涵蓋區塊鏈核心基礎設施領域以及最終用戶應用程序和設備領域(例如物聯網)。
強大的身份驗證方案應該嵌入到區塊鏈解決方案的設計中。
圖:對能源轉型的區塊鏈部署的建議
2、數據訪問、責任和市場
應設計具有商定的數據訪問和使用規則的強大能源數據中心/平臺。
應調整市場規則以考慮新的“自動代理”參與者的出現。
電力供應和交付的分散責任應明確界定和分配。
3、公平和接受
公平應該是設計更加分散的能源市場的指導原則,不歧視任何參與者,無論是個人還是企業。
消費者應進一步參與并激勵他們投資區塊鏈項目。
應在消費者授權和保護之間找到平衡。
4、可擴展性和可持續性
歐盟和國家立法者應繼續為數字應用開發一個全面的支持創新的法律框架。
應進一步采用監管試驗。
對正在測試/部署的區塊鏈解決方案的能源足跡的分析應始終伴隨對可擴展性和性能要求的研究。
5、互操作性和標準
歐盟和成員國利益相關者應繼續參與國際標準組織的工作。
應促進支持區塊鏈的設備(包括儀??表、傳感器和電器)的適當標準和互操作性。
鼓勵歐盟和國家立法者繼續為數字應用制定全面的創新法律框架,同時更好地規范區塊鏈數字資產和智能合約。
歐盟委員會能源數字化行動計劃代表了一個強大的工具箱,可用于實施行動以在能源領域更廣泛地部署包括區塊鏈在內的數字技術
雖然數字化轉型是實現綠色協議目標的關鍵推動力,但同樣需要在監管多個跨領域部門(能源、運輸、金融等)方面采取一致的方法。
區塊鏈可以在多大程度上支持或顛覆轉型電力系統和市場中的商業模式還有待觀察。事實上,區塊鏈只是電力系統創新的使能技術之一,可以與人工智能、大數據和物聯網等其他數字技術相結合,以實現氣候中和和可持續發展的目標。
聯合研究中心智能電網和網絡安全實驗室隨時準備擴大其研究活動,以支持政策決策并確定部署區塊鏈和其他新興數字和能源技術的關鍵問題。
圖:區塊鏈在智能能源應用案例
?區塊鏈技術具有改變醫療保健的潛力,將患者置于醫療保健生態系統的中心,并提高健康數據的安全性、隱私性和互操作性。該技術可以通過提高電子病歷的效率、去中介化和安全性,為健康信息交換 (HIE) 提供一種新模式。
● 這本書將帶你超越貨幣(“區塊鏈1.0”)和智能合約(“區塊鏈2.0”),展示區塊鏈如何成為繼大型機、pc、互聯網和移動/社交網絡之后的第五大顛覆性計算范例。
● 作者Melanie Swan是區塊鏈研究所的創始人,她解釋說,區塊鏈本質上是一個公共賬本,有潛力成為一個全球性的、分散的記錄,用于所有資產的注冊、盤存和轉移——不僅是財務,還包括財產和無形資產,如投票、軟件、健康數據和想法。
● 本書主題:比特幣和區塊鏈的概念、特性和功能;使用區塊鏈自動跟蹤所有的數字工作;啟用抗審查的組織模型;創建分散的數字倉庫來驗證身份;提供傳統上由國家提供的更便宜、更有效的服務的可能性;科學:更好地利用數據挖掘網絡;個人健康記錄存儲,包括訪問自己的基因組數據;在區塊鏈上開放獲取學術出版
區塊鏈通過運用基于共識的數學算法,在機器之間建立“信任”網絡,通過技術背書來進行全新的信用創造,成為可支撐數字經濟傳遞信任和管理價值的關鍵。區塊鏈不僅僅適用于加密數字貨幣等場景,更大的應用空間必將是工業互聯網、5G等與社會、經濟密切相關的新興領域,甚至可能對整個網絡空間的核心架構帶來變革。如何構建區塊鏈基礎設施,滿足數字經濟發展需求,是區塊鏈規模化應用的關鍵。