我們提出了一種學習視覺特征的方法,即使這些特征具有不同的維數,并且是通過不同的神經網絡結構和損失函數來學習的,也能與之前的計算結果相兼容。兼容意味著,如果這些特性用于比較圖像,那么“新”特性可以直接與“舊”特性進行比較,因此它們可以互換使用。這使得視覺搜索系統在更新嵌入模型時,可以繞過計算所有以前看到的圖像的新特性,這個過程稱為回填。向后兼容性對于快速部署新的嵌入模型至關重要,這些模型利用了不斷增長的大規模訓練數據集和深度學習體系結構和訓練方法的改進。我們提出一個框架來訓練嵌入模型,稱為向后兼容訓練(BCT),作為向后兼容表示學習的第一步。在人臉識別的嵌入學習實驗中,使用BCT訓練的模型在不犧牲精度的前提下,成功實現了向后兼容,實現了可視化嵌入的無填充模型更新。
題目: Online Deep Clustering for Unsupervised Representation Learning
摘要:
聯合聚類和特征學習方法在無監督表示學習中表現出了顯著的效果。但是,特征聚類和網絡參數更新訓練計劃的交替導致視覺表征學習的不穩定。為了克服這個挑戰,我們提出在線深度集群(ODC),它可以同時執行集群和網絡更新,而不是交替進行。關鍵見解是,聚類中心應該穩步發展,以保持分類器的穩定更新。具體來說,設計和維護了兩個動態內存模塊,即樣本記憶用于存儲樣本標簽和特征,中心記憶用于中心進化。我們將全局聚類分解為穩定的內存更新和成批的標簽重新分配。該過程被集成到網絡更新迭代中。通過這種方式,標簽和網絡齊頭并進,而不是交替發展。大量的實驗表明,ODC能夠穩定訓練過程,有效地提高訓練性能。
小樣本學習(FSL)近年來引起了越來越多的關注,但仍然具有挑戰性,因為學習從少數例子中歸納的固有困難。本文提出了一種自適應間隔原則,以提高基于度量的元學習方法在小樣本學習問題中的泛化能力。具體地說,我們首先開發了一個與類相關的加性邊緣損失算法,該算法考慮了每對類之間的語義相似性,從而將特征嵌入空間中的樣本從相似的類中分離出來。此外,我們在抽樣訓練任務中加入所有類別之間的語義上下文,并開發了與任務相關的附加間隔損失,以更好地區分不同類別的樣本。我們的自適應間隔方法可以很容易地推廣到更現實的廣義FSL設置。大量的實驗表明,在標準FSL和通用FSL設置下,所提出的方法可以提高現有基于度量的元學習方法的性能。
隨著網絡新聞的爆炸式增長,個性化的新聞推薦對于網絡新聞平臺幫助用戶發現感興趣的信息變得越來越重要。現有的新聞推薦方法通過從新聞內容和用戶與新聞的直接交互(如點擊)中構建精確的新聞表示和用戶表示來實現個性化,而忽略了用戶與新聞之間的高階關聯。**本文提出了一種新聞推薦方法,通過對用戶和新聞之間的關系進行圖形化建模,增強用戶和新聞之間的表示學習。**在我們的方法中,用戶和新聞都被看作是歷史用戶點擊行為構造的二部圖中的節點。對于新聞表示,首先利用transformer架構構建新聞語義表示。然后通過一個圖注意力網絡將其與圖中相鄰新聞信息相結合。對于用戶表示,我們不僅表示來自其歷史上單擊的新聞的用戶,而且還仔細地將其鄰居用戶的表示合并到圖中。在大型真實數據集上的改進性能驗證了我們所提方法的有效性。
我們提出了一種基于學習的方法來去除不需要的障礙物,如從一個移動的相機捕獲的短序列圖像中的窗戶反射、柵欄遮擋或雨滴。我們的方法利用背景和障礙物元素之間的運動差異來恢復這兩個圖層。具體來說,我們在估計兩層的密集光流場和通過深度卷積神經網絡從流扭曲圖像重建每一層之間進行交替。基于學習的層重構允許我們在流量估計和脆性假設(如亮度一致性)中考慮潛在的誤差。結果表明,綜合生成的訓練數據能很好地轉換為真實圖像。我們在反射和柵欄移除的許多挑戰性場景中的結果證明了該方法的有效性。
主題: A New Meta-Baseline for Few-Shot Learning
摘要: 近年來,元學習已經成為小樣本學習的流行框架,其目標是從少拍分類任務的集合中學習模型。雖然提出了越來越多的新穎元學習模型,但我們的研究發現了被忽視的簡單基準。我們通過在所有基類上預先訓練分類器,并在基于最近質心的少數鏡頭分類算法上進行元學習,提出了一種Meta-Baseline方法,該方法以較大的優勢勝過了最新的方法。為什么這個簡單的方法這么好?在元學習階段,我們觀察到在基礎類的未見任務上更好地推廣的模型在新型類任務上的性能可能會下降,這表明存在潛在的客觀差異。我們發現預訓練和從預訓練的分類器繼承良好的幾次快照分類法對于元基線都很重要,這可能有助于模型更好地利用具有更強可傳遞性的預訓練表示。此外,我們研究了何時需要在此元基線中進行元學習。我們的工作為該領域建立了一個新的基準,并為進一步了解元學習框架中的幾次學習現象提供了啟示。
We propose a way to learn visual features that are compatible with previously computed ones even when they have different dimensions and are learned via different neural network architectures and loss functions. Compatible means that, if such features are used to compare images, then "new" features can be compared directly to "old" features, so they can be used interchangeably. This enables visual search systems to bypass computing new features for all previously seen images when updating the embedding models, a process known as backfilling. Backward compatibility is critical to quickly deploy new embedding models that leverage ever-growing large-scale training datasets and improvements in deep learning architectures and training methods. We propose a framework to train embedding models, called backward-compatible training (BCT), as a first step towards backward compatible representation learning. In experiments on learning embeddings for face recognition, models trained with BCT successfully achieve backward compatibility without sacrificing accuracy, thus enabling backfill-free model updates of visual embeddings.
元學習已被提出作為一個框架來解決具有挑戰性的小樣本學習設置。關鍵的思想是利用大量相似的小樣本任務,以學習如何使基學習者適應只有少數標記的樣本可用的新任務。由于深度神經網絡(DNNs)傾向于只使用少數樣本進行過度擬合,元學習通常使用淺層神經網絡(SNNs),因此限制了其有效性。本文提出了一種新的學習方法——元轉移學習(MTL)。具體來說,“meta”是指訓練多個任務,“transfer”是通過學習每個任務的DNN權值的縮放和變換函數來實現的。此外,我們還介紹了作為一種有效的MTL學習課程的困難任務元批處理方案。我們使用(5類,1次)和(5類,5次)識別任務,在兩個具有挑戰性的小樣本學習基準上進行實驗:miniImageNet和Fewshot-CIFAR100。通過與相關文獻的大量比較,驗證了本文提出的HT元批處理方案訓練的元轉移學習方法具有良好的學習效果。消融研究還表明,這兩種成分有助于快速收斂和高精度。
地址:
代碼:
NeurIPS 2019(Neural Information Processing Systems)將在12月8日-14日在加拿大溫哥華舉行。NeurIPS 是全球最受矚目的AI、機器學習頂級學術會議之一,每年全球的人工智能愛好者和科學家都會在這里聚集,發布最新研究。今天小編整理了表示學習相關論文。
作者: Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan
摘要:在自然語言處理中,具有self-attention的序列模型已經取得了很好的效果。self-attention具有模型靈活性、計算復雜性和可解釋性等優點,正逐漸成為事件序列模型的重要組成部分。然而,像大多數其他的序列模型一樣,自我注意并不能解釋事件之間的時間跨度,因此它捕捉的是序列信號而不是時間模式。在不依賴遞歸網絡結構的情況下,self-attention通過位置編碼來識別事件的順序。為了彌補時間無關和時間相關事件序列建模之間的差距,我們引入了一個嵌入時間跨度到高維空間的功能特征映射。通過構造相關的平移不變時間核函數,揭示了經典函數函數分析結果下特征圖的函數形式,即Bochner定理和Mercer定理。我們提出了幾個模型來學習函數性時間表示以及與事件表示的交互。這些方法是在各種連續時間事件序列預測任務下對真實數據集進行評估的。實驗結果表明,所提出的方法與基線模型相比,具有更好的性能,同時也能捕獲有用的時間-事件交互。
論文鏈接:
//papers.nips.cc/paper/9720-self-attention-with-functional-time-representation-learning
作者:Jeff Donahue, Karen Simonyan
摘要:對抗訓練生成模型(GANs)最近取得了引人注目的圖像合成結果。GANs在無監督的表現學習中盡管在早期取得了的成功,但是它們已經被基于自監督的方法所取代。在這項工作中,我們證明了圖像生成質量的進步轉化為極大地改進了表示學習性能。我們的方法BigBiGAN建立在最先進的BigGAN模型之上,通過添加編碼器和修改鑒別器將其擴展到表示學習。我們廣泛地評估了這些BigBiGAN模型的表示學習和生成能力,證明了這些基于生成的模型在ImageNet的無監督表示學習方面達到了最新的水平,并在無條件生成圖像方面取得了令人信服的結果。
論文鏈接:
作者:Yu Tian, Long Zhao, Xi Peng, Dimitris Metaxas
摘要:圖核是度量圖相似性的核心方法,是圖分類的標準工具。然而,作為與圖表示學習相關的一個問題,使用核方法進行節點分類仍然是不適定的,目前最先進的方法大多基于啟發式。在這里,我們提出了一個新的基于核的節點分類理論框架,它可以彌補這兩個圖上表示學習問題之間的差距。我們的方法是由圖核方法驅動的,但是擴展到學習捕獲圖中結構信息的節點表示。我們從理論上證明了我們的公式與任何半正定核一樣強大。為了有效地學習內核,我們提出了一種新的節點特征聚合機制和在訓練階段使用的數據驅動的相似度度量。更重要的是,我們的框架是靈活的,并補充了其他基于圖形的深度學習模型,如圖卷積網絡(GCNs)。我們在一些標準節點分類基準上對我們的方法進行了經驗評估,并證明我們的模型設置了最新的技術狀態。
論文鏈接:
作者:Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, Raia Hadsell
摘要:持續學習旨在提高現代學習系統處理非平穩分布的能力,通常是通過嘗試按順序學習一系列任務。該領域的現有技術主要考慮監督或強化學習任務,并經常假設對任務標簽和邊界有充分的認識。在這項工作中,我們提出了一種方法(CURL)來處理一個更普遍的問題,我們稱之為無監督連續學習。重點是在不了解任務身份的情況下學習表示,我們將探索任務之間的突然變化、從一個任務到另一個任務的平穩過渡,甚至是數據重組時的場景。提出的方法直接在模型中執行任務推斷,能夠在其生命周期內動態擴展以捕獲新概念,并結合其他基于排練的技術來處理災難性遺忘。我們用MNIST和Omniglot演示了CURL在無監督學習環境中的有效性,在這種環境中,沒有標簽可以確保沒有關于任務的信息泄露。此外,與現有技術相比,我們在i.i.中表現出了較強的性能。在i.i.d的設置下,或將該技術應用于監督任務(如漸進式課堂學習)時。 論文鏈接:
作者: Jean-Yves Franceschi, Aymeric Dieuleveut, Martin Jaggi
摘要:由于時間序列在實際應用中具有高度可變的長度和稀疏標記,因此對機器學習算法而言,時間序列是一種具有挑戰性的數據類型。在本文中,我們提出了一種學習時間序列通用嵌入的無監督方法來解決這一問題。與以前的工作不同,它的長度是可伸縮的,我們通過深入實驗和比較來展示學習表示的質量、可移植性和實用性。為此,我們將基于因果擴張卷積的編碼器與基于時間負采樣的新三重態損耗相結合,獲得了可變長度和多元時間序列的通用表示。
論文鏈接:
作者:Shen-Huan Lyu, Liang Yang, Zhi-Hua Zhou
摘要:在本文中,我們將森林表示學習方法casForest作為一個加法模型,并證明當與邊際標準差相對于邊際均值的邊際比率足夠小時,泛化誤差可以以O(ln m/m)為界。這激勵我們優化比例。為此,我們設計了一種邊際分布的權重調整方法,使深林模型的邊際比較小。實驗驗證了邊緣分布與泛化性能之間的關系。我們注意到,本研究從邊緣理論的角度對casForest提供了一個新的理解,并進一步指導了逐層的森林表示學習。
論文鏈接:
作者:Shuangfei Zhai, Walter Talbott, Carlos Guestrin, Joshua Susskind
摘要:我們通過基于深度能量的模型(EBMs)來研究生成對抗網絡(GANs),目的是利用從這個公式推導出的密度模型。與傳統的鑒別器在達到收斂時學習一個常數函數的觀點不同,這里我們證明了它可以為后續的任務提供有用的信息,例如分類的特征提取。具體來說,在EBM公式中,鑒別器學習一個非歸一化密度函數(即,負能量項),它描述了數據流形。我們建議通過從EBM中獲得相應的Fisher分數和Fisher信息來評估生成器和鑒別器。我們證明了通過假設生成的示例形成了對學習密度的估計,費雪信息和歸一化費雪向量都很容易計算。我們還證明了我們能夠推導出例子之間和例子集之間的距離度量。我們進行的實驗表明,在分類和感知相似性任務中,甘氏神經網絡誘導的費雪向量作為無監督特征提取器表現出了競爭力。代碼地址:
論文鏈接:
作者:Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang
摘要:本文重點研究了圖數據分析的兩個基本任務:社區檢測和節點表示學習,它們分別捕獲圖數據的全局結構和局部結構。在現有的文獻中,這兩個任務通常是獨立研究的,但實際上是高度相關的。提出了一種協作學習社區成員和節點表示的概率生成模型vGraph。具體地說,我們假設每個節點都可以表示為群落的混合,并且每個群落都定義為節點上的多項分布。混合系數和群落分布均由節點和群落的低維表示參數化。我們設計了一種有效的變分推理算法,通過反向傳播進行優化,使相鄰節點的社區成員關系在潛在空間中相似。在多個真實圖上的實驗結果表明,vGraph在社區檢測和節點表示學習兩方面都非常有效,在兩方面都優于許多有競爭力的基線。結果表明,該vGraph框架具有良好的靈活性,可以方便地擴展到層次社區的檢測。
論文鏈接:
題目: AdversarialRepresentationActiveLearning
簡介: 主動學習的目的是通過查詢將由Oracle標記的信息最多的樣本來開發標簽有效的算法。 設計需要較少標簽的有效培訓方法是一個重要的研究方向,它可以更有效地利用計算和人力資源來進行訓練深度神經網絡。 在這項工作中,我們演示了如何利用深度生成模型中的最新進展,在使用盡可能少的標簽來達到最高分類精度方面,勝過最新技術。 與以前的方法不同,我們的方法不僅使用標記圖像來訓練分類器,而且還使用未標記圖像和生成的圖像來共同訓練整個模型。