亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文考慮對空軍機群規劃中軍用戰斗機選擇的戰略、戰術和作戰決策的多標準決策分析方法進行比較分析。指導決策分析過程的評價標準是由現有的三種軍用作戰飛機的文獻確定的。在多標準決策分析中,軍用戰斗機選擇問題采用 "參考理想方案的偏好分析(PARIS)"方法進行結構化。

與現有的多準則決策分析方法(PARIS,和TOPSIS)進行了系統的比較,以驗證所獲結果的穩定性和準確性。提出的綜合多標準決策分析系統方法有望解決飛機選型過程中遇到的問題。比較分析結果表明,所提出的方法是一個有效而準確的工具,可以幫助分析人員做出更好的戰略、戰術和行動決策。

關鍵詞——飛機、軍用戰斗機選擇、多標準決策、多標準決策分析、平均重量、熵權、MCDMA、PARIS、TOPSIS。

本文的其余部分的結構如下。第二章介紹了多準則決策分析方法,包括均值法、熵權法、PARIS法和TOPSIS法。第 3 章介紹了所提出方法的數值應用,包括平均權重、熵加權 PARIS 和 TOPSIS 計算的研究結果以及討論。最后,第四章給出結論。

付費5元查看完整內容

相關內容

用于保護我方運用空權以及摧毀敵人使用空權之能力的軍用機種。

盟軍最高司令部轉型的能力發展局的一項關鍵任務是推動北約的創新。這是通過挑戰現狀,克服組織思維定式,審視變革的長期利益,以及審查哪些變革是可能的及其相關的效果和影響的長期視角來實現的。有大量的工具可以用來點燃創新,如研究、概念開發和實驗(CD&E),以及增加與來自不同國家、學術界和工業界的專家的聯系。

世界范圍內日益具有挑戰性和快速發展的安全環境,再次強調了測試和實驗新能力的重要性,以便迅速向用戶提供這些能力,或者盡早失敗。本卷介紹了一些發人深省的章節,并闡述了廣泛主題的CD&E經驗。

第一章是重點是CD&E的誕生和需求;探討了CD&E的想法是如何演變的,它作為一項政策和一個過程的意義是什么,以及CD&E目前是如何應用的。在第二章中,強調了旨在克服 "無政府狀態 "問題的CD&E方法的要求,并討論了CD&E定義中 "分析 "的遺漏。它描述了瑞典武裝部隊在實施改革期間對該方法的經驗。這一章指出了科學方法在更復雜的情況下進行實驗的局限性。它提出了一種不同的方法,說明了文化和認知上的差異,此外還建立了對知識的積累和使用的另一種看法。將心理學的見解帶到CD&E過程中,努力減少參與該方法的工作人員的各種限制,并使后者更加有效和富有成效。

還介紹了國家的觀點,如Van Hoeserlande中校講述了比利時在CD&E方面的經驗,作者將能力和概念發展的應用與一種新文化的出現聯系起來,在這種文化中應該啟動和闡述這一過程。馬佐中校提供了一個北約的例子,他闡明了作戰分析和作戰試驗在北約行動后勤鏈管理(OLCM)計劃中的作用,以及他們對建立統一的業務流程模型(U-BPM)的貢獻。對CD&E的評估進行了概述,作為一種可審計的證據線索,重新思考經常被視為次要事件鏈的CD&E的評估。

隨后,介紹了各種技術和分析方法。向讀者介紹了桌面實驗(TTE)的適用性和有用性,解釋了它們的結構、目標以及它們在特定的軍事和科學背景下確定能力要求的總體效果。埃里克先生和帕林博士的章節通過介紹英國 "城市戰士5號 "實驗的具體情況,強調了單個模擬設計的優勢和劣勢,對桌面實驗中使用的測試和方法這一主題做出了貢獻。介紹了概念測試方法,并強調其重要性、廣泛的適用性,并概述了構成概念測試成功過程的主要特征。補充了概念測試和桌面實驗的重要性,強調了CD&E過程和三種不同類型的桌面評估游戲的價值:"能力評估游戲"、"顛覆性技術評估游戲"、"概念發展評估游戲"。著重介紹了形態分析克服傳統簡化系統所具有的弱點,為國防決策帶來的優點。強調了對CD&E進行更多實證研究的必要性,這將填補文獻中存在的空白。此外,這些研究提供了一種被稱為 "防御估計成本模型 "的方法,實驗中的專業人士可以在不同部門的分析中使用。

本卷的最后一章加強了CD&E對國防規劃過程的意義,劃定了哪些要素使CD&E成功,并討論了這種方法在充滿挑戰的當代世界的未來。

付費5元查看完整內容

美國防部第5100.01號指令要求美陸軍 "進行空中和導彈防御,以支持聯合戰役并協助實現空中優勢"。FM3-01描述了美陸軍專門的AMD部門--ADA對AMD行動的計劃、協調和執行的貢獻,以支持大規模作戰行動中的聯合和陸軍部隊。

防空和導彈防御是直接(主動和被動)的防御行動,以摧毀、消除或降低敵對的空中和彈道導彈對友軍和資產的威脅(JP 3-01)。它包括在陸地、空中、海上以及網絡空間和太空中可能采取的行動。反彈道導彈行動是擊敗空中和導彈威脅的防衛性反空結構的一個關鍵因素。在整個防空框架內,AMD行動通常與其他進攻性和防御性的防空任務相結合。雖然本手冊涉及進攻性反空和被動反空的各個方面,但它側重于主動反空戰術和程序。

FM3-01涉及到今天的作戰環境,它所設想的對美陸軍和聯合部隊的威脅是這些部隊在25年內沒有遇到過的。在這種環境下,反坦克部隊必須適應并準備在一個高度競爭的空域中進行大規模作戰行動。FM3-01為反坦克部隊提供了一個應對未來沖突的理論方法,解釋了反坦克部隊的梯隊如何為陸軍的四個戰略角色做出貢獻:塑造作戰環境、預防沖突、進行大規模地面作戰和鞏固成果。

這個FM3-01版本是以ADA梯隊為單位組織的,而不像以前的版本是以ADA系統的角度來介紹。它介紹了從陸軍航空和導彈防御司令部(AAMDC)到防空空域管理(ADAM)單元的ADA梯隊的作用、功能、基本原則和就業宗旨。它進一步描述了ADA梯隊在當前或近期行動中的AMD部隊行動和交戰行動,并討論了這些行動的持續挑戰。

這個版本引入并定義了新的AMD術語。它還定義了在其他AMD理論出版物中反復使用但從未定義的舊術語。

FM3-01由12章組成:

  • 第1章提供了美陸軍AMD的概述。它介紹了一個新的ADA角色聲明,并確定了五個關鍵的ADA基本能力。它介紹了AMD的基本原則和就業宗旨。它總結了支持聯合和統一陸地行動的ADA行動。第1章重新介紹了短程防空(SHORAD),這是保護機動部隊的一個關鍵因素。本章最后討論了ADA士兵和領導人的培訓。本章中提出了大量的定義和術語的擴展解釋,以方便理解適用于所有ADA梯隊的AMD行動和語言。

  • 第2章從AMD的角度討論了美陸軍行動過程。AMD部隊行動一般包括支持空中和導彈威脅的交戰所需的計劃和準備行動。AMD交戰行動包括執行和評估交戰的所有行動。

  • 第3章涉及作戰環境,重點是空中和導彈威脅,從火箭、火炮、迫擊炮到洲際和潛射彈道導彈,以及它們的通用能力。它還涉及美國部隊可能面臨的來自太空和網絡空間威脅的挑戰。

  • 第4章描述了任務指揮以及與陸軍AMD相關的指揮與控制(C2)。它通過AMD的視角討論了任務指揮的原則。它還介紹了適用的權力和C2要素,以及在進行交戰時的駐地。

  • 第5章至第10章分別討論了AMD作戰框架以及基礎原則和宗旨在ADA梯隊中的應用,從AAMDC到機動旅編隊的ADAM單元。每一章都介紹了各自梯隊的角色和能力、組成和行動--在C2、部隊行動、交戰行動和維持行動方面。

  • 第11章描述了非AMD陸軍部隊對執行AMD行動的貢獻。它總結了C2、計劃和使用以及與空中和火箭彈、大炮和迫擊炮(RAM)威脅有關的交戰考慮。它介紹了關于機動部隊 "毒刺 "小組的使用的理論和行動信息。

  • 第12章概述了ADA數據和通信架構以及美陸軍、聯合和多國AMD要素之間的聯系。

  • 附錄A和B分別介紹了美陸軍AMD戰略組織和系統以及ADA系統(那些通常支持作戰和戰術層面的系統)。

根據目前的理論變化,FM3-01的某些術語被添加、修改或廢除。這些術語的清單在第9頁的引言表1和2中提出。詞匯表包含了所定義的術語。

第x頁的引言圖-1說明了FM3-01的邏輯圖。第x頁的引言圖-2說明了ADA理論出版物的層次結構。

付費5元查看完整內容

在存在智能對手的情況下,博弈論模型(如安全博弈)已被證明是減輕保護和安全協議中可利用漏洞風險的有效工具,因為它們模擬了對手和防御者之間的戰略互動,并允許防御者在面對這種對手時計劃使用稀缺或有限的資源。然而,標準的安全博弈模型在允許防御者執行的規劃類型方面具有有限的表現力,因為它們只關注一組固定的安全資源的部署和分配。這忽略了兩個非常重要的規劃問題,它們涉及安全系統的戰略設計和部署的資源,以及安全協議的可用性和實施。當這些問題出現在現實世界的系統中時,如果不以一種原則性的方式來處理,安全協議的效用和效率就會出現重大損失。

為了解決這些局限性,在這篇論文中,我為安全博弈的規劃問題引入了一個新的層次結構,將問題分為三個層次的規劃(i)戰略規劃,考慮長期的規劃期限,以及與游戲設計有關的決策,這些決策限制了可能的防御者策略;(ii)戰術規劃,考慮較短的期限,處理資源的部署,以及在戰略層面的限制下選擇防御者策略;(iii)行動規劃,處理在現實世界中的策略實施。

首先,以戰略規劃為重點,我討論了選擇一組資源和時間表類型的設計問題。我引入了一個新的基本問題,即資源團隊和戰術的同步優化(SORT),它模擬了戰略和戰術規劃的耦合問題,在選擇資源類型方面對游戲設計進行了優化,并對它們在現場的實際部署進行了優化。我提供了有效解決SORT問題的算法,該算法使用優化問題的分層放松來計算這些戰略層面的投資決策。我表明,這種更具表現力的模型使防御者能夠進行更精細的決策,從而在效用上獲得巨大的收益。其次,在資源異質性的安全博弈的相關性和艱巨性的激勵下,我還通過提供一個計算異質資源的適應性策略的框架來解決戰術規劃方面的挑戰。最后,我研究了行動規劃的問題,這在安全博弈的文獻中從未被正式研究過。我提出了一個可操作策略的新解決方案概念,它隨機選擇一個最優選擇的純策略子集,其基數由防御者選擇。我展示了計算這種可操作策略的難度,并提供了一種用于計算可操作的最佳均衡的算法。

在所有這些問題中,我的動力來自于現實世界的挑戰,以及開發可在現實世界中使用的解決方法。因此,許多工作都是與Panthera、WWF和其他非政府組織(NGO)合作,幫助保護國家公園和野生動物免受森林砍伐和偷獵,以及與TSA合作,保護我們的機場等關鍵基礎設施免受恐怖襲擊。正因為如此,在處理這三個層次的規劃時,我開發的解決方案不僅是新穎的、學術上有趣的,而且是可部署的、對現實世界有影響的。

付費5元查看完整內容

摘要

過去的決策是如何做出的,其驅動力、戰略和理由是什么?關于組織應該如何從過去的經驗中學習以幫助在未來做出更好的決策,這句老話是正確的。目前的第一階段研究著眼于美國防部(DOD)如何灌輸機構企業記憶。具體來說,該研究對如何開發一個透明的決策選項登記冊(DOR)綜合智能數據庫系統進行測試并提出建議,其中DOR有助于捕捉國防部(DOD)內部項目的所有歷史決策(假設、數據輸入、約束、限制、競爭目標和決策規則)。這個DOR中的信息將與元語義搜索和數據科學分析引擎兼容。DOR用于對未來的決策方案進行建模,以便在不確定的情況下做出決策,同時依靠過去的最佳實踐,使高級領導層能夠做出可辯護的、實用的決策。目前第一階段的研究使用程式化的數據和例子來說明推薦的方法。

這項研究采用先進的定量建模方法(隨機模擬、投資組合優化),加上人工智能(AI)和機器學習(ML)算法(數據搜刮、文本挖掘、情感分析)和企業風險管理(ERM)程序,實施行業最佳決策分析。DOR將部分基于使用風險登記冊的ERM方法,其中不同的風險元素被細分為不同的GOPAD組,或目標(軍事能力、成本節約、新技術、未來武器能力、公共安全、政府優先事項、指揮偏好,等等。 )、組織(空軍、陸軍、海軍、海軍陸戰隊)、計劃(采購、商業現貨、聯合產業、混合等)、活動(庫存、替換、新開發、研究和開發等)和領域(空中、海上、網絡等)類別。

多個相互競爭的利益相關者(例如,國防部長辦公室、海軍作戰部長辦公室、美國國會和平民)有其特定的目標(例如,能力、效率、成本效益、競爭力和殺傷力,以及替代方案和權衡)、約束(例如,時間、預算、進度和人力)和基于任務的領域需求(例如,平衡網絡安全、網絡反恐、反潛戰、反-飛機戰或導彈防御)。

這項研究采取了多學科的方法,來自先進分析、人工智能、計算機科學、決策分析、國防采購、經濟學、工程和物理學、金融學、期權理論、項目和計劃管理、隨機建模的模擬、應用數學和統計學的方法被應用。最終的目標是為決策者提供可操作的情報和對未來決策選項或靈活的真實選項的可見性,以及導致某些可比較決策的假設。

推薦的方法包括使用監督和無監督的AI/ML情感文本分析、AI/ML自然語言文本處理以及AI/ML邏輯分類和支持向量機(SVM)算法,再加上更傳統的高級分析和數據科學方法,如蒙特卡洛模擬、隨機組合優化和項目選擇、使用財務和經濟指標的資本預算,以及PROMETHEE和ELECTRE等詞匯學排名方法。

介紹了案例應用、代碼片段和模擬的DOR,并以典型的數據來說明其能力。目前的研究成果將為下一階段的多年研究提供基礎,將建立原型,實際數據可以通過規定的分析引擎運行。

1. 簡介

這項擬議研究的目的是生成一個透明的決策選項登記冊(DOR)綜合智能數據庫系統,該系統有助于捕捉所有未來的歷史決策,包括其假設、數據輸入、約束、限制、競爭目標和國防部(DOD)的決策規則。該DOR中的信息將與元語義搜索和數據科學分析引擎兼容。DOR用于對未來的決策選項進行建模,以實施和實現在不確定的情況下做出決策,同時依靠過去的最佳實踐,并允許高級領導層做出可辯護的和實用的決策。

DOR是基于私營企業的企業風險管理(ERM)實踐,通常會列出過去、現在和未來擬議項目的風險和經驗教訓。建立一個決策歷史的文件數據庫是至關重要的。如果沒有曲線,就沒有學習曲線,而沒有任何數據或信息就不可能有曲線。有了目前這項研究中推薦的DOR和相關方法,我們可以通過觀察新項目的特點,以歷史數據為參考,計算出新項目的成功和失敗的概率,從而預測結果。當然,有必要對成功與失敗進行操作和定義。僅僅因為一個項目低于預算,按時完成,幾乎不需要返工,達到了所有要求的規格和技術發布水平,這是否意味著它是成功的?我們還可以用什么其他的指標來確定明確的成功或明確的失敗,以及在這兩者之間的所有其他層次呢?我們需要確定可用的數據以及差距,以使我們有一個堅實的決策選項登記冊。我們在操作上定義的成功和失敗的一些統計學上的重要預測因素是什么?另一個問題是減輕風險和戰略靈活性。

這項研究將展示業界最佳的決策分析和企業風險管理(ERM)程序。DOR將部分基于使用風險登記冊的ERM方法,其中不同的風險元素被細分為不同的GOPAD組,或目標(軍事能力、成本節約、新技術、未來武器能力、公共安全、政府優先事項、指揮偏好,等等。 )、組織(空軍、陸軍、海軍、海軍陸戰隊)、計劃(采購、商業現成的、聯合產業、混合等)、活動(庫存、替換、新開發、研究和開發等)和領域(空中、海上、網絡等)類別。

多個相互競爭的利益相關者(如國防部長辦公室、海軍作戰部長辦公室、美國國會和平民)有其特定的目標(如能力、效率、成本效益、競爭力和殺傷力,以及替代方案和權衡)、限制(如。時間、預算、時間表和人力),以及基于任務的領域要求(例如,平衡網絡安全、網絡反恐、反潛戰、防空戰或導彈防御中的數字化轉型需求)。當需要考慮新的決定時,這些因素是至關重要的。一個保存機構知識和記憶的DOR數據庫將有助于這種努力,并為決策注入信任。

這項研究將采取多學科的方法,我們將應用先進的分析方法、人工智能、計算機科學、決策分析、國防采購、經濟學、工程和物理學、金融、期權理論、項目和項目管理、隨機建模的模擬、應用數學和統計學。最終的目標是為決策者提供可操作的情報,以及對未來決策選項或靈活的真實選項的可見性,并提供導致某些可比決策的假設。

1.1 研究當前的技術狀況

在法律糾紛中,法院在決定案件的結果時使用先例。先例的使用已經有200多年的歷史,通常是為了上訴或推翻以前的判決。然而,基于先例的決策是工業界和政府還沒有完全接受的東西。由于人力資本的波動和外流,以及雇員離開或被重新分配到其他地方時機構知識的流失,包括國防部在內的各組織往往記憶短暫。目前的研究旨在包括對基于先例的決策技術現狀的相關研究是如何進行的,什么可能被認為是技術現狀,以及其目前的局限性是什么。

1.2 研究方法

該研究應用了多種新穎的方法,以提高其在生成一個強大的、可搜索的DOR數據庫方面的成功率。建議將包括關鍵參數、假設、輸入數據、保存的模型和計算、做出的決定、領導的輸入和重寫、約束和限制、最終目標和其他相關信息,然后可以使用機器學習的情感分析,加上刮削算法和自定義詞匯集的文本挖掘來挖掘。該系統的用戶將能夠把基于先例的洞察力應用于他們當前和未來的項目。此外,在可能的情況下,預測值將由隨著時間推移捕獲的實際值來補充。這允許對以前的項目進行事后分析,并提供一路走來的經驗教訓。掌握關鍵決策的歷史將有助于高級領導層做出更可信和可辯護的決定,這可能最終導致國防部的法律和法規變化。

擬議的方法將允許收集可應用于各種領域的數據,包括但不限于綜合風險管理?方法,其中可以運行蒙特卡洛模擬、隨機組合優化等隨機分析,以及高級數據分析方法、人工智能和數據科學方法。隨著時間的推移,可以應用回溯分析來更新DOR,使其更接近國防部的需求。該系統應該能夠收集不同類型的經濟數據(總生命周期成本、總擁有成本、采購成本、成本遞延、以及進度和風險成本);后勤數據(例如。固有可用性、有效可用性、任務可靠性、操作可靠性、平均停機時間、平均維護時間、后勤延遲時間、實現可用性、操作可用性、任務可用性、實戰能力、創造性和新穎技術的李克特水平以及其他指標);定性的主題專家估計(戰略價值、對社會的價值、指揮部優先事項、法律和監管影響得分等);以及市場可比性,以操作國防部利益的各種要素。在適當的時間間隔內,可以采用非線性判別分析、神經網絡、分布式擬合、有限因變量、路徑依賴的偏最小二乘法等反擬合分析,以找出導致一個項目或采購中某些決策成功或失敗的關鍵成功因素。

1.3 研究應用

目前的研究是重要的,因為它將在國防部的決策過程中創造一個重大的差異。國防部一直在為決策分析、資本預算和投資組合優化尋找更好的、理論上合理的、定量上嚴格的分析方法。具體的興趣在于如何識別和量化每個項目對軍隊的價值,并優化選擇正確的項目、系統和能力組合,使一些軍事價值(戰略、作戰或經濟)最大化,同時受到預算、成本、進度和風險限制。這項研究應用了私營部門和行業的最佳實踐,再加上先進的分析方法和模型,以幫助創建這些方法來做到這一點。然而,國防部的獨特性要求我們做更多的工作,以確定對軍隊的價值概念,同時考慮競爭的利益相關者的需求。國防部在其投資回報中需要有可辯護的、量化的、強有力的軍事價值概念,以做出最佳的資金決策,如在哪里投資、投資多少、投資多長時間。在國防部的非經濟環境中進行替代方案分析和平衡成本效益權衡時,這些決策選擇(戰略順序復合實際選擇、最佳時機選擇、增長選擇和其他選擇,以擴大、收縮和放棄)是至關重要的。國防部將提供歷史上保存下來的關于假設的各種替代性未來、模擬的替代方案以及為什么做出某些決定的見解。

1.4 人工智能和數據科學

人工神經網絡(NN)是一個數據驅動的、無分布的非參數方法系列,可用于非線性模式識別、預測建模和預測。神經網絡經常被用來指代生物神經元的組合網絡電路。該術語的現代用法通常也指 "人工神經網絡",包括在軟件環境中重新創建的人工神經元,或節點。這種人工網絡試圖模仿人類大腦中的神經元或神經元節點的思維方式,識別模式,以及在我們的情況下,識別模式來預測時間序列數據。NN方法可用于行為良好的時間序列以及混亂的物理系統。當用于大數據(BD)并與機器學習(ML)方法結合使用時,它可以被視為半監督的人工智能(AI)系統的一個交叉點。NN仍然被認為是半監督的,因為神經網絡需要一個多層次的訓練過程作為激活函數的一部分。例如,一旦系統中的激活被觸發,神經節點的權重和交互式卷積就可以自主地運行。在多層神經元節點中,第一個節點層的結果將成為后續節點層的輸入。

本文提議增加一個內部優化過程,以迭代運行的方式不斷訓練節點,使其最小化一系列的誤差測量,如標準化的誤差平方和,同時平衡和約束Akaike信息準則、Bayes準則和Hannan-Quinn準則。此外,這里的建議是在組合中加入組合模糊邏輯方法,以產生盡可能好的預測。模糊邏輯一詞來自模糊集合理論,用于處理近似而非精確的推理。相對于脆性邏輯,二元集有二元邏輯,模糊邏輯變量可能有一個真值,范圍在0和1之間,不受經典命題邏輯的兩個真值的限制。這種模糊加權模式與組合方法一起使用,可以得到時間序列的預測結果。

Augur(2016)對數據科學的歷史做了一個很好的總結。根據他的研究,"數據科學 "一詞最早出現在1974年,當時Peter Naur發表了題為 "計算機方法簡明調查 "的文章,并將其定義為:"處理數據的科學,一旦它們被建立起來,而數據與它們所代表的關系被委托給其他領域和科學。" 這個詞花了一段時間才流行起來,直到2010年才完全融入白話。數據科學家 "一詞通常歸功于2008年Facebook和LinkedIn的Jeff Hammerbacher和D. J. Patil。在2011年和2012年之間,"數據科學家 "的職位列表增加了15,000%,重點是與大數據的工作。到2016年,數據科學開始在人工智能領域根深蒂固,特別是在機器學習和深度學習的子領域。

付費5元查看完整內容

目的

1.《兵棋推演手冊》的目的是為兵棋推演提供背景和指導。它的設計主要是為了介紹這個主題;它不是一本詳細的手冊或從業人員的技術指南。

內涵

2.最近的作戰挑戰促使人們重新關注兵棋推演在國防決策和創新中可以發揮的作用。世界各國都在進行兵棋推演,并對自己的兵棋推演能力進行投資。《兵棋推演手冊》旨在解釋兵棋推演對各級國防部門的重要性。

范圍

3.《兵棋推演手冊》描述了如何利用兵棋推演來探討國家戰略、戰略、作戰和戰術層面以及所有領域和環境中的問題。它討論了如何將兵棋推演應用于教育和培訓、規劃和行政決策。

受眾

4.《兵棋推演手冊》面向所有國防人員,特別是將兵棋推演作為其職責一部分的人員、兵棋推演發起人以及負責設計和執行兵棋推演的人員。次要受眾是其他政府部門、相關非政府組織和私營部門的成員,國防人員可能會與他們合作。

結構

5.《兵棋推演手冊》由四章和兩個附件組成。

  • 第1章--介紹兵棋推演,簡要介紹了兵棋推演的歷史,并解釋了其效用和關鍵術語及定義。

  • 第2章--兵棋推演的基本原理,介紹了有效兵棋推演的準則以及關鍵人員的作用和責任。

  • 第3章--兵棋推演的類型、變體和背景討論了兵棋推演的不同變體以及如何分類。

  • 第4章--兵棋推演過程描述了提供兵棋推演所需的步驟,從設計到執行再到總結經驗。

  • 附件A包含了最近的案例研究,說明兵棋推演是如何被應用于國防問題的。

  • 附件B提供了建議的進一步閱讀和與兵棋推演有關的機構的鏈接。

付費5元查看完整內容

引言

軍事和民事情報組織經常被要求為指揮官和決策者提供支持,他們的決定影響著國家和國際安全。除其他特征外,如及時性和相關性,情報組織應做出有嚴格分析支持的評估,準確無誤,并明確傳達給決策者。不確定性對情報的評估和溝通功能都構成了關鍵挑戰。例如,分析員收到的信息的質量往往是不確定的,他們所依賴的概念模型也是如此。簡而言之,大多數分析都是在不確定的條件下做出的人類判斷。決策者可能希望完全消除不確定性,但情報組織必須努力將有關事件(概率)和他們的評估(信心)的揮之不去的不確定性盡可能連貫和清晰地傳達出去,以避免誤傳。

SAS-114研究工作組通過研究(a)在不確定情況下促進情報評估準確性的現有和新方法,以及(b)在這種評估中溝通不確定性的標準來應對這些雙重挑戰。本報告概述了SAS-114所完成的研究和分析,分為以下四個部分。

第一部分(第1-5章)研究了情報生產管理的組織方面。第1章概述了目前由科學知識有限的思想領袖制定的情報培訓如何未能解決不確定性溝通中固有的主觀性或鼓勵分析員的自我批判性認知。第二章根據英國國防情報局的經驗,提出了一個不確定性評估的框架,旨在為決策者創造最大價值,減少情報失敗的風險。第3章介紹了荷蘭國防情報和安全局利用 "魔鬼建議 "來改進分析產品。第四章介紹了關于加拿大情報從業人員認為自己及其組織在多大程度上符合美國情報界第203號指令規定的分析嚴謹性標準的研究。在第五章中,英國分析傳統技術培訓小組的成員討論了學術合作和內部研究如何促進循證傳統技術在其組織中的實施。

本報告的第二部分(第6-9章)重點討論了不確定情況下的信息評估。第6章介紹了一種基于預期信息價值建立情報收集優先級的新方法。第7章批判性地審查了目前評估來源可靠性和信息可信度的標準,并強調了未來研究的途徑。接下來,第8章介紹了 "可靠性游戲",作為衡量來源因素對人類處境意識影響的一種游戲方法。第九章接著討論了風險游戲,這是一種評估專家如何處理異質信息、考慮信息質量和形成對同時發生的事件的信念的方法。

第三部分(第10-15章)探討了不確定性下的情報和風險評估。第10章討論了系統地監測地緣政治預測技能的重要性,并概述了這樣做的經驗方法。第11章重點討論了信息安全持續監測(ISCM)在防御性網絡行動中的挑戰,并討論了應用ISCM框架來改善情報評估。第12章介紹了關于競爭假設分析的有效性的實驗研究,以及分析后的重新校準和匯總方法,作為提高分析員判斷準確性的手段。第13章介紹了批判現實主義理論,以及批判話語分析和安全化理論的理論組成部分,它們共同為一種新穎的分析方法提供了框架:通過對比敘述進行分析。第14章接著介紹了一種以3值和6值邏輯的真值表形式結合分析判斷的透明方法。第15章的結論是一個分類系統,它有助于將分析技術與具體的情報問題相聯系。

本報告第四部分(第16-20章)根據SAS-114的最初目標,討論了情報制作中不確定性的交流。第16章研究了自然語言中固有的不確定性是如何影響報告質量的,并提出了一種識別、評估和權衡文本信息的證據性的方法。第17章對美國和英國在情報分析中交流概率的政策進行了批判性評論。第18章介紹了由SAS-114的成員和附屬機構收集的估計概率標準的注釋集。同樣,第19章介紹了SAS-114收集的用于評估和溝通分析信心的標準。第20章是報告的結尾,討論了數字時代的交流,特別關注商業開放源代碼情報中的不確定性溝通。

因此,本報告中的二十個章節涵蓋了廣泛的概念領域。SAS-114團隊希望,讀者會發現這套報告既能激發智力,又有實際用途。

內容提要

軍事和民事情報組織經常被要求為指揮官和策略制定者提供支持,他們的決定影響著國家和國際安全。除其他特點外,如及時性和相關性,情報組織應做出有嚴格分析支持的評估,準確無誤,并明確傳達給決策者。不確定性對情報的評估和溝通功能都構成了關鍵挑戰。例如,分析員收到的信息的質量往往是不確定的,他們所依賴的概念模型也是如此。簡而言之,大多數分析都是在不確定的條件下做出的人類判斷。決策者可能希望完全消除不確定性,但情報組織必須努力將有關事件(概率)和他們的評估(信心)的揮之不去的不確定性盡可能連貫和清晰地傳達出去,以避免誤傳。

SAS-114研究任務組通過研究來應對這些雙重挑戰。

a) 在不確定情況下促進情報評估準確性的現有和新方法;以及

b) 溝通此類評估中不確定性的標準。

本報告概述了SAS-114所完成的研究和分析,分為四個部分。

a) 第一部分(第1-5章)探討了情報生產管理的組織方面。

b) 第二部分(第6-9章)研究了不確定性下的信息評估。

c) 第三部分(第10-15章)研究不確定條件下的情報和風險評估;以及

d) 第四部分(第16-20章)研究了目前在情報生產中溝通不確定性的方法。

第一部分的核心主題是,情報組織需要積極主動地利用判斷和決策的科學。第一部分進一步說明了盟國的情報組織正試圖發展一種更加基于證據的分析技術和情報監督的方法。第二部分批判性地審查了目前評估信息有用性和質量的情報方法,并提出了替代方法。第二部分還介紹了測試分析員在不確定環境中如何評估信息質量的研究方法。第三部分描述了監測情報預測的準確性和監測防御性網絡風險的方法。第三部分還對支持情報分析的替代方法給予了極大的關注,包括通過對分析員的支持,以及通過從決策科學中提取的分析后方法。第四部分集中討論了自然語言和情報領域中不確定性的溝通。有幾章對目前向決策者傳達概率和置信度的情報(和其他專業)標準進行了批評分析。

盡管本報告所涉及的主題和調查方法多種多樣,但有幾個章節在一些關鍵結論上是一致的。首先,現有的交流信息質量、事件發生和評估準確性的不確定性的方法在多個方面存在缺陷,應促使北約下的情報界更密切地關注相關科學。具體來說,我們建議情報組織考慮使用數字概率,而不是目前使用的不確定性的模糊的口頭表達。其次,我們建議情報組織在符合科學標準的實驗中測試分析技術方法的有效性,并建議他們考慮在科學理論中具有更強基礎的替代方法。這一點至關重要,因為正如我們的一些研究表明,現有的方法可能不僅不能提高分析的嚴謹性,事實上還可能削弱分析員的評估質量。最后,我們建議情報組織采用積極的自我監測系統,除其他外,跟蹤他們提供給決策者的預測的準確性。

前言

SAS-114小組的前身是SAS-ET-CR探索小組,該小組于2014年12月在北約合作支持辦公室(CSO)召開了一次會議。最初的想法是專注于審查不確定性和風險的溝通標準。根據英國的建議,將范圍擴大,不僅包括不確定性的溝通,還包括在不確定性條件下如何進行評估。一年后,SAS-114研究任務小組(RTG)在CSO啟動,最初的團隊來自加拿大、丹麥、英國、荷蘭和美國,以及北約的海洋研究和實驗中心。隨后,它的成員擴大到包括德國、挪威、西班牙和瑞典。在第一年內,SAS-114也變得很明顯,它主要集中在情報分析領域。對情報的強調在活動中期的重新命名中被正式體現出來。SAS-114從情報界吸收了許多新成員,團隊的組成變得真正多樣化,包括科學家和情報專家的組合。每次會議的結構就像一個小型會議,旨在交流思想和新的發現,并做一些很少做的事情:給科學家和從業人員一個一年兩次的幾天空間來討論情報分析中的挑戰,并聽取可用于改善情報和向決策者傳達的前沿研究。因此,SAS-114也受益于來自科學界和情報界的大量特邀發言人。一個有代表性的例子是在會議記錄中,溝通不確定性,評估信息質量和風險,以及在情報分析中使用結構化技術(doi: 10.14339/STO-MP-SAS-114),其中概述了Arne Biering在哥本哈根Kastellet舉辦的研討會。SAS-114的會議結構與RTG的會議不同,是為了刺激坦率和公開的對話,并為合作的形成和發展提供機會。核心團隊并沒有著手設計所有成員都會參與的實驗。相反,在雙方興趣濃厚且每個參與成員都有貢獻的地方,形成了較小的合作集群。本報告中的許多章節概述了這種合作努力的結果。其中一些團隊的努力仍在進行中,并不是所有的團隊都已經成熟到可以在本報告中總結的地步。如果SAS-114在過去的三年里沒有什么成果,這可能會被理解為 "未完成的工作",然而根據任何合理的標準,SAS-114已經有了很高的成果,正在進行的合作更適合被理解為團隊持續合作的力量和產生的潛力的明確標志,這將遠遠超過其預定的年份,甚至可能成為北約未來的一個或多個活動。

SAS-114被證明是一個公開對話和自我形成研究合作的實驗,這一點在這份最終報告中得到了很好的體現。在報告中,讀者將發現沒有成員共同簽署的共識文件,而是一個結構化分析、研究結果、專業見解和影響SAS-114關鍵焦點的思想文章的多樣化集合。作為編輯,我偶爾會在實質性問題上對作者提出質疑,但這只是為了進一步突出論點,而不是為了強求一個共同的觀點。本報告中的20個章節分為四個部分:(a)情報生產管理的組織方面,(b)不確定性下的信息評估,(c)不確定性下的情報和風險評估,以及(d)情報生產中的不確定性溝通。最后一部分正視SAS-114的最初目標,追溯到探索小組,而前三部分則強調該活動自早期開始以來的發展。

序文

指揮官和策略制定者需要高質量的信息來做出適當的決定。在處理他們自己的部隊時,在正確的級別和正確的時間獲得正確的信息,雖然不是小事,但可以通過卓越管理來實現。然后,風險可以得到適當的衡量和說明。然而,如果不注入大量的不確定性,再好的管理也無法提供關于一個合格對手的決策質量信息。

大部分的不確定性來自于無法獲得第一手的信息,而不得不從不完整的或智能體的測量結果中進行推斷--這種情況對于其他行業的分析人員來說是很熟悉的,無論是市場研究、運營研究還是財務分析。然而,其中一些不確定性來自于對手使用積極的欺騙手段,試圖讓我們自己的偏見對我們不利,以掩蓋意圖和能力。為了適應我們用來描述對手行動路線的描述詞:如果第一個不確定性的產生者是最有可能的,那么第二個就是最危險的。它們共同為情報分析員提供了兩個不同但相關的挑戰:如何在這些條件下達成適當的評估,以及如何將這種不確定性適當地傳達給決策者。

雖然在大多數情報組織中,促進情報評估的準確性和溝通不確定性的直觀一致的程序已經使用了一段時間,但本報告中的研究表明,有些程序經不起科學方法的檢驗。這組論文中反復出現的主題是,隨著我們繼續在研究人員和從業人員之間不斷加深理解,不斷發展的判斷和決策科學可以幫助發展一種基于證據的情報分析技術。

科學和戰爭之間的共生關系并不新鮮。從最早的洞穴居民嘗試用棍子的大小、形狀和材料來保護家人免受攻擊,到隱形飛機的開發,研究、開發和國防從業人員之間的聯系在 "行動"、"防護 "和 "感知 "的操作功能中一直很緊密。指揮職能,包括其情報子集,已被證明對科學界的幫助有更大的阻力。文化、難以讓科學家獲得適當級別的批準,以及發表機密到無法進行同行評審的研究缺乏吸引力,是造成這種距離的一些因素。

本技術報告收集了豐富的思想文章、專業見解和研究成果,是科學家和從業人員特意聚在一起討論情報分析中的挑戰的產物,這表明我們最終正在打破這一鴻溝。兩個部落都肯定會從這種合作方式中獲益,但最大的贏家無疑是情報的消費者:指揮官、策略制定者和他們所服務的人。

  • 克里斯蒂安-盧梭上將(退役)(MGen (Ret'd) Christian Rousseau,加拿大恐怖主義綜合評估中心主任;前加拿大國防情報局局長和加拿大部隊情報指揮部的創始指揮官。
付費5元查看完整內容

  • 本研究由美國陸軍研究實驗室贊助,根據合作協議號W911NF-21-2-0227完成。

?在日益復雜的軍事行動環境中,下一代兵棋推演平臺可以減少風險,降低作戰成本,并改善整體結果。基于具有多模態交互和可視化能力軟件平臺的新型人工智能(AI)兵棋推演方法,對于提供滿足當前和新興戰爭現實所需的決策靈活性和適應性至關重要。我們強調了未來作戰人-機器交互的三個發展領域:由人工智能引導的決策指導,高計算力下的決策過程,以及決策空間的真實呈現。這些領域的進展將使有效的人機協作決策得以發展,以滿足當今戰斗空間日益增長的規模和復雜性。

關鍵詞:決策、交互、兵棋推演、人工智能、增強/混合現實、可視化

1 引言

在傳統的兵棋推演中,指揮官利用一個共同的基于地圖的作戰地形,并在軍事決策過程(MDMP,方框1)中模擬各種因素的組合如何產生行動方案(COA)、可能的反擊行動、資源使用估計和預測結果(美國陸軍,1997年,2014年,2015年)。在幾天或幾周的時間里,MDMP過程導致了一套精煉的COAs,它對作戰環境做出了一定的假設,包括地形、天氣以及戰區資產的可用性和能力(即塑造支持主要作戰行動的活動)。

方框1. 軍事決策過程(MDMP)
MDMP是美國陸軍解決問題的理論方法,從接到任務開始,到生成作戰命令結束。MDMP被用作一種工具,幫助指揮人員審查眾多的友軍和敵軍的作戰行動。MDMP的7個步驟在規劃新任務、擴展行動和執行訓練演習所需的決策過程中灌輸徹底、清晰、合理的判斷、邏輯和專業知識(美陸軍,1997年,2015年)。
指揮官在接到任務后啟動了MDMP。在MDMP的第1步中,所有的工作人員和關鍵的任務參與者都被告知任務和待定的規劃要求,包括進行MDMP的可用時間量。確定進行任務分析所需的工具,并收集與任務和作戰區有關的文件。步驟2,執行任務分析,建立對任務的全面理解,包括關鍵的事實和假設,形成擬議的任務說明和任務分析簡報,為制定COA做準備。
MDMP的第3至第6步著重于制定COA以進行分析和比較。這些步驟包括:第3步,制定COA;第4步,COA分析(兵棋推演);第5步,COA比較;第6步,COA批準。COA是對一個已確定的問題的潛在解決方案。每個COA都要使用篩選標準來檢查其有效性,如在既定的時間框架、空間和資源限制內完成任務。COA的選擇過程通常涉及到兵棋推演,它試圖在考慮到友軍力量和敵人能力的情況下,將行動的順序流程可視化,同時考慮到行動區域內平民的影響和要求(美陸軍,2014)。戰術模擬(兵棋推演)方法的好處是突出了作戰行動的優勢和劣勢。這往往是一個反復的過程,對作戰行動方案進行評估,然后根據需要進行修改,直到出現一個或多個具有最高成功概率的作戰行動方案來完成任務目標。
在一個具體的行動方案得到指揮部的批準后,MDMP的最后一步是制作行動指令,這是一份給下屬和鄰近單位的指令,旨在協調所有參與任務的組織的活動。這一步驟涉及到所有受命令傳播影響的組織之間的積極合作,并建立起對局勢的共同理解。

盡管MDMP幫助指揮官了解作戰環境和考慮作戰方法,但這個過程有很多局限性,如時間密集、假設僵化、跨場景訓練的機會有限,以及將人工智能(AI)指導納入決策過程的機會很少。傳統上,一項任務的成功與指揮部執行MDMP的能力直接相關。然而,鑒于當今多域作戰(MDO)的復雜性增加(Feickert,2021年),有大量的任務指揮系統和流程,與行動相關的所有活動的整合和同步變得越來越困難,甚至到了人為無法完成的地步。由于MDMP的缺陷而導致的規劃專業知識的缺乏,可能會導致不同步和不協調的行動,從而最終導致士兵的生命損失。

MDMP中沒有具體描述戰斗空間的可視化能力,但它顯然在決策過程中發揮著重要作用。最近,集成了先進可視化能力的新系統和新技術已經被開發出來,它們可以提高態勢感知,從而增強決策過程。美陸軍的例子包括Nett Warrior(Gilmore,2015),它使下馬戰士能夠直觀地看到附近的友軍和敵軍,同時根據當地的地形協同規劃戰術任務。盡管這項技術將無線電和數字地圖擴展到了下馬戰士,但它缺乏一個底層的人工智能引擎來提供決策幫助。戰斗空間可視化和交互平臺(BVI,前身為增強現實沙盤,ARES)是陸軍技術的另一個例子,它能夠為任務規劃提供分布式協作,具有從任意視角和廣泛選擇設備的共同作戰畫面的二維和三維可視化能力(Su等人,2021)。BVI架構的制定是為了拉入外部計算服務,如分析管道、模型和人工智能引擎。美陸軍研究實驗室正在努力將這些類型的服務納入BVI,包括用于加強決策支持的人工智能。

目前,MDMP并沒有將人工智能指導納入整體任務規劃方法中。美陸軍的自動規劃框架(APF)(Bailey,2017)開始通過將自主技術插入MDMP工作流程來解決人工智能輔助決策問題。指揮人員可以通過APF的數字規劃呈現、規劃創建和規劃監控工具,在任務規劃和COA開發期間獲得背景援助。任務執行和估計能力通過監測任務的規劃和實際進展,為改進決策跟蹤和支持活動提供自動協助。盡管APF為MDMP引入了基本的自動化水平,但它缺乏Nett Warrior和BVI所提供的先進的可視化和用戶互動能力。

提供地面部隊自動化和用戶可視化能力的是美陸軍最知名的兵棋推演平臺--半自動化部隊(OneSAF),為計算機生成的地面部隊提供建模和模擬能力(PEO_STRI, 2022)。OneSAF提供了半自動和全自動的軍事實體(即士兵、坦克、直升機和綜合單位)的建模,在類似真實世界的戰斗空間中以不同的保真度來支持特定的應用和場景。OneSAF主要用于訓練,并與目前的任務指揮系統具有互操作性。它可以使用多分辨率的地形和詳細的實體相關數據庫來模擬廣泛的作戰環境。然而,OneSAF對地形和實體系統的高保真建模的優勢使得它的設置和運行成本很高。它受到老化系統的限制,而且眾所周知,士兵需要大量的培訓來學習如何操作模擬,使用起來很困難(Ballanco,2019)。OneSAF的復雜功能并不適合開發人工智能能力,以實現快速和敏捷的戰士-機器決策。

除了MDMP和上面提到的陸軍平臺外,最近將人工智能納入決策過程的工作包括一些方法(Goecks等人,2021a),在模擬人類決策過程方面取得了一些成功。一般來說,人工智能在決策變量有限的問題上取得了一些成功,如資源分配(Surdu等人,1999)、飛行模擬器(Drubin,2020)和更簡單的場景。正在進行的挑戰包括需要提高人工智能的能力,以解決有多個行為者、不完整和可能沖突的信息、不斷變化的單位行動和環境屬性的復雜決策,以及需要將這些決策的后果在許多空間和時間尺度和領域內可視化。

以下各節描述了對MDMP的潛在改進。"未來軍事決策過程所需的進步"一節概述了支持MDO決策的三個研究領域,并以圖表形式描述了這些研究領域與軍事理論決策方法之間的關系。"未來軍事決策過程所需的進步 "一節中的小節對每個研究領域進行了更深入的討論。"展望推進人-人工智能團隊決策的交互技術 "一節概述了未來的作戰人員-機器接口(WMI)的發展方向,重點是與決策有關的人-人工智能團隊的跨學科研究。

2 未來軍事決策過程所需的進步

軍事決策過程在支持MDO復雜決策方面的局限性,突出了在三個研究領域的改進需要。首先,有必要將人工智能產生的指導和輔助決策支持納入MDMP。這既包括進一步開發和整合人工智能到戰斗空間決策規劃,也包括進一步改善人工智能決策過程的可解釋性和透明度(Chen等人,2018)。第二,有必要在戰略層面以及戰術邊緣,盡可能地將決策分析與高性能計算(HPC)的力量結合起來。這將能夠利用HPC系統的力量來支持建模、分析和計算時間,同時整合和同步來自所有戰區領域的信息。最后,有必要利用先進的可視化技術,如混合現實技術,對決策空間進行更準確和互動表述。不是簡單地在一個固定的時間尺度上顯示地形的二維渲染,而是需要可視化不同領域的決策是如何相互作用的,并利用混合現實技術來提高理解的吞吐量,并產生平面顯示不可能的洞察力。

除了MDMP之外,其他更廣泛適用的支持戰斗性問題解決的軍事理論包括:DOTMLPF[例如,學說、組織、訓練、物資、領導、人員和設施;(美陸軍,2018年)],這是一個確定差距并為當前和未來作戰要求提出設計解決方案的框架;以及METT-TC[例如,任務、敵人、地形和天氣、部隊、可用時間和民事考慮;(美陸軍,2019年)],這是一個結構化框架,用于捕捉任務相關因素的狀態,以便在軍事行動期間進行共享評估。這些理論定義了MDO戰場的信息背景,構成了應用于上述三個研究領域的軍事決策的核心基礎。如圖1所示,在為人類和人工智能指揮開發復雜軍事決策空間的新表述時,研究進展和MDO相關理論相互借鑒、相互啟發、相互加強(美陸軍,2010)。

圖1. 新型作戰人員-機器交互(WMIs)和人工智能輔助決策所需的三個研究發展領域,以支持和加強基本的MDO理論[右下圖來源:Lebsack(2021)]。

2.1 人工智能導向的決策指導

需要新的人工智能支持的WMI,以利用人工智能決策方面正在取得的進展,并為復雜的適應性決策的人工智能學習作出貢獻。在簡化的戰斗空間中測試人工智能決策輔助工具是開發過程中重要的第一步,也是將人工智能納入更成熟的戰斗空間平臺(即BVI、OneSAF)的前奏。開發用于決策輔助實驗的人工智能測試平臺可以在MDO中產生能力越來越強的潛在COA建議。圖2顯示了陸軍開發的兩個人工智能測試平臺的例子。

圖2. 兩個ARL人工智能測試平臺的例子。左邊:ARL Battlespace(Hare等人,2021)( //github.com/USArmyResearchLab/ARL_Battlespace )。右邊:ARL的Simple Yeho測試平臺。圖片由C. Hung制作。

人工智能測試平臺能夠開發出匯集所有領域信息的AI,并計算出人類和AI智能體的風險和預期回報。圖2的左側顯示了ARL戰斗空間測試平臺(Hare等人,2021年),它是從頭開始開發復雜決策的新型人工智能的理想場所。它對戰斗空間的抽象強調了軍隊相關場景下的核心推理原則,在這種情況下,用蜜罐進行網絡欺騙。較小的網格空間使人工智能的學習和發展能夠集中在不確定性下的復雜推理,有多個友好和敵對的agent。圖2的右側顯示了ARL的Simple Yeho測試平臺,它提供了將人工智能開發與更多真實世界場景中的默契推理結合起來的能力,有多個基于地形的海拔高度、視線范圍、障礙物、樹葉(隱蔽)、道路和城市區域。紅色陰影和黑色線條表示任務的起點和終點、左右邊界以及人工智能建議的路線。這種額外的真實性使其能夠與MDO理論相結合,包括DOTMLPF和METT-TC,并使人工智能與自然的、機會主義的士兵行為共同發展。這兩個人工智能測試平臺都可以擴展為傳統和沉浸式混合現實WMI開發平臺。

使用漸進式和可擴展的人工智能測試平臺,可以調查現有人工智能的幾個基本限制,特別是對于具有不確定性的復雜和適應性決策,以及人類和AI智能體的協作和對抗。對多智能體的協作和對抗性決策進行建模可能特別復雜,因為其遞歸性質,其他智能體是模型的一部分(Goldman,1973;Grüning和Krueger,2021),需要對決策特征、個性化的價值、風險規避、記憶和注意力進行動態和不斷發展的估計。這些具有高度不確定性、復雜性和動態性的情況是人類擅長的領域,適當設計的交互界面和人工智能測試平臺的人機協作可以提供加速和更有效的決策。對于有效的團隊合作,新穎的WMI應該幫助作戰人員篩選復雜的信息,并幫助人工智能發現決策的隱含規則。下面,我們提供了關于人機協作如何有效的案例。

多域兵棋推演中需要的復雜決策是開發有效人工智能決策輔助工具的直接挑戰。最近人工智能在圍棋、國際象棋、Minecraft和大富翁等游戲中的成功(Silver等人,2017;Goecks等人,2021b;Haliem等人,2021)是基于對世界現有狀態有完整了解的游戲(即 "開放 "游戲),而兵棋推演平臺通常包括關于作戰環境的不完整(如星際爭霸)、不確定或欺騙性信息(Vinyals等人,2019)。不確定性也可能來自變化的物理學或其他環境規則,正如在《憤怒的小鳥》中所探索的那樣(Gamage等人,2021)。由于世界狀態、不同行動者的狀態以及所采取的行動不確定性,知識的缺乏使得人工智能agent難以計算未來行動的風險回報情況(Cassenti和Kaplan,2021)。不確定性也限制了人工智能估計其他行為者的風險回報概況的能力,而這是計算有效的博弈論策略所需要的。人工智能被可能的最優和近似最優選擇的廣度所淹沒(Lavine,2019),即由于信息有限而選擇錯誤的選項,這種情況并不罕見,因為人類在制定有效探索隱藏信息的策略時,采用啟發式方法進行有效的選擇和預測(Gardner,2019)。為了幫助發展人工智能的隱性知識和探索能力,新型的WMI需要有效地解釋和展示決策景觀,以使作戰人員能夠快速和自然地瀏覽可能的選擇,同時使人工智能能夠在不施加認知負擔的情況下從人類的決策中機會主義地學習(Lance等人,2020)。這種機會主義學習可以包括:例如,凝視跟蹤,以捕捉吸引人類興趣和意圖的視覺區域和未標記的目標。它們還可以包括建立在自然的士兵選擇行為基礎上的行動者批評方法,以改善人工智能對人類專家在不確定、不完全信息和欺騙的情況下如何優先考慮某些選擇的學習,這取決于任務相關的背景。

開發人工智能的WMI的另一個基本挑戰是如何有效地整合和顯示MDO中所有五個領域的信息,特別是空間和網絡,因為這些領域的信息具有不同的時空尺度(Gil等人,2018)。對于網絡,決策的規模和速度可能比人類處理和理解的能力更快,需要人類的輸入來指導半自動化的決策,以及實施進攻和防御性欺騙策略的人工智能。WMI需要能夠以這樣的方式顯示決策圖景,即可以解釋一小部分最優和接近最優的決策策略(例如,圖3中的決策樹)。這應該包括對關鍵agent在不確定情況下的未來狀態和風險回報情況的估計(Hare等人,2020),以使有效的博弈論決策能夠被共同開發和相互理解。

圖3. 在頂部,是BVI網絡戰術規劃器應用程序中友軍與敵軍戰爭場景的三維視圖。三維視圖提供了一個比二維視圖更真實的決策視角,例如,顯示友軍(藍色)和敵軍(紅色)機載預警系統(AEWs)和周圍地形的海拔。這使得快速審查可能的視線和相對于周圍地形的感應。下面是人工智能的導航決策樹,為人工智能計算的幾個關鍵選擇的風險/回報概況以及它們如何映射到地形上提供透明度。這種抽象的決策空間還可以整合非空間決策,例如網絡欺騙。虛線表示與友方AEW的通信聯系和對敵方AEW的可能干擾。圖片由C. Hung制作。

這些挑戰為有效的WMIs設計提供了參考。也就是說,我們需要有能力從不同的來源(包括從其他國家的決策輔助工具)提取信息,以及一個能夠承載整合這些信息的計算能力的架構,同時還要處理基礎的人工智能計算(用于學習和部署)。我們還需要共同開發一個界面和算法設計,以適時地利用人類和人工智能agent的優勢并減少其局限性。

2.2 高計算能力下的決策過程

在復雜的決策過程中,需要大量的計算能力來處理和記錄所有組件、實體和狀態空間。從積累的動態狀態空間的數據集中建立過去、現在和預測模型,需要利用HPC資源來產生分析性的見解,并在決策背景下創建有用的表述。

實施HPC分析工作流程的一種方法是使用持久性服務框架(PSF)。PSF是一個最近可用的分布式虛擬化解決方案,它可以通過一個基于網絡的前端實現對HPC服務的非傳統訪問,而不像傳統的HPC環境,計算節點在特定的時間段內以批處理模式分配給用戶。此外,PSF提供對數據、數據庫、容器化工具集和其他托管平臺的分布式連續訪問(Su等人,2021)。

在一個PSF方法的例子中,一個模擬引擎連接到PSF,用于記錄人類和人工智能做出的所有決定。這允許分析在任務規劃和COA開發過程中發生的決策行為,以及識別決策模式和戰略,以開發競爭性和現實的兵棋推演場景。一個戰斗空間可視化平臺可以托管在PSF上,并使用消息傳遞協議來更新所有連接的設備接口。來自模擬引擎的狀態信息可用于生成戰斗空間和參與作戰單位的圖形表示。

使用PSF方法并利用HPC資源,可以實施人工智能輔助決策機制,利用大數據攝取和分析,同時可供地理分布的用戶用于協作決策工作和 "永遠在線 "的個性化培訓和紅色團隊。連接到PSF托管服務器的各種混合現實顯示模式可以支持一系列作戰場景,從戰略層面的指揮和控制到作戰邊緣的更多移動戰術使用。

2.3 決策空間的真實呈現

用圖形表示各級行動的軍事決策戰略需要新的可視化方法,這些方法可以應用于以規則變化、認知狀態、不確定性以及個人偏見和啟發式方法為特征的動態環境(Dennison等人,2020;Hung等人,2020;Raglin等人,2020)。戰斗空間的視覺表現應該在技術上盡可能準確和逼真,但又保持在人類可以理解和解釋的認知水平(Kase等人,2020;Larkin等人,2020;Hung等人,2021)。融合了混合現實技術的先進可視化方法有可能更好地表現多領域戰爭的變化特征及其不斷變化的威脅和動態環境。隨著最近混合現實可視化設備的技術進步,成本降低,硬件的可靠性和實用性顯著提高,混合二維和三維可視化方法現在已經成為可能。

由多個二維顯示器組成的混合現實方法增強了更先進的三維可視化能力,可以為指揮人員提供理解復雜的兵棋推演狀態空間所需的洞察力(Su等人,2021)。當需要一個共享的戰斗空間表示時,可以通過在不同的可視化模式上實現多個協調的視圖來實現協作的戰略規劃模式,以根據分布式指揮人員的輸入進行互動更新。

BVI(Garneau等人,2018)平臺表示地理空間地形信息和地圖圖像,允許指揮人員建立和修改戰術任務規劃和COA。作為一個數據服務器,BVI將地形和作戰數據分發給支持多種可視化模式的客戶端應用程序,包括頭戴式顯示器設備、基于網絡的界面、移動安卓平板設備和混合現實設備(例如,HoloLens 2、Oculus Quest)。

例如,圖3(頂部)顯示了位于加利福尼亞州圣貝納迪諾縣歐文堡國家訓練中心的高分辨率地形上的友軍與敵軍的兵棋推演場景(Wikipedia, 2021)。與MDMP期間經常使用的傳統2D地圖顯示相比,戰斗空間的3D視圖可以從多個觀察角度提供更豐富的用戶體驗。三維視圖,在BVI的網絡戰術計劃器(WTP)中,將地形和人工特征的空間信息以及由MIL-STD 2525C符號描繪的單位位置可視化(美國防部,2014)。可以想象,地理空間視角,如BVI提供的視角,支持決策者對動態戰斗空間環境的理解。與可導航的人工智能增強的決策空間(圖3,底部)搭配,組合的視角可以使人們更好地理解視覺空間依賴性、影響和因果關系、估計的風險和價值、不確定性以及復雜決策的欺騙性。將這種以地理空間和決策為中心的視角與人工智能相結合,可以提供必要的廣度,以協調物理行動與網絡和其他非空間領域的行動,跨越多個時間尺度,并具有快速適應變化的任務目標的靈活性。

3 人-人工智能團隊決策的交互技術展望

人工智能和人-人工智能團隊的快速發展需要WMI同步發展。隨著新型人工智能對有價值的COA產生更好的預測,并能更好地處理復雜的決策,它們也必須利用人類的專業知識,學習如何處理具有高度不確定性、欺騙、隱性知識和博弈論的決策。相反,人工智能的推理必須既抽象又能與兵棋推演環境相聯系,以實現透明和信任,同時又不造成過度的認知負擔。基于三維混合現實的WMI可以利用和增強人類固有的三維認知和預測能力(Welchman等人,2005;Kamitani和Tong,2006;Kim等人,2014;Boyce等人,2019;Krokos等人,2019),如果設計得當,其交互將感覺自然,同時擴大顯示多個領域的信息的能力,同時使AI能夠適時地從用戶的決策中學習。

我們強調了三個關鍵的發展領域,即人工智能引導的決策指導,支持這種指導的計算基礎設施,以及決策透明度的混合現實表現的發展。這些領域的進步需要跨越許多不同學科的專業知識。新的人工智能發展需要融合神經科學、心理學和數學的思想,以克服復雜決策中長期存在的問題的瓶頸。這包括跨時間尺度的學習和變化環境下的災難性遺忘,以及更具體的兵棋推演問題,如具有不確定性、欺騙和博弈論的多Agent決策。計算基礎設施也需要發展,因為計算能力和數據框架對于在戰術邊緣產生人-人工智能團隊的共同操作圖來說都是必不可少的。為了有效地開發,應該通過一個共同的框架來抽象出專有的限制和軟件的依賴性,并為使用和故障排除提供清晰的文檔,以使學術界、政府和工業界更好地專注于解決人與人工智能的合作問題。這個通用框架應該包括有效的信息傳遞,同時提供靈活性和適應性,以滿足人工智能開發和人類用戶在訓練和實際使用環境中的需求。最后,交互技術的開發本身需要跨學科的協同專業技術。一個基礎性的問題是如何壓縮信息使之被用戶有效地理解,以及如何最好地利用用戶的互動來進行機會主義學習。人類的大腦并不處理所有的感官信息,而是對世界進行預測和假設,以便在信息不完整的環境下節約計算。一個有效的WMI應該同時預測潛在的決策結果以及個人用戶的期望和假設。此外,人工智能決策輔助工具必須估計用戶的默契,使其能夠提供最相關的信息和最有希望的選擇,這些信息來自整個作戰領域。

結論

信息作戰和指揮與控制(C2)是美國陸軍可以向盟友和伙伴提供的兩種能力。在未來的作戰環境中,不僅要為動能作戰做準備,而且要為混合作戰和以信息為重點的戰爭做準備。這需要在復雜和默契推理的人工智能能力方面取得進展,在能夠提供持續訓練、分布式混合決策和大數據分析系統方面取得進展,以及在人與人工智能協作決策和機會主義學習方面取得進展,以實現人工智能的持續進步和人與人工智能的共同適應。這些進展中的每一項都需要跨學科的計劃性努力,以克服復雜的技術挑戰,創造新的決策原則、理論和理論方法,包括持續開發綜合測試平臺和技術,以實現政府、學術界和工業界的合作和協同發展。

付費5元查看完整內容
北京阿比特科技有限公司