亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

網絡管理對于研究人員和行業來說越來越難以應對。網絡的規模和復雜性正在迅速增長。它們現在必須滿足比以往任何時候都更大的應用集和更大的用戶群,同時還要遵守越來越嚴格的性能要求。面對運行網絡的眾多挑戰,運營商必須超越手動調優算法的時代,轉而采用更自動化的方法——即 AI 驅動的網絡。在尋找更多功能的網絡工具時,許多研究人員已將機器學習(ML)視為網絡系統中的數據驅動、自適應機制的工具。然而,一些實際問題困擾著這樣的發展。我們能否在數據包路徑中運行 ML?運營商必須手動構建每個新的 ML 模型嗎?我們如何納入新的數據?在這篇論文中,我們展示了構建 AI 驅動網絡所需的關鍵組件的構建。我們首先描述了 Taurus 的設計,這是一個平臺,使數據平面 ML 能夠以每個數據包的粒度,在線速率上運行在網絡的數據包路徑中。此外,我們證明了 Taurus 的硬件添加的開銷最小——在我們的原型中,芯片面積不到 4%,功耗不到 3%。接下來,我們討論了 Homunculus,這是一個針對數據平面 ML 平臺(如 Taurus)的編譯器堆棧,它允許自動生成符合資源和性能要求的 ML 模型,這些模型在我們的測試中比手動調整的模型性能提高了高達 16.9%。最后,我們展示了如何組裝這些工具以在網絡中啟用自適應的 ML 循環。網絡中的原始數據的在線標注可以為 Homunculus 提供數據,使網絡能夠從其自身的數據包數據中構建新的 ML 模型。這些模型可以在 Taurus 中部署學習到的策略,為即將出現的 AI 驅動的網絡奠定基礎。

付費5元查看完整內容

相關內容

 (StanfordUniversity)位于加利福尼亞州,臨近舊金山,占地35平方公里,是美國面積第二大的大學。它被公認為世界上最杰出的大學之一,相比美國東部的常春藤盟校,特別是哈佛大學、耶魯大學,斯坦福大學雖然歷史較短,但無論是學術水準還是其他方面都能與常春藤名校相抗衡。斯坦福大學企業管理研究所和法學院在美國是數一數二的,美國最高法院的9個大法官,有6個是從斯坦福大學的法學院畢業的。

近年來,機器人領域發展迅速,機器人被用于越來越多的應用中,從制造業到醫療健康再到家務勞動。機器人技術的關鍵挑戰之一是使機器人能夠在非結構化和動態環境中執行復雜的操作任務。雖然機器人學習和控制已經取得了重大進展,但許多現有方法受到限制,因為它們依賴于預定義的運動基元或通用模型,而這些模型沒有考慮到個人用戶、其他合作智能體或交互對象的特定特征。為了在這些不同的環境中有效地工作,機器人需要能夠適應不同的任務和環境,并與不同類型的智能體進行交互,如人類和其他機器人。本論文研究學習方法,使機器人能夠適應他們的行為,以實現智能機器人行為。

在本文的第一部分中,我們專注于使機器人更好地適應人類。我們首先探索如何利用不同的數據源為人類用戶實現個性化。研究了人類如何喜歡用低維控制器(如操縱桿)遙控輔助機器人手臂。本文提出一種算法,可以有效地開發輔助機器人的個性化控制。這里的數據是通過最初演示機器人的行為,然后詢問用戶以從操縱桿收集他們相應的首選遙操作控制輸入來獲得的。探索了利用較弱的信號來推斷智能體的信息,如物理修正。實驗結果表明,人工修正是相互關聯的,共同推理這些修正可以提高精度。最后,研究了機器人如何通過推理和利用團隊結構更有效地與人類團隊合作和影響人類團隊,而不是只適應單個人類用戶。將該框架應用于兩種類型的群體動力學,即領導-跟隨和捕食者-被捕食者,并證明機器人可以首先開發一種群體表示,并利用這種表示成功地影響一個群體以實現各種目標。

在本文的第二部分,我們將研究范圍從人類用戶擴展到機器人智能體。本文解決了分散的機器人團隊如何通過只觀察其他智能體的行動來相互適應的問題。本文發現了團隊中存在無限推理循環的問題,并通過為機器人智能體分配不同的角色,如"發言人"和"聽眾",提出了解決方案。這種方法使我們能夠將觀察到的行動視為一個溝通渠道,從而實現分散團隊內的有效協作。在本文的第三部分,我們探討了如何通過開發定制的工具來適應不同的任務。強調了工具在確定機器人如何與物體交互方面的關鍵作用,使它們在為特定任務定制機器人方面變得重要。為解決這個問題,本文提出一個端到端的框架,通過利用可微物理模擬器來自動學習富接觸操作任務的工具形態學。最后,對全文進行了總結,并對未來的研究方向進行了展望。

付費5元查看完整內容

**近年來,深度學習在許多領域得到了快速發展。這些成功啟發了在安全領域使用深度學習。**然而,當深度學習遇到安全性時,至少有兩個主要挑戰。首先,攻擊數據的可用性是個問題。在有限的攻擊數據下構建一個良好的模型是具有挑戰性的。其次,深度學習系統本身容易受到各種攻擊,這在使用深度學習提高計算機系統安全性時帶來了新的問題。為了解決第一個挑戰,本文展示了如何使用深度學習技術來提高有限或沒有攻擊數據的計算機系統的安全性。為了解決第二個挑戰,我們展示了如何保護深度學習系統的安全性和隱私性。 **具體而言,在本文的第一部分中,我們考慮了一個沒有攻擊數據的實際場景,即異常檢測。**本文提出了一種新的方法——重構誤差分布(RED),用于實時異常檢測。本文的關鍵見解是,計算機系統的正常行為可以通過時間深度學習模型捕獲。偏離正常行為表示異常。實驗表明,所提方法可以在電網控制器系統和通用云計算服務器中實時、高精度地檢測攻擊。論文的第二部分主要研究深度學習的安全與隱私保護問題。在機器學習即服務(MLaaS)系統中,可以通過一種精心設計的輸入,即敏感樣本,動態檢查云中的深度學習模型的完整性。在另一個場景中,例如邊緣-云系統中的分布式學習,我們證明了云中的攻擊者可以在攻擊者能力不斷減弱的情況下高保真地重構邊緣設備的輸入數據。本文還提出了一種新的防御方法來應對這些攻擊。 綜上所述,我們希望本文的工作能為利用深度學習提高安全性提供啟發,并有助于提高深度學習系統的安全性。

付費5元查看完整內容

**隨著大型模型的發展以及數據的爆炸性增長和可用性,深度學習在眾多現實應用中取得了巨大而廣泛的突破。**然而,深度學習模型通常具有過高的計算和內存成本,不適合在移動設備或邊緣設備上進行實際部署。此外,深度學習模型面臨著學習和快速適應的挑戰,從只有幾個例子來解決新的任務。因此,本文提出了學習計算效率高的模型架構的技術和提高少樣本學習能力的方法。**我們從子空間分析方法及其在特征選擇問題中的應用開始。然后將這些方法擴展到深度神經網絡結構學習(deep neural network structural learning, SL)中,目的是減少冗余參數,以獲得能夠保持甚至提高精度的最優降維模型。**還介紹了基于混合剪枝-再生長技術的更高效的SL方法和可以跨更多維度降低模型的更通用的SL方法。除了靜態模型設計之外,本文還提出了動態神經網絡方法,可以在推理過程中根據不同的輸入動態調整模型權重和結構,以控制計算效率并提高表示能力。除了模型效率外,還提出了訓練模型的技術,可以從幾個例子中快速泛化。本文提出一種少樣本架構自適應方法,通過元學習一個任務感知架構控制器,為不同的少樣本任務定制特定于任務的模型結構。與傳統的NAS方法需要對每個新任務進行單獨的搜索成本不同,所提出方法在一次性元訓練成本后,在幾分鐘內從GPU數據集中直接生成特定于任務的模型結構。最后,提出了一種基于語言輔助表示的掩碼圖像預訓練的跨模態自監督學習框架。由此產生的模型產生了高質量的可遷移表示,提高了許多計算機視覺任務的準確性,并對對抗性/分布外樣本表現出強大的魯棒性。所產生的模型適用于結構學習以獲得更大的計算效率,也適用于低資源任務適應以獲得更好的數據效率。

//dataspace.princeton.edu/handle/88435/dsp01p8418r442

付費5元查看完整內容

自主決策系統正變得越來越普遍,我們越來越依賴這些系統為我們執行行動。以前,我們主要使用算法來完成簡單的預測任務。目前,我們遇到它們在順序決策場景中導航,在這些場景中,它們被精心設計來選擇導致理想狀態下最大預期性能的行動序列。隨著數據的廣泛可用性、計算能力的提高和學習算法的進步,機器學習正在成為傳統專家精心設計的解決方案的可行替代方案。機器能夠從數據中學習,并建立世界的表示來指導它們的行動。近年來,人工神經網絡已成為非常流行的函數逼近方法。從自動語言翻譯到自動駕駛汽車,計算機智能的許多驚人成就都是基于神經網絡的。特別是,它們與強化學習(RL)的結合使機器能夠學習復雜順序問題的解決方案。 與傳統軟件不同的是,人類幾乎不可能理解神經網絡實現的邏輯,這使得它們成為不透明的模型,并可能阻止它們在安全或關鍵任務應用中使用。在很多情況下,僅僅運行模擬還不足以讓人們對它們建立信心,因為一個故障就可能導致災難性的后果。本文的工作解決了在具有神經網絡組件的機器學習系統中建立信任的挑戰。我們首先介紹神經網絡驗證,這是一種驗證網絡是否具有所需屬性的過程。我們介紹了神經網絡驗證的最新進展,包括我們自己的貢獻,并表明,盡管取得了進展,驗證仍然是一個非常具有挑戰性的問題,目前的算法難以擴展到大型網絡。然后,我們提出了一種可選的方法,該方法將驗證需求合并到模型的設計中。更簡單的模型更容易驗證,我們證明了一些問題可以用二值化神經網絡(BNNs)解決,明顯更簡單的模型,參數可以用1位表示,具有與全精度模型相似的性能。我們提出并演示了一種簡單的混合整數規劃方法來驗證它們,并表明該方法具有良好的可擴展性。最后,我們提出了一種深度強化學習算法,類似于使用BNN作為函數逼近器的深度Q學習算法。我們再次表明,這種方法能夠犧牲少量性能,并獲得可擴展的驗證。

付費5元查看完整內容

構建高性能的端到端機器學習系統主要包括開發機器學習模型和為感興趣的應用程序收集高質量的訓練數據(假設一個人可以訪問正確的硬件)。盡管在過去幾年里,隨著開源平臺的興起,機器學習模型變得越來越商品化,但管理高質量的標記訓練數據集對許多現實世界的應用來說仍然是昂貴的或不可行的。因此,我們在本文中主要關注數據,特別是如何** (1)通過注入領域特定的先驗知識或利用已為不同任務創建的現有軟件系統和數據集,使用數據高效的機器學習方法減少對標記數據的依賴,(2)有效管理訓練數據并構建相關工具,以最大化數據的效用,(3)通過將數據的結構與嵌入空間的幾何形狀進行匹配,提高嵌入所實現的數據表示的質量**。

我們首先描述了我們在構建數據高效的機器學習方法方面的工作,通過物理驅動的一致性訓練增強、尺度等變展開神經網絡和使用未經訓練的神經網絡弱監督來加速磁共振成像(MRI)重建。然后,我們描述了我們在構建用于自然語言理解的數據高效機器學習方法方面的工作。特別地,我們討論了一種監督對比學習方法用于預訓練的語言模型微調和一種大規模數據增強方法來檢索領域數據。與有效管理訓練數據相關,我們討論了我們提出的用于類表單文檔gather的信息提取系統,并重點討論了訓練數據管理和相關工具中經常被忽略的方面。我們強調了有效管理訓練數據的重要性,表明它至少與機器學習模型在真實數據集的下游提取性能方面的進展一樣關鍵。最后,為了改進各種類型數據的嵌入表示,我們研究了具有異質曲率的空間。我們展示了混合曲率表示為圖和詞嵌入提供了更高質量的表示。此外,我們還研究了如何將Wikidata知識圖譜中的實體嵌入到一個抽象的文本摘要模型中,以增強其真實性。

付費5元查看完整內容

幾十年來,不斷增長的計算能力一直是許多技術革命背后的推動力,包括最近在人工智能方面的進步。然而,由于集成電路進程規模的放緩,對于系統架構師來說,要繼續滿足當今應用不斷增長的計算需求,他們現在必須采用具有專門加速器的異構系統。

然而,建構這些加速器系統是極其昂貴和耗時的。首先,硬件的開發周期是出了名的長,這使得它很難跟上算法的快速發展。同時,現有的編譯器無法導航由新型加速器架構暴露的棘手映射空間。最后算法的設計通常沒有將硬件效率作為關鍵指標,因此,在設計高效硬件方面提出了額外的挑戰。

本文解決了聯合設計和優化算法、調度和加速硬件設計的重大挑戰。我們的目標是通過三管齊下的方法來推進最先進的技術: 開發從高層抽象自動生成加速器系統的方法和工具,縮短硬件開發周期; 適應機器學習和其他優化技術,以改進加速器的設計和編譯流程; 以及協同設計算法和加速器,以開發更多的優化機會。

本文的目標應用領域是深度學習,它在計算機視覺、神經語言處理等廣泛的任務中取得了前所未有的成功。隨著智能設備的普及,可以預見,深度學習將成為我們日常生活中的主要計算需求。因此,本文旨在通過硬件加速進行端到端系統優化,釋放前沿深度學習算法的普遍采用,改變生活的各個方面。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-202.html

付費5元查看完整內容
北京阿比特科技有限公司