亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

機器學習(ML)和人工智能(AI)在廣泛的領域實現了非凡的、超乎人類的性能:包括計算機視覺、自然語言處理、蛋白質折疊等等。直到最近,大多數的進步都是采取模型中心化的方法,主要關注于改善神經網絡架構(如卷積神經網絡、殘差網絡、變換器等)和訓練這些模型的優化程序(如批量標準化、dropout、神經結構搜索等)。相對來說,我們對用來訓練這些模型的數據的關注度較低,盡管眾所周知,機器學習對高質量數據的依賴可以用"垃圾進,垃圾出"這句話來精辟地概括。隨著對越來越大且更復雜的模型(如Nvidia和Microsoft的5300億參數的MT-NLG)的回報逐漸減小,研究人員開始認識到采取數據中心化方法的重要性,并開發了原理性的方法來研究這些模型的燃料:數據本身。數據中心視角不僅可以提高任務性能,還可以讓我們考慮到一些社會關鍵考慮因素,如數據隱私。在本論文中,我們將對機器學習數據管道中的幾個點進行深入分析:在模型訓練前、訓練中和訓練后。在模型訓練前,我們將探索數據選擇的問題:應該用哪些數據來訓練模型,我們應該期望我們的模型在何種類型的數據上工作?當我們進入模型訓練時,我們將把注意力轉向由我們的ML系統與其部署環境的交互可能導致的兩個問題。第一個問題是數據隱私:我們如何防止我們的模型泄露有關其訓練數據的敏感信息?第二個問題涉及一些被模型化的群體的動態性。特別是當我們的模型被用于做出具有社會影響力的決策(如自動貸款批準或推薦系統)時,模型本身可能會影響數據的分布,導致性能降低。最后,盡管我們在模型訓練前和訓練中遵循最佳實踐,但可能在訓練后我們希望對模型進行后處理,以移除某些訓練后的數據的影響。如何以計算效率高的方式實現這一點呢?本論文將涵蓋每一個先前問題的新穎解決方案,強調的是每一個提議的算法都有可證明的保證。通過將數學嚴謹性應用于具有挑戰性的現實問題,我們可以開發出既有效又可信賴的算法。

在過去的十年中,機器學習(ML)和人工智能(AI)研究已經取得了飛速的進步。到目前為止,大部分的研究都采用了模型中心化的方法:也就是說,數據集被視為已給定,研究人員不斷迭代應用于這些數據集以提取有用信息的模型。這種模式下有一套標準的假設。例如,數據通常假設是從固定概率分布中獨立同分布(i.i.d.)抽取的,此外還假設數據是固定的和給定的。通常還假設測試數據與訓練數據來自同一分布,即不存在分布漂移。而且,通常唯一衡量成功的指標是模型的性能(如預測任務的準確率)。盡管這種范式已經帶來了大量令人印象深刻的進步,但往往與數據科學家在實踐中面臨的情況相去甚遠。例如,收集和策劃一份高質量的訓練集通常比使用更復雜的模型架構帶來更大的收益。關于獨立同分布的假設,在現實中,數據分布可能由于各種因素而不斷變化,包括時間變化(如消費者偏好的季節性影響)和空間變化(如不同地理位置的醫院患者分布不同)。在某些情況下,我們的模型本身可能導致數據分布的變化,特別是如果該模型被用于做出具有社會影響力的決策。最后,最近的立法,如加利福尼亞消費者隱私法案和歐盟的通用數據保護法規,要求在設計AI模型過程中也要考慮消費者隱私。也就是說,隱私以及模型性能,都是必須考慮的關鍵指標。 所有這些重要的實踐問題都有一個共同的主題:它們更多地關聯到數據本身,而不是訓練在其上的模型。在這篇論文中,我們遵循這種數據中心的觀點,并為數據通過典型的ML管道可能出現的問題提出新穎的算法。我們特別強調可以為每個提出的算法提供的可證明的保證。

付費5元查看完整內容

相關內容

隨著實用量子計算機的可能出現,人們開始研究其潛在的應用,特別是在人工智能的背景下。受到經典機器學習中深度神經網絡成功的激勵,人們普遍希望這種成功可以被轉化到所謂的量子變分算法或由經典機器學習啟發的量子神經網絡中。當前的深度學習算法主要是基于一系列啟示法開發的,這些啟示法通常缺乏嚴格的證明來證明其有效性。由于這些算法的不透明性,提供關于它們性能的明確保證仍然是一個巨大的挑戰。盡管這種復雜性延伸到深度學習的量子模擬,但越來越多的文獻已經識別出一套理論工具,以更好地了解為什么經典機器學習模型在現實任務中如此有效。我們使用這些工具來研究這些量子模擬,以部分解答在何時以及在什么條件下我們可以期望成功的問題。我們主要使用統計學習理論、量子力學、隨機矩陣理論和群論的工具來研究量子機器學習算法的可學習性。我們的發現表明,我們必須仔細考慮量子機器學習算法的設計,以達到合理的成功水平。事實上,我們的一些結果顯示,在量子機器學習中,隨機或無結構的方法容易遇到各種挑戰,包括與訓練性相關的問題或與最佳經典算法相比沒有顯著的優勢的問題。在整篇論文中,我們提供了幾個如何可能地向這些算法中引入結構來部分地解決這些問題的例子。此外,我們還探討了量子計算如何通知和加強經典機器學習的反向問題。我們研究了將酉矩陣納入經典神經網絡,這導致了這些酉神經網絡的更高效的設計。

付費5元查看完整內容

強化學習(RL)為基于學習的控制提供了一個形式化的框架。通過嘗試學習能優化用戶指定的獎勵函數的行為策略,RL方法已經能夠獲得新穎的決策策略,即使在動態非常復雜,所有可能結果的空間巨大(例如,機器人操作、芯片地板規劃)的情況下,這些策略也可以勝過最好的人類。但與標準機器學習(ML)在現實世界的應用相比,RL的適用性有限。為什么呢?RL的核心問題在于,它嚴重依賴于執行大量試錯的主動數據收集來學習策略。不幸的是,在現實世界中,主動數據收集通常非常昂貴(例如,進行藥物設計的實驗室實驗)和/或危險(例如,機器人在人們周圍操作),且準確的模擬器很難構建。總的來說,這意味著,盡管RL具有廣泛解鎖現實世界決策問題中的ML的潛力,但我們無法通過當前的RL技術實現這一潛力。

為了實現RL的這種潛力,在這篇論文中,我們開發了一個旨在使用靜態數據集經驗學習策略的替代范式。這種“數據集驅動”的范式擴大了RL在存在歷史數據集或可以通過特定領域策略收集的決策問題中的適用性。它還將現代有監督和無監督ML方法的可擴展性和可靠性帶入了RL。話雖如此,實例化這一范式是具有挑戰性的,因為它需要將從數據集中的靜態學習與RL的傳統主動性相協調,這導致了分布偏移、泛化和優化的挑戰。在理論上和實證上理解這些挑戰后,我們為應對這些挑戰開發了算法思想,并討論了幾種擴展,將這些思想轉化為實際方法,可以在大型和多樣化的數據集上訓練現代高容量神經網絡函數逼近器。最后,我們展示了這些技術如何使我們能夠為真實的機器人和視頻游戲預訓練通用策略,并實現快速高效的硬件加速器設計。

付費5元查看完整內容

受寬神經網絡(NNs)理論的啟發,核學習和特征學習近期作為兩個范式浮現出來,通過它們我們可以實際理解大規模深度學習系統的復雜行為。在文獻中,它們通常被描述為二分法的兩個對立面,各自具有優點和缺點:核學習與經過深入研究的機器學習技術(如核方法和高斯過程)建立聯系,而特征學習則承諾捕捉更多豐富而尚未解釋的,獨特于神經網絡的屬性。在這篇論文中,我們介紹了三項研究,研究結合了來自兩個角度的見解來研究神經網絡的性質,不僅強調它們的差異,而且強調共同點。我們首先回顧了有關深度學習理論的相關文獻,重點是寬神經網絡的研究。這為核學習和特征學習的討論提供了背景,基于此,我們繼續描述我們的貢獻。首先,我們研究了寬神經網絡集合與貝葉斯推斷之間的關系,利用核學習與高斯過程之間的聯系,并提出了一種修改,以解釋神經網絡函數在初始化時缺失的方差,從而使我們訓練過的深度集合具有貝葉斯解釋。接下來,我們結合核學習和特征學習來展示特征核的適用性,即通過最終層神經網絡特征的內積引導的核,作為知識蒸餾的目標,其中人們尋求使用強大的教師模型來提高弱學生模型的性能。最后,我們探討自監督學習中折疊特征和白化特征之間的差距,強調特征核中特征值的衰減率作為一項關鍵量,它彌合了這一差距,并影響下游泛化性能,特別是在標記數據稀缺的情況下。我們以討論我們的貢獻,包括局限性和未來展望,作為結論。

付費5元查看完整內容

近期機器學習(ML)的成功,也被稱為“人工智能(AI)的第三次浪潮”,建立在來自優化和統計領域的計算方法之上,以及大規模訓練數據和計算能力的可用性,以及部分模仿人類認知功能(如卷積網絡)。然而,在實際應用中,當前的機器學習技術可能非常低效,容易受到不完美數據的影響,例如,當數據嘈雜、無標簽、不平衡或包含冗余、偏差、協變量漂移等時。另一方面,人類學習在規劃和選擇不同學習階段的訓練內容方面更具策略性和適應性。與在所有階段重復在相同數據的隨機小批量上進行訓練的機器學習技術相比,人類學習在應對這些實際挑戰時表現出更高的效率和魯棒性。因此,如何為機器學習制定一個戰略性的“課程”,成為縮小人類智能與機器智能差距的重要挑戰。

課程學習最早被引入作為一種基于人類學習策略的數據選擇方法,應用于不同的學習階段,例如,先選擇較簡單的樣本,然后逐漸添加更多更難的樣本。然而,人類用于設計課程的訓練材料的屬性不僅限于難度,還可以包括多樣性、一致性、代表性、激勵性、對未來訓練的影響或效用等。在機器學習中,開發能夠有效且準確度量這些屬性及其對最終/后期學習目標貢獻的評分函數具有挑戰性。此外,給定評分函數,課程策略如何規劃多個訓練階段并調整適應每個階段的選擇標準仍然是一個懸而未決的挑戰。

課程學習的另一個主要挑戰是缺乏原則性和理論驅動的公式來實現模型參數和課程的聯合優化。沒有這樣的公式,很難將選擇標準和評分函數與課程學習的潛在目標聯系起來,例如,訓練進度、泛化性能等。因此,很難解釋何時以及為什么課程可以改善機器學習。此外,在開發課程學習算法時,需要為不同的機器學習應用特別設計不同學習階段的選擇標準的計劃和調度,例如,半監督學習、集成學習等。為了實現實際有效的算法,研究是否以及如何將針對特定應用開發的現有技術與課程結合起來也很重要。

本論文旨在解決上述關鍵挑戰。它包括四個部分。在第一部分,我們引入了幾種新穎的課程學習公式。例如,我們可以將人類學習策略轉化為離散-連續優化,并在訓練過程中聯合優化模型和課程,如第2章和第5章所示。我們還可以從一個新穎的課程學習目標推導出權重或分數的解析形式,如第3章和第4章所示。此外,我們在第6章討論了未來研究的幾種潛在公式。

在第二部分,我們深入研究在課程學習中起重要作用的評分函數設計。例如,選定數據的多樣性在減少冗余和鼓勵早期探索方面起著至關重要的作用。除多樣性外,我們在第8章主要關注一類新的評分函數,它基于樣本在整個歷史過程中的訓練動態,而不是在特定步驟中的瞬時反饋。與廣泛應用的瞬時評分相比,它們顯著降低了評分評估所需的額外計算量,并且由于其可區分的動態模式,它們在分配最具信息量的訓練樣本方面更加準確

在第三部分,我們基于開發的公式和評分函數構建實用的課程學習算法。這些算法涵蓋了幾個重要的機器學習問題,包括監督學習、半監督學習、噪聲標簽學習、集成學習等。在針對每個問題的算法中,我們研究并比較不同的規劃或調度策略,以確定選擇標準如何在學習階段之間變化。我們通過詳細的實證分析和比較證明了所提出的調度策略的有效性。此外,為了在每個問題上實現最先進的性能,我們研究課程與每個問題的現有技術之間的相互作用,然后在算法設計中結合它們的優勢。

在第四部分,針對每個應用問題的基準數據集,我們評估我們的方法,并與各種強大的基線進行廣泛的實驗比較。在所有應用中,我們所設計的課程始終提高了訓練效率和最終測試準確性。值得注意的是,課程在具有不完美數據的更具挑戰性的應用中表現出更顯著的優勢,如半監督學習和噪聲標簽學習。

在第18章中,我們總結了本論文的主要貢獻。除了為課程學習提出的公式、評分函數和算法外,我們還強調了我們在一系列工作中彌合人類啟發式、理論公式和實證算法之間差距以及結合它們優勢的努力。此外,我們列出了未來工作中可以探索的幾個潛在研究方向,這些方向可以顯著擴展課程學習的當前方案和應用領域,并提高我們對機器學習訓練動態的深入理解以及其與人類教育和認知的聯系。

總之,本論文旨在通過提出新穎的課程學習公式、設計評分函數并構建實用的課程學習算法來解決課程學習領域的關鍵挑戰。我們關注了多種機器學習問題,并在各種應用場景中驗證了我們方法的有效性。通過這些努力,我們希望能在縮小人類智能與機器智能差距方面取得一定的進展,并為未來研究提供新的方向

付費5元查看完整內容

深度學習的發展導致了在各種應用領域的各種任務上的顯著性能提升,這些應用領域包括計算機視覺、自然語言處理、強化學習、生成模型,以及最近從圖結構數據中進行的關系學習。這一成功的主要原因是計算能力的提高,這允許深度和高度參數化的神經網絡架構,這些架構可以從原始數據中學習復雜的特征轉換。然而,深度神經網絡的高表示能力往往是以高模型復雜度為代價的,這指的是高參數化,以及與深度學習相關的內存和計算負擔。**在本文中,我依靠參數有效的神經算子,對數據的適當建模假設和網絡結構的歸納偏差,在幾個應用領域提出更簡單的神經網絡模型。**對于我工作的每個應用領域,我使用這些效率原則的組合來設計新穎的方法。首先,在醫學圖像處理的背景下,我觀察到空間對齊的神經圖像比自然圖像表現出更少的自由度,這證明使用低容量卷積算子是合理的。我通過應用參數高效的卷積變體來實現這一點。我展示了早期阿爾茨海默病預測的最先進結果,同時使用的參數減少了多達125倍,乘累加操作減少了17倍以上。對于設計用于識別受試者亞型的神經圖像的無監督方法也得出了類似的結論。其次,我著手緩解從零開始訓練參數高效的深度模型的挑戰。這可以減少在資源受限的"邊緣"設備上訓練深度模型的不可行性。所提方法基于一個簡化的網絡結構假設,即參數無關性,允許在組合多臂匪徒的背景下建模問題。該方法可以動態地,即在訓練期間,在遵循預定義的內存使用預算的同時,在超參數化模型中識別高性能緊湊的子網絡。這是通過將顯著性指標與每個神經元相關聯來實現的,然后用于驅動參數激活,類似于門控機制,同時學習參數。因此,深度神經網絡訓練和推理過程中的計算和內存負擔都顯著減少。最后,提出一種深度概率模型,用于學習動態圖中的無監督節點和社區嵌入。基于網絡固有的社團結構,引入了關于邊形成機制的結構歸納偏差。此外,我還假設節點和社區都是平滑的時間演化,其靈感來自于數據中缺乏破壞性事件。本文提出一種該方法的參數高效實現,在各種動態預測任務上優于最先進的圖卷積網絡。

付費5元查看完整內容

機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。

深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958

付費5元查看完整內容

關系數據在現代計算中無處不在,并驅動跨多個領域的幾個關鍵應用程序,如信息檢索、問題回答、推薦系統和藥物發現。因此,人工智能(AI)的一個主要研究問題是建立以有效和可靠的方式利用關系數據的模型,同時注入相關的歸納偏差和對輸入噪聲的魯棒性。近年來,圖神經網絡(GNNs)和淺節點嵌入模型等神經模型在關系結構的學習表示方面取得了重大突破。然而,這些系統的能力和局限性還沒有被完全理解,在賦予這些模型可靠性保證、豐富它們的關系歸納偏差以及將它們應用于更具挑戰性的問題設置方面仍存在一些挑戰。在這篇論文中,我們研究了關系數據的學習和推理。更具體地說,我們從理論上和實證上分析了現有模型的性質和局限性,并提出了改進關系歸納偏差和表征能力的新方法。

//ora.ox.ac.uk/objects/uuid:da7744ad-effd-4fc9-b7ab-a00b03a86a53

1. 引言以神經網絡為動力的深度學習系統已經在各種具有挑戰性的任務上取得了突破性的成果,如計算機視覺[96]和機器翻譯[160]。深度學習模型在最少人為干預的情況下從數據中學習模式,并在其訓練集之外進行經驗歸納。因此,在多個領域應用深度學習系統的興趣越來越大。沿著這些思路,近年來一個突出的研究前沿是將深度學習應用到關系數據中。從根本上說,關系數據將信息表示為一組通過語義意義關系連接的實體。例如,可以將在線市場上的產品、賣家和用戶表示為實體,并將交易描述為跨上述三種實體類型的三元關系,例如,Alice從Charlie那里購買了一個球。關系數據的一個流行的特例是圖結構,其中關系最多是二進制的。在這種情況下,關系可以被視為定義(標記)圖實體之間的邊,這些實體本身構成了圖節點。關系表示非常通用,并且出現在各種應用程序領域中。例如,社交網絡中的用戶根據他們的互動(友誼、關注、點贊)成對連接,可以被視為一個圖結構。這同樣適用于引文網絡中的論文[153,154]及其引文連接,以及分子,其中原子可以被視為實體,它們的鍵可以表示為二進制關系。事實上,關系數據封裝了幾個傳統數據域。例如,圖像是網格形狀的圖形的一種特殊情況,其中相鄰的像素由一條邊連接,序列是一系列實體,這些實體的邊連接著連續的實體。鑒于關系數據的普遍存在和圖結構的普遍存在,構建強大的關系機器學習模型是一個重要的研究問題,其分支涉及多個任務,如信息檢索[182]、問題回答[20]、推薦系統[173]和藥物發現[60]。廣義上講,機器學習任務可以分為三大類:

1. 節點級的任務。給定一個帶有未標記或部分標記節點的輸入圖,節點級任務旨在預測節點屬性,例如,對于沒有預標記屬性的節點,預測一個類或一個值。例如,在引用網絡中,論文(輸入圖中的實體)具有內容特征,并且通過二元引用關系與其他論文相連,預測論文的主題就是一個節點分類任務。

2. Graph-level任務。給定一個輸入圖,圖級任務尋求基于節點特征、邊和整體輸入圖結構預測全局圖屬性,如類或值。這些任務在分子圖中非常突出,包括幾個圖性質預測問題,如毒性分類和零點振動能(ZPVE)回歸[140]。

3.Edge-level任務。給定一個輸入圖,邊級任務旨在預測現有邊的未知邊屬性,或者更常見的是,基于現有邊和節點特征預測圖中缺失的邊。對于后一種情況,當輸入圖是單關系圖時,該問題稱為鏈接預測,如引用網絡,當輸入圖是多關系圖時,該問題稱為知識圖譜補全(KGC)。在本文中,我們研究了關系數據(圖結構和更一般的關系數據)的學習和推理,并提出了幾個模型和框架,以理論分析和結果支持,以提高該領域模型的關系歸納偏差和表示能力。更具體地說,我們系統地研究現有模型,證明它們的理論屬性和結果,并提出擴展和新模型,以(i)可證明地捕獲和/或強加豐富的關系歸納偏差,(ii)更好地理解現有模型的表現力和表征局限性,以及(iii)將現有模型和方法擴展到與推理和推理相關的新穎的、具有挑戰性的應用領域。

付費5元查看完整內容
北京阿比特科技有限公司