亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

斯坦福大學的最新課程CS224W——圖機器學習,主講人是斯坦福大牛Jure Leskovec,他是斯坦福大學計算機學院的副教授,也是圖表示學習方法 node2vec 和 GraphSAGE 作者之一。最新講述了關于圖神經網絡模型總結,內容包括:

  • 深度學習基礎 Basics of deep learning
  • 圖深度學習 Deep learning for graphs
  • 圖卷積網絡 Graph Convolutional Networks and GraphSAGE

付費5元查看完整內容

相關內容

圖機器學習講述關于《圖神經網絡GNN高級主題》最新課程。

近年來,一些研究人員致力于把神經網絡模型遷移到圖數據這類非歐空間數據上,提出了圖神經網絡(GNN)模型,成功應用在半監督節點分類、圖分類、推薦系統、交通預測、知識推理等任務中。本課程講述了圖神經網絡的高級主題:

圖神經網絡局限性

位置感知圖神經網絡

身份感知圖神經網絡

圖神經網絡魯棒性

付費5元查看完整內容

【導讀】本文為大家帶來了一份斯坦福大學的最新課程CS224W——圖機器學習,主講人是斯坦福大牛Jure Leskovec,他是斯坦福大學計算機學院的副教授,也是圖表示學習方法 node2vec 和 GraphSAGE 作者之一。

近年來,圖神經網絡(GNN)成為網絡表示學習和分析的熱點研究問題,其特點是將以神經網絡為代表深度學習技術用于網絡結構的建模與計算。圖神經網絡能夠考慮網絡中的節點、邊及其附帶的標簽、屬性和文本等信息,能夠更好地利用網絡結構進行精細建模和深度推理,已經被廣泛用于自然語言處理、社會網絡分析、推薦系統等領域。這個課程應該是近年來第一次全面總結圖機器學習相關的課程,課程設置非常新穎也非常全面,包括近年來火熱的圖神經網絡的局限和應用等等,課程全部的PPT 也已經放到網頁上,希望做這方面研究的童鞋多多學習!

原始鏈接: //web.stanford.edu/class/cs224w/

1 課程介紹

網絡是建模復雜的社會、技術和生物系統的基本工具。結合在線社交網絡的出現和生物科學中大規模數據的可用性,本課程著重分析大規模網絡,這些大型網絡提供了一些計算、算法和建模方面的挑戰。通過研究學生潛在的網絡結構和相互聯系,向他們介紹機器學習技術和數據挖掘工具,這些工具有助于揭示社會、技術和自然世界的真知灼見。

復雜數據可以表示為對象之間的關系圖。這種網絡是模擬社會、技術和生物系統的基本工具。本課程著重于大量圖的分析所特有的計算、算法和建模挑戰。通過研究基礎圖結構及其特征,向學生介紹機器學習技術和數據挖掘工具,有助于揭示對各種網絡的見解。

主題包括: 表示學習和圖神經網絡;萬維網的算法;知識圖推理;影響力最大化;疾病爆發檢測,社會網絡分析。

2 講師介紹

Jurij Leskovec

主講人是圖網絡領域的大牛Jure Leskovec,是斯坦福大學計算機學院的副教授,也是圖表示學習方法 node2vec 和 GraphSAGE 作者之一。在谷歌學術搜索(Google Scholar)上,Jure擁有接近4.5萬的論文引用數量,H指數為84。

Leskovec的研究重點是對大型社會和信息網絡進行分析和建模,以研究跨社會,技術和自然世界的現象。他專注于網絡結構、網絡演化、信息傳播、影響和病毒在網絡上的傳播的統計建模。他所研究的問題是由大規模數據、網絡和其他在線媒體引起的。他也致力于文本挖掘和機器學習的應用。

個人主頁:

3 課程目錄

  • 01:課程介紹和圖機器學習(Introduction; Machine Learning for Graphs)
  • 02:傳統圖機器學習方法(Traditional Methods for ML on Graphs)
  • 03:鏈接分析:PageRank(Link Analysis: PageRank)
  • 04:節點嵌入(Node Embeddings)
  • 05:標簽傳播節點分類(Label Propagation for Node Classification)
  • 06:圖神經網絡模型(Graph Neural Networks 1: GNN Model)
  • 07:圖神經網絡:設計空間(Graph Neural Networks 2: Design Space)
  • 08:圖神經網絡應用(Applications of Graph Neural Networks)
  • 09:圖神經網絡理論(Theory of Graph Neural Networks)
  • 10:圖神經網絡嵌入(Knowledge Graph Embeddings)
  • 11:知識圖譜推理(Reasoning over Knowledge Graphs)
  • 12:基于GNNs的頻繁子圖挖掘(Frequent Subgraph Mining with GNNs)
  • 13:網絡社區結構(Community Structure in Networks)
  • 14:傳統圖生成式模型(Traditional Generative Models for Graphs)
  • 15:深度圖生成式模型(Deep Generative Models for Graphs)
  • 16:GNNs可擴展(Scaling Up GNNs)
  • 17:動態圖學習( Learning on Dynamic Graphs)
  • 18:計算生物學GNNs(GNNs for Computational Biology)
  • 19:GNNs科學應用(GNNs for Science)
  • 20:GNNs工業應用 (Industrial Applications of GNNs)

4 課程材料預覽

Graph Representation Learning by William L. Hamilton Networks, Crowds, and Markets: Reasoning About a Highly Connected World by David Easley and Jon Kleinberg Network Science by Albert-László Barabási

付費5元查看完整內容

在本章中,我們將關注更復雜的編碼器模型。我們將介紹圖神經網絡(GNN)的形式,它是定義圖數據上的深度神經網絡的一般框架。關鍵思想是,我們想要生成實際上依賴于圖結構的節點的表示,以及我們可能擁有的任何特征信息。在開發復雜的圖結構數據編碼器的主要挑戰是,我們通常的深度學習工具箱不適用。例如,卷積神經網絡(CNNs)只在網格結構的輸入(如圖像)上定義良好,而遞歸神經網絡(RNNs)只在序列(如文本)上定義良好。要在一般圖上定義深度神經網絡,我們需要定義一種新的深度學習架構。

付費5元查看完整內容

芬蘭阿爾托大學CSE4890深度學習課程第7講:圖神經網絡,由Alexander Ilin主講,全面詳細地介紹了GNN的背景動機、GCN、循環關系網絡、通用網絡。

付費5元查看完整內容

【導讀】WWW2020的DL4G論壇,William L. Hamilton做了關于元學習與圖上邏輯規則推導的報告,55頁ppt。

付費5元查看完整內容

課程介紹: 最近,圖神經網絡 (GNN) 在各個領域越來越受到歡迎,包括社交網絡、知識圖譜、推薦系統,甚至生命科學。GNN 在對圖形中節點間的依賴關系進行建模方面能力強大,使得圖分析相關的研究領域取得了突破性進展。本次課程對比傳統的卷積神經網絡以及圖譜圖卷積與空間圖卷積,從理論知識入手,并結合相關論文進行詳細講解。

主講人: Xavier Bresson,人工智能/深度學習方面的頂級研究員,培訓師和顧問。在“圖深度學習”上的NeurIPS'17和CVPR'17(2019年頂級人工智能會議排名)上的演講者,在劍橋,加州大學洛杉磯分校,布朗,清華,龐加萊,海德堡等地進行了30多次國際演講。

課程大綱:

  • 傳統卷積神經網絡
  • 譜圖圖卷積
  • 空間圖卷積
  • 總結
付費5元查看完整內容
北京阿比特科技有限公司