亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

斯坦福大學的CS 330課程Deep Multi-Task and Meta Learning(深度多任務學習與元學習)正在進行中,官方網站中部分Notes已放出。

雖然深度學習在有監督學習和強化學習問題(如圖像分類、語音識別、游戲等)中獲得了卓越的成果,這些模型在很大程度上都是針對單向任務來進行訓練的。斯坦福大學的CS 330課程Deep Multi-Task and Meta Learning將會覆蓋需要解決多項任務的場景,學習如何有效和高效地利用多任務模型。

付費5元查看完整內容

相關內容

 用已知某種或某些特性的樣本作為訓練集,以建立一個數學模型(如模式識別中的判別模型,人工神經網絡法中的權重模型等),再用已建立的模型來預測未知樣本,此種方法稱為有監督學習。是最常見的機器學習方法。

本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。

付費5元查看完整內容

【導讀】元學習旨在學會學習,是當下研究熱點之一。最近來自愛丁堡大學的學者發布了關于元學習最新綜述論文《Meta-Learning in Neural Networks: A Survey》,值得關注,詳述了元學習體系,包括定義、方法、應用、挑戰,成為不可缺少的文獻。

近年來,元學習領域,或者說“學會學習的學習”,引起了人們極大的興趣。與傳統的人工智能方法(使用固定的學習算法從頭開始解決給定的任務)不同,元學習的目的是改進學習算法本身,考慮到多次學習的經驗。這個范例提供了一個機會來解決深度學習的許多傳統挑戰,包括數據和計算瓶頸,以及泛化的基本問題。在這項綜述中,我們描述了當代元學習的景觀。我們首先討論元學習的定義,并將其定位于相關領域,如遷移學習、多任務學習和超參數優化。然后,我們提出了一個新的分類法,對元學習方法的空間進行了更全面的細分。我們綜述了元學習的一些有前途的應用和成功案例,包括小樣本學習、強化學習和體系架構搜索。最后,我們討論了突出的挑戰和未來研究的有希望的領域。

//arxiv.org/abs/2004.05439

概述

現代機器學習模型通常是使用手工設計的固定學習算法,針對特定任務從零開始進行訓練。基于深度學習的方法在許多領域都取得了巨大的成功[1,2,3]。但是有明顯的局限性[4]。例如,成功主要是在可以收集或模擬大量數據的領域,以及在可以使用大量計算資源的領域。這排除了許多數據本質上是稀有或昂貴的[5],或者計算資源不可用的應用程序[6,7]。

元學習提供了另一種范式,機器學習模型可以在多個學習階段獲得經驗——通常覆蓋相關任務的分布——并使用這些經驗來改進未來的學習性能。這種“學會學習”[8]可以帶來各種好處,如數據和計算效率,它更適合人類和動物的學習[9],其中學習策略在一生和進化時間尺度上都得到改善[10,9,11]。機器學習在歷史上是建立在手工設計的特征上的模型,而特征的選擇往往是最終模型性能的決定因素[12,13,14]。深度學習實現了聯合特征和模型學習的承諾[15,16],為許多任務提供了巨大的性能改進[1,3]。神經網絡中的元學習可以看作是集成聯合特征、模型和算法學習的下一步。神經網絡元學習有著悠久的歷史[17,18,8]。然而,它作為推動當代深度學習行業前沿的潛力,導致了最近研究的爆炸性增長。特別是,元學習有可能緩解當代深度學習[4]的許多主要批評,例如,通過提供更好的數據效率,利用先驗知識轉移,以及支持無監督和自主學習。成功的應用領域包括:小樣本圖像識別[19,20]、無監督學習[21]、數據高效[22,23]、自導向[24]強化學習(RL)、超參數優化[25]和神經結構搜索(NAS)[26, 27, 28]。

在文獻中可以找到許多關于元學習的不同觀點。特別是由于不同的社區對這個術語的使用略有不同,所以很難定義它。與我們[29]相關的觀點認為,元學習是管理“沒有免費午餐”定理[30]的工具,并通過搜索最適合給定問題或問題族的算法(歸納偏差)來改進泛化。然而,從廣義上來說,這個定義可以包括遷移、多任務、特征選擇和模型集成學習,這些在今天通常不被認為是元學習。另一個關于元學習[31]的觀點廣泛地涵蓋了基于數據集特性的算法選擇和配置技術,并且很難與自動機器學習(AutoML)[32]區分開來。在這篇論文中,我們關注當代的神經網絡元學習。我們將其理解為算法或歸納偏差搜索,但重點是通過端到端學習明確定義的目標函數(如交叉熵損失、準確性或速度)來實現的。

因此,本文提供了一個獨特的,及時的,最新的調查神經網絡元學習領域的快速增長。相比之下,在這個快速發展的領域,以往的研究已經相當過時,或者關注于數據挖掘[29、33、34、35、36、37、31]、自動[32]的算法選擇,或者元學習的特定應用,如小樣本學習[38]或神經架構搜索[39]。

我們討論元學習方法和應用。特別是,我們首先提供了一個高層次的問題形式化,它可以用來理解和定位最近的工作。然后,我們在元表示、元目標和元優化器方面提供了一種新的方法分類。我們調查了幾個流行和新興的應用領域,包括少鏡頭、強化學習和架構搜索;并對相關的話題如遷移學習、多任務學習和自動學習進行元學習定位。最后,我們討論了尚未解決的挑戰和未來研究的領域。

未來挑戰:

-元泛化 元學習在不同任務之間面臨著泛化的挑戰,這與傳統機器學習中在不同實例之間進行泛化的挑戰類似。

  • 任務分布的多模態特性
  • 任務族
  • 計算代價
  • 跨模態遷移和異構任務

總結

元學習領域最近出現了快速增長的興趣。這帶來了一定程度的混亂,比如它如何與鄰近的字段相關聯,它可以應用到什么地方,以及如何對它進行基準測試。在這次綜述中,我們試圖通過從方法學的角度對這一領域進行徹底的調查來澄清這些問題——我們將其分為元表示、元優化器和元目標的分類;從應用的角度來看。我們希望這項調查將有助于新人和實踐者在這個不斷增長的領域中定位自己,并強調未來研究的機會。

付費5元查看完整內容

元學習已被提出作為一個框架來解決具有挑戰性的小樣本學習設置。關鍵的思想是利用大量相似的小樣本任務,以學習如何使基學習者適應只有少數標記的樣本可用的新任務。由于深度神經網絡(DNNs)傾向于只使用少數樣本進行過度擬合,元學習通常使用淺層神經網絡(SNNs),因此限制了其有效性。本文提出了一種新的學習方法——元轉移學習(MTL)。具體來說,“meta”是指訓練多個任務,“transfer”是通過學習每個任務的DNN權值的縮放和變換函數來實現的。此外,我們還介紹了作為一種有效的MTL學習課程的困難任務元批處理方案。我們使用(5類,1次)和(5類,5次)識別任務,在兩個具有挑戰性的小樣本學習基準上進行實驗:miniImageNet和Fewshot-CIFAR100。通過與相關文獻的大量比較,驗證了本文提出的HT元批處理方案訓練的元轉移學習方法具有良好的學習效果。消融研究還表明,這兩種成分有助于快速收斂和高精度。

地址:

//arxiv.org/abs/1812.02391

代碼:

付費5元查看完整內容

強化學習(RL)研究的是當環境(即動力和回報)最初未知,但可以通過直接交互學習時的順序決策問題。RL算法最近在許多問題上取得了令人印象深刻的成果,包括游戲和機器人。 然而,大多數最新的RL算法需要大量的數據來學習一個令人滿意的策略,并且不能用于樣本昂貴和/或無法進行長時間模擬的領域(例如,人機交互)。朝著更具樣本效率的算法邁進的一個基本步驟是,設計適當平衡環境探索、收集有用信息的方法,以及利用所學策略收集盡可能多的回報的方法。

本教程的目的是讓您認識到探索性開發困境對于提高現代RL算法的樣本效率的重要性。本教程將向觀眾提供主要算法原理(特別是,面對不確定性和后驗抽樣時的樂觀主義)、精確情況下的理論保證(即表格RL)及其在更復雜環境中的應用,包括參數化MDP、線性二次控制,以及它們與深度學習架構的集成。本教程應提供足夠的理論和算法背景,以使AI和RL的研究人員在現有的RL算法中集成探索原理,并設計新穎的樣本高效的RL方法,能夠處理復雜的應用,例如人機交互(例如,會話代理),醫學應用(例如,藥物優化)和廣告(例如,營銷中的終身價值優化)。在整個教程中,我們將討論開放的問題和未來可能的研究方向。

付費5元查看完整內容

題目: Gradient Surgery for Multi-Task Learning

摘要: 雖然深度學習和深度強化學習(RL)系統在圖像分類、游戲和機器人控制等領域取得了令人印象深刻的成果,但數據效率仍然是一個重大挑戰。多任務學習是一種很有前途的跨任務共享結構的學習方法。然而,多任務設置帶來了許多優化挑戰,與獨立學習任務相比,很難實現大的效率提升。與單任務學習相比,多任務學習之所以具有如此大的挑戰性,其原因還不完全清楚。在這項工作中,我們確定了多任務優化環境中導致有害梯度干擾的三個條件,并開發了一種簡單而通用的方法來避免任務梯度之間的這種干擾。我們提出一種梯度手術的形式,將一個任務的梯度投影到任何其他具有沖突梯度的任務的梯度的法平面上。在一系列具有挑戰性的多任務監督和多任務RL問題上,該方法在效率和性能上都有顯著提高。此外,它與模型無關,可以與先前提出的多任務體系結構相結合以提高性能。

作者簡介: Tianhe Yu,加州大學伯克利分校研究助理。官方主頁://tianheyu927.github.io/

付費5元查看完整內容

深度強化學習將深度學習的感知能力和強化學習的決策能力相結合,可以直接根據輸入的圖像進行控制,是一種更接近人類思維方式的人工智能方法,深度學習具有較強的感知能力,但是缺乏一定的決策能力;而強化學習具有決策能力,對感知問題束手無策。因此,將兩者結合起來,優勢互補,為復雜系統的感知決策問題提供了解決思路。本次課程包括DQN,REINFORCE,QAC,AAC。

github鏈接://github.com/xbresson/CE7454_2019/tree/master/codes/labs_lecture15

付費5元查看完整內容

課程介紹

麻省理工學院深度學習和自動駕駛課程,介紹了深度學習的相關知識,以及深度學習在自動駕駛領域的實踐和應用。

面向人群

課程主要面向機器學習初學者,也同樣適用于深度學習、自動駕駛領域的高級研究人員,能夠幫助學習者了解深度學習在自動駕駛中的應用。

課程大綱

  • 第一講 - 深度學習
  • 第二講 - 自動駕駛
  • 第三講 - 深度增強學習
  • 第四講 - 計算機視覺
  • 第五講 - 能夠感知人類的深度學習
  • 客邀講座 - 自動駕駛機器學習的興起
  • 客邀講座 - 深度學習在自動駕駛領域的應用
  • 客邀講座 - 深度學習在自動駕駛領域的應用

課程鏈接://selfdrivingcars.mit.edu/

中文字幕:

付費5元查看完整內容
北京阿比特科技有限公司