亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

知識圖譜(KGs)是一些真實應用中普遍存在的信息存儲結構,如web搜索、電子商務、社交網絡和生物學。由于KGs的規模和復雜性,查詢KGs仍然是一個基礎性和挑戰性的問題。有希望解決這個問題的方法包括在歐幾里得空間中嵌入KG單位(如實體和關系),這樣嵌入的查詢就包含了與其結果相關的信息。然而,這些方法不能捕獲圖中實體的層次性質和語義信息。此外,這些方法大多只利用多跳查詢(可以通過簡單的翻譯操作建模)來學習嵌入,并忽略更復雜的操作,如交集和更簡單查詢的并集。

為了解決這些復雜的操作,在本文中,我們將KG表示學習表述為一個自我監督的邏輯查詢推理問題,利用KGs上的翻譯、交叉和并查詢。我們提出了一種新的自我監督動態推理框架——雙曲面嵌入(HypE),它利用KG上的一階正存在查詢來學習其實體和關系在Poincaré球中的雙曲面表示。HypE將正面的一階查詢建模為幾何平移、交叉和合并。對于真實數據集中的KG推理問題,所提出的HypE模型顯著優于最先進的結果。我們還將HypE應用于一個流行的電子商務網站產品分類的異常檢測任務,以及分層組織的web文章,并演示了與現有的基線方法相比,顯著的性能改進。最后,我們還將學習到的HypE embeddings可視化在Poincaré球中,以清楚地解釋和理解表征空間。

付費5元查看完整內容

相關內容

知識圖譜(Knowledge Graph),在圖書情報界稱為知識域可視化或知識領域映射地圖,是顯示知識發展進程與結構關系的一系列各種不同的圖形,用可視化技術描述知識資源及其載體,挖掘、分析、構建、繪制和顯示知識及它們之間的相互聯系。 知識圖譜是通過將應用數學、圖形學、信息可視化技術、信息科學等學科的理論與方法與計量學引文分析、共現分析等方法結合,并利用可視化的圖譜形象地展示學科的核心結構、發展歷史、前沿領域以及整體知識架構達到多學科融合目的的現代理論。它能為學科研究提供切實的、有價值的參考。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

知識圖譜(KG)是一種靈活的結構,能夠描述數據實體之間的復雜關系。目前,大多數KG嵌入模型都是基于負采樣進行訓練的,即模型的目標是最大限度地增加KG內被連接實體的某些相似度,同時最小化被采樣的斷開實體的相似度。負抽樣通過只考慮負實例的子集,降低了模型學習的時間復雜度,這可能會由于抽樣過程的不確定性而無法提供穩定的模型性能。為了避免這一缺陷,我們提出了一種新的KG嵌入高效非采樣知識圖譜嵌入框架(NS-KGE)。其基本思想是在模型學習中考慮KG中的所有負面實例,從而避免負面抽樣。框架可應用于基于平方損失的知識圖譜嵌入模型或其損失可轉換為平方損失的模型。這種非抽樣策略的一個自然副作用是增加了模型學習的計算復雜度。為了解決這一問題,我們利用數學推導來降低非采樣損失函數的復雜度,最終為我們提供了比現有模型更好的KG嵌入效率和精度。在基準數據集上的實驗表明,NS-KGE框架在效率和準確率方面均優于傳統的基于負采樣的模型,該框架適用于大規模知識圖譜嵌入模型。

//www.zhuanzhi.ai/paper/a63903c464665db631cd3167d395a238

付費5元查看完整內容

在推薦系統中,當用戶-物品交互數據稀疏時,常用社會關系來提高推薦質量。大多數現有的社交推薦模型都是利用成對關系來挖掘潛在的用戶偏好。然而,現實生活中用戶之間的互動非常復雜,用戶關系可以是高階的。超圖提供了一種自然的方式來建模復雜的高階關系,而它在改善社會推薦方面的潛力還有待開發。在本文中,我們填補了這一空白,提出了一種利用高階用戶關系增強社交推薦的多通道超圖卷積網絡。技術上,網絡中的每個通道通過超圖卷積編碼一個描述常見高階用戶關系模式的超圖。通過聚合通過多種渠道學習到的嵌入,我們獲得了全面的用戶表示,從而產生推薦結果。然而,聚合操作也可能掩蓋不同類型高階連接信息的固有特征。為了彌補累積損失,我們創新性地將自監督學習融入到超圖卷積網絡的訓練中,以獲取具有層次互信息最大化的連通信息。在多個真實數據集上的實驗結果表明,該模型優于SOTA方法,消融研究驗證了多通道設置和自監督任務的有效性。我們的模型的實現可以通過//github.com/Coder-Yu/RecQ獲得。

付費5元查看完整內容

點擊率(CTR)預測在推薦系統和在線廣告中起著至關重要的作用。這些應用程序中使用的數據是多字段類別數據,其中每個特征屬于一個字段。字段信息被證明是重要的,在他們的模型中有一些考慮字段的工作。在本文中,我們提出了一種新的方法來有效和高效地建模場信息。該方法是對FwFM的直接改進,被稱為場矩陣分解機(FmFM,或FM2)。在FmFM框架下,我們對FM和FwFM提出了新的解釋,并與FFM進行了比較。除了對交叉項進行修剪外,我們的模型還支持特定領域的可變維度的嵌入向量,這是一種軟修剪。在保持模型性能的同時,我們還提出了一種有效的最小化維數的方法。FmFM模型還可以通過緩存中間向量來進一步優化,它只需要數千次浮點運算(FLOPs)就可以做出預測。實驗結果表明,該算法的性能優于復雜的FFM算法。FmFM模型的性能也可以與DNN模型相媲美,DNN模型在運行時需要更多FLOPs 。

//www.zhuanzhi.ai/paper/39df3ac3e3acb641f86294a4d6acb39f

付費5元查看完整內容

有關實體及其關系的真實世界事實的知識庫是各種自然語言處理任務的有用資源。然而,由于知識庫通常是不完整的,因此能夠執行知識庫補全或鏈接預測是很有用的。本文全面概述了用于知識庫完成的實體和關系的嵌入模型,總結了標準基準數據集上最新的實驗結果。

付費5元查看完整內容

簡介: 今年AAAI 2020接收了1591篇論文,其中有140篇是與圖相關的。接下來將會介紹幾篇與圖和知識圖譜相關的幾篇論文。以下為內容大綱:

  • KG-Augmented Language Models In Diherent Flavours

Hayashi等人在知識圖上建立了自然語言生成(NLG)任務的潛在關系語言模型(LRLM)。就是說,模型在每個時間步上要么從詞匯表中提取一個單詞,要么求助于已知關系。 最終的任務是在給定主題實體的情況下生成連貫且正確的文本。 LRLM利用基礎圖上的KG嵌入來獲取實體和關系表示,以及用于嵌入表面形式的Fasttext。 最后,要參數化流程,需要一個序列模型。作者嘗試使用LSTM和Transformer-XL來評估與使用Wikidata批注的Freebase和WikiText鏈接的WikiFacts上的LRLM。

Liu等人提出了K-BERT,它希望每個句子(如果可能)都用來自某些KG的命名實體和相關(謂詞,賓語)對進行注釋。 然后,將豐富的句子樹線性化為一個新的位置相似嵌入,并用可見性矩陣進行遮罩,該矩陣控制輸入的哪些部分在訓練過程中可以看到并得到關注。

Bouraoui等人進一步評估了BERT的關系知識,即在給定一對實體(例如,巴黎,法國)的情況下,它是否可以預測正確的關系。 作者指出,BERT在事實和常識性任務中通常是好的,而不是糟糕的非詞性任務,并且在形態任務中相當出色。

  • Entity Matching in Heterogeneous KGs

不同的KG具有自己的模型來建模其實體,以前,基于本體的對齊工具僅依靠此類映射來標識相似實體。 今天,我們有GNN只需少量培訓即可自動學習此類映射!

Sun等人提出了AliNet,這是一種基于端到端GNN的體系結構,能夠對多跳鄰域進行聚合以實現實體對齊。 由于架構異質性,由于相似的實體KG的鄰域不是同構的,因此任務變得更加復雜。 為了彌補這一點,作者建議關注節點的n跳環境以及具有特定損失函數的TransE樣式關系模式。

Xu等人研究了多語言KG(在這種情況下為DBpedia)中的對齊問題,其中基于GNN的方法可能陷入“多對一”的情況,并為給定的目標實體生成多個候選源實體。 作者研究了如何使他們的預測中的GNN編碼輸出更加確定。

  • Knowledge Graph Completion and Link Prediction

AAAI’20標記并概述了兩個增長趨勢:神經符號計算與臨時性的KG越來越受到關注。

  • KG-based Conversational AI andQuestion Answering

AAAI’20主持了“對話狀態跟蹤研討會”(DSTC8)。 該活動聚集了對話AI方面的專家,包括來自Google Assistant,Amazon Alexa和DeepPavlov的人員。在研討會上,多個專家都提出了對話AI的相關研究方法。

付費5元查看完整內容
北京阿比特科技有限公司