亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本教程對基于模型的強化學習(MBRL)領域進行了廣泛的概述,特別強調了深度方法。MBRL方法利用環境模型來進行決策——而不是將環境視為一個黑箱——并且提供了超越無模型RL的獨特機會和挑戰。我們將討論學習過渡和獎勵模式的方法,如何有效地使用這些模式來做出更好的決策,以及規劃和學習之間的關系。我們還強調了在典型的RL設置之外利用世界模型的方式,以及在設計未來的MBRL系統時,從人類認知中可以得到什么啟示。

//sites.google.com/view/mbrl-tutorial

近年來,強化學習領域取得了令人印象深刻的成果,但主要集中在無模型方法上。然而,社區認識到純無模型方法的局限性,從高樣本復雜性、需要對不安全的結果進行抽樣,到穩定性和再現性問題。相比之下,盡管基于模型的方法在機器人、工程、認知和神經科學等領域具有很大的影響力,但在機器學習社區中,這些方法的開發還不夠充分(但發展迅速)。它們提供了一系列獨特的優勢和挑戰,以及互補的數學工具。本教程的目的是使基于模型的方法更被機器學習社區所認可和接受。鑒于最近基于模型的規劃的成功應用,如AlphaGo,我們認為對這一主題的全面理解是非常及時的需求。在教程結束時,觀眾應該獲得:

  • 數學背景,閱讀并跟進相關文獻。
  • 對所涉及的算法有直觀的理解(并能夠訪問他們可以使用和試驗的輕量級示例代碼)。
  • 在應用基于模型的方法時所涉及到的權衡和挑戰。
  • 對可以應用基于模型的推理的問題的多樣性的認識。
  • 理解這些方法如何適應更廣泛的強化學習和決策理論,以及與無模型方法的關系。
付費5元查看完整內容

相關內容

強化學習(RL)是機器學習的一個領域,與軟件代理應如何在環境中采取行動以最大化累積獎勵的概念有關。除了監督學習和非監督學習外,強化學習是三種基本的機器學習范式之一。 強化學習與監督學習的不同之處在于,不需要呈現帶標簽的輸入/輸出對,也不需要顯式糾正次優動作。相反,重點是在探索(未知領域)和利用(當前知識)之間找到平衡。 該環境通常以馬爾可夫決策過程(MDP)的形式陳述,因為針對這種情況的許多強化學習算法都使用動態編程技術。經典動態規劃方法和強化學習算法之間的主要區別在于,后者不假設MDP的確切數學模型,并且針對無法采用精確方法的大型MDP。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

許多ML任務與信號處理有共同的實際目標和理論基礎(例如,光譜和核方法、微分方程系統、順序采樣技術和控制理論)。信號處理方法是ML許多子領域中不可分割的一部分,例如,強化學習,哈密頓蒙特卡洛,高斯過程(GP)模型,貝葉斯優化,神經ODEs /SDEs。

本教程旨在涵蓋與離散時間和連續時間信號處理方法相聯系的機器學習方面。重點介紹了隨機微分方程(SDEs)、狀態空間模型和高斯過程模型的遞推估計(貝葉斯濾波和平滑)。目標是介紹基本原則之間的直接聯系信號處理和機器學習, (2) 提供一個直觀的實踐理解隨機微分方程都是關于什么, (3) 展示了這些方法在加速學習的真正好處,提高推理,模型建立,演示和實際應用例子。這將展示ML如何利用現有理論來改進和加速研究,并為從事這些方法交叉工作的ICML社區成員提供統一的概述。

付費5元查看完整內容

來自DeepMind研究人員Feryal Behbahani, Matt Hoffman 和 Bobak Shahriari講解的強化學習教程。

付費5元查看完整內容

經典的隨機優化結果通常假設數據的各種屬性的已知值(例如Lipschitz常數、到最優點的距離、平滑性或強凸性常數)。不幸的是,在實踐中,這些值是未知的,因此必須經過長時間的反復試驗才能找到最佳參數。

為了解決這一問題,近年來許多無參數算法已經被開發用于在線優化和在線學習。無參數算法對數據的性質不作任何假設,但收斂速度與最優優化算法一樣快。

這是一項令人興奮的工作,現在已經足夠成熟,可以教授給普通觀眾了。實際上,這些算法還沒有得到機器學習社區的適當介紹,只有少數人完全理解它們。本教程旨在彌補這一差距,介紹使用和設計無參數算法的實踐和理論。我們將介紹該領域的最新進展,包括優化、深度學習和使用內核學習的應用。

//parameterfree.com/icml-tutorial/

付費5元查看完整內容

題目: A Game Theoretic Framework for Model Based Reinforcement Learning

摘要: 基于模型的強化學習(MBRL)最近獲得了極大的興趣,因為它具有潛在的樣本效率和合并非策略數據的能力。然而,使用富函數逼近器設計穩定、高效的MBRL算法仍然具有挑戰性。為了從抽象的角度揭示MBRL的實際挑戰并簡化算法設計,我們開發了一個新的框架,將MBRL描述為:(1)一個策略參與者,它試圖在學習模型下最大化回報;(2)一個模型player,它試圖與策略player收集的真實數據相匹配。在算法開發方面,我們構造了一個雙方參與的Stackelberg博弈,并證明了它可以用近似的雙層優化來解決。這就產生了兩種自然的MBRL算法,基于這兩種算法,玩家被選擇為Stackelberg游戲的領導者。它們一起封裝、統一和泛化了許多以前的MBRL算法。此外,我們的框架是一致的,并提供了一個明確的基礎啟發式已知是重要的實踐,從以往的工作。最后,通過實驗驗證了所提出的算法具有較高的樣本效率,匹配無模型策略梯度的漸近性能,并能擴展到靈巧手操作等高維任務。

付費5元查看完整內容

【導讀】新加坡國立大學的Xiang Wang、Tat-Seng Chua,以及來自中國科學技術大學的Xiangnan He在WSDM 2020會議上通過教程《Learning and Reasoning on Graph for Recommendation》介紹了基于圖學習和推理的推薦系統,涵蓋了基于隨機游走的推薦系統、基于網絡嵌入的推薦系統,基于圖神經網絡的推薦系統等內容。

Tutorial摘要:

推薦方法構建預測模型來估計用戶-項目交互的可能性。之前的模型在很大程度上遵循了一種通用的監督學習范式——將每個交互視為一個單獨的數據實例,并基于“信息孤島”進行預測。但是,這些方法忽略了數據實例之間的關系,這可能導致性能不佳,特別是在稀疏場景中。此外,建立在單獨數據實例上的模型很難展示推薦背后的原因,這使得推薦過程難以理解。

在本教程中,我們將從圖學習的角度重新討論推薦問題。用于推薦的公共數據源可以組織成圖,例如用戶-項目交互(二部圖)、社交網絡、項目知識圖(異構圖)等。這種基于圖的組織將孤立的數據實例連接起來,為開發高階連接帶來了好處,這些連接為協作過濾、基于內容的過濾、社會影響建模和知識感知推理編碼有意義的模式。隨著最近圖形神經網絡(GNNs)的成功,基于圖形的模型顯示了成為下一代推薦系統技術的潛力。本教程對基于圖的推薦學習方法進行了回顧,重點介紹了GNNs的最新發展和先進的推薦知識。通過在教程中介紹這一新興而有前景的領域,我們希望觀眾能夠對空間有更深刻的理解和準確的洞察,激發更多的想法和討論,促進技術的發展。

Tutorial大綱:

付費5元查看完整內容

強化學習(RL)研究的是當環境(即動力和回報)最初未知,但可以通過直接交互學習時的順序決策問題。RL算法最近在許多問題上取得了令人印象深刻的成果,包括游戲和機器人。 然而,大多數最新的RL算法需要大量的數據來學習一個令人滿意的策略,并且不能用于樣本昂貴和/或無法進行長時間模擬的領域(例如,人機交互)。朝著更具樣本效率的算法邁進的一個基本步驟是,設計適當平衡環境探索、收集有用信息的方法,以及利用所學策略收集盡可能多的回報的方法。

本教程的目的是讓您認識到探索性開發困境對于提高現代RL算法的樣本效率的重要性。本教程將向觀眾提供主要算法原理(特別是,面對不確定性和后驗抽樣時的樂觀主義)、精確情況下的理論保證(即表格RL)及其在更復雜環境中的應用,包括參數化MDP、線性二次控制,以及它們與深度學習架構的集成。本教程應提供足夠的理論和算法背景,以使AI和RL的研究人員在現有的RL算法中集成探索原理,并設計新穎的樣本高效的RL方法,能夠處理復雜的應用,例如人機交互(例如,會話代理),醫學應用(例如,藥物優化)和廣告(例如,營銷中的終身價值優化)。在整個教程中,我們將討論開放的問題和未來可能的研究方向。

付費5元查看完整內容
北京阿比特科技有限公司