亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本書中的設計模式捕捉了機器學習中反復出現的問題的最佳實踐和解決方案。作者是三位谷歌工程師,他們列出了經過驗證的方法,以幫助數據科學家解決ML過程中的常見問題。這些設計模式將數百位專家的經驗整理成簡單、可接近的建議。

在這本書中,你會發現關于數據和問題表示、操作化、可重復性、可再現性、靈活性、可解釋性和公平性的30種模式的詳細解釋。每個模式都包含對問題的描述、各種可能的解決方案,以及針對您的情況選擇最佳技術的建議。

您將學習如何: 在訓練、評估和部署ML模型時,確定并減輕常見的挑戰 表示不同ML模型類型的數據,包括嵌入、特征交叉等 針對具體問題選擇合適的模型類型 構建一個魯棒的訓練循環,使用檢查點、分布策略和超參數調優 部署可擴展的ML系統,您可以重新訓練和更新這些系統,以反映新的數據 為利益相關者解釋模型預測,并確保模型公平地對待用戶

//www.oreilly.com/library/view/machine-learning-design/9781098115777/

Preface

  1. The Need for Machine Learning Design Patterns

  2. Data Representation Design Patterns

  3. Problem Representation Design Patterns

  4. Model Training Patterns

  5. Design Patterns for Resilient Serving

  6. Reproducibility Design Patterns

  7. Responsible AI

  8. Connected Patterns

Index

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

許多統計和機器學習的方法正在被定義。這些方法用于從系統的感知數據創建模型,幫助科學家生成或改進當前的模型。機器學習在科學領域得到了廣泛的研究,特別是在生物信息學、經濟學、社會科學、生態學和氣候科學等領域,但從數據中學習需要在復雜的情況下進行更多的研究。要為機器學習算法提供有意義的知識,就必須采用能夠捕獲結構和過程屬性的高級知識表示方法。它對理解困難的科學問題有重大影響。

這本《知識表示和機器學習的預測和分析》展示了各種知識表示和機器學習方法和體系結構,將在研究領域活躍。這些方法被回顧與現實生活的例子,從廣泛的研究主題。本書的網站提供了許多在機器學習知識表示中實現的技術和算法的理解。

特點:

檢查所需知識表示的表示充分性 掌握知識表示的推理充分性,以便從原始信息中產生新的知識 運用自動方法獲取新知識,提高推理和獲取效率 使用最新的技術,涵蓋知識表示和機器學習方面的主要挑戰、關注和突破 描述知識表示的思想和相關技術,以及它們的應用,以幫助人類變得更好、更智能 這本書作為研究人員和實踐者誰是在信息技術和計算機科學領域的知識表示和機器學習的基本和先進的概念的研究人員和實踐者的參考書。如今,開發自適應的、文件的、可擴展的和可靠的應用,以及為日常問題設計解決方案已經變得非常重要。這本書將有助于行業人士,也將幫助初學者和高級用戶學習最新的東西,其中包括基本和先進的概念。

付費5元查看完整內容

Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.

這本書通過探索計算機科學理論和機器學習雙方可以相互傳授的內容,將理論和機器學習聯系起來。它強調了對靈活、易于操作的模型的需求,這些模型更好地捕捉使機器學習變得容易的東西,而不是讓機器學習變得困難的東西。

理論計算機科學家將被介紹到機器學習的重要模型和該領域的主要問題。機器學習研究人員將以一種可訪問的格式介紹前沿研究,并熟悉現代算法工具包,包括矩法、張量分解和凸規劃松弛。

超越最壞情況分析的處理方法是建立對實踐中使用的方法的嚴格理解,并促進發現令人興奮的、解決長期存在的重要問題的新方法。

在這本書中,我們將涵蓋以下主題:

(a)非負矩陣分解

(b)主題建模

(c)張量分解

(d)稀疏恢復

(e)稀疏編碼

(f)學習混合模型

(g)矩陣補全

//www.cambridge.org/core/books/algorithmic-aspects-of-machine-learning/165FD1899783C6D7162235AE405685DB

付費5元查看完整內容

從經驗中學習的軟件開發和分析技術綜述。具體主題包括:監督學習(分類、回歸);無監督學習(聚類、降維);強化學習;計算學習理論。具體的技術包括:貝葉斯方法、混合模型、決策樹、基于實例的方法、神經網絡、內核機器、集成等等。

//faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/

付費5元查看完整內容

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

「本書提供許多絕佳的機器學習實用案例。有別于工具書或理論證明,本書著重于實際問題處理,因此具備程式設計背景及對機器學習有興趣的讀者們均可輕松入門。」

  • Max Shron, OkCupid

如果你是平時喜歡上網搜集各種資料的程式設計師,想尋找并學習資料分析的方法與工具,本書將會是您了解機器學習最好的起點。在Machine Learning領域中,包含各種分析問題的工具與方法,可以讓我們很方便地架構出一套自動分析資料系統,使電腦可以自動分析。不過這些方法的背后,通常都蘊含著艱澀、難懂的數學理論,因而提高了學習門檻。有鑒于此,本書作者Drew Conway和John Myles準備了許多實用案例。在本書中,他們將以生動活潑的方式,使用案例導向方式,透過生活實例,帶領我們一起學習這些Machine Learning工具和統計工具的實際應用。經由這些過程學習機器學習領域的核心與價值,而非傳統數學導向的介紹方式。

本書采用實例導向、問題導向的介紹方式,在每一個章節中,透過實際問題,介紹機器學習典型問題與解決方法。其中包含:分類問題、預測問題、最佳化問題、推薦系統建置問題...等,在書中都會一一介紹。本書所有程式均以R語言撰寫,于每個章節中將學到:如何以R語言分析資料,并撰寫簡易機器學習演算法。《機器學習駭客秘笈》本書,是專為機器學習領域的初學者所寫的,無論是商業、政府機關或學術界...等都適用。

chapter 01使用R語言 chapter 02資料探索 chapter 03文本分類:垃圾郵件判斷 chapter 04項目排序:優先收件匣 chapter 05回歸分析:預測網頁瀏覽人次 chapter 06正則化:文本回歸 chapter 07最佳化:破解密碼 chapter 08 PCA:建立股價指數 chapter 09 MDS:視覺化呈現美國參議員相似度 chapter 10 kNN:推薦系統 chapter 11分析社群關系圖 chapter 12模型比較

付費5元查看完整內容

目錄

第一章 為什么機器學習至關重要。 本章描繪了人工智能和機器學習的發展全貌——從過去到現在,再到未來。

第二章 監督學習(一)。 本章通過例題介紹了線性回歸、損失函數、過擬合和梯度下降。

第三章 監督學習(二)。 本章介紹了兩種分類方法:邏輯回歸和SVM。

第四章 監督學習(三)。 本章介紹了非參數方法:k近鄰估計、決策樹、隨機森林。以及交叉驗證、超參數調整和集成模型的相關知識。

第五章 無監督學習。 本章介紹了聚類:K-means、層次聚類;降維:主成分分析(PCA)、奇異值分解(SVD)。

第六章 神經網絡與深度學習。 本章介紹了深度學習的工作原理、應用領域和實現方法,并回顧了神經網絡是如何從人類大腦中汲取靈感的。此外,本章還涉及卷積神經網絡(CNN)、遞歸神經網絡(DNN)以及神經網絡應用案例等內容。

第七章 強化學習。 本章介紹了強化學習的Exploration和Exploitation(探索-利用),包括馬爾可夫決策過程、Q-learning、策略學習和深度強化學習。

附錄: 最佳機器學習資源。 一份用于學習機器學習的資源清單。

前言

Machine Learning for Humans是國外機器學習愛好者之間流傳甚廣的一本電子書,它最先是Medium上的連載文章,后因文章質量出眾、閱讀價值高,作者在建議下把文章整理成電子書,供讀者免費閱讀。本書的作者Vishal Maini是耶魯大學的文學學士,目前已入職DeepMind;另一名作者Samer Sabri同樣畢業于耶魯大學,目前正在加州大學圣迭戈分校的計算機學院攻讀碩士學位。

哪些人應該讀一讀?

希望快速跟上機器學習發展潮流的開發者;

希望掌握機器學習入門知識并參與技術開發的普通讀者;

所有對機器學習感興趣的讀者。

本書向所有人免費開放閱讀。書中雖然會涉及概率論、統計學、程序設計、線性代數和微積分等基礎知識,但沒有數學基礎的讀者也能從中獲得啟發。

本書旨在幫助讀者在2—3個小時內迅速掌握機器學習高級概念,如果您想得到更多關于線上課程、重要書籍、相關項目等方面的內容,請參考附錄中的建議。

付費5元查看完整內容

掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。

使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。

第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。

第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。

第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。

實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!

你將學習:

  • 執行端到端機器學習項目和系統
  • 使用行業標準、開放源碼、健壯的機器學習工具和框架實現實踐示例
  • 回顧描述機器學習和深度學習在不同領域和行業中的應用的案例研究
  • 廣泛應用機器學習模型,包括回歸、分類和聚類。
  • 理解和應用深度學習的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生

目錄:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

付費5元查看完整內容

This tutorial is based on the lecture notes for the courses "Machine Learning: Basic Principles" and "Artificial Intelligence", which I have (co-)taught since 2015 at Aalto University. The aim is to provide an accessible introduction to some of the main concepts and methods within machine learning. Many of the current systems which are considered as (artificially) intelligent are based on combinations of few basic machine learning methods. After formalizing the main building blocks of a machine learning problem, some popular algorithmic design patterns formachine learning methods are discussed in some detail.

北京阿比特科技有限公司