亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Weakly-Supervised Salient Object Detection via Scribble Annotations

摘要: 與費力的逐像素密集標記相比,這種方法更容易通過涂抹來標記數據,僅花費1-2秒即可標記一張圖像。然而,尚未有人探索使用可劃線標簽來學習顯著物體檢測。在本文中,我們提出了一種弱監督的顯著物體檢測模型,以從此類注釋中學習顯著性。為此,我們首先使用亂碼對現有的大型顯著物體檢測數據集進行重新標記,即S-DUTS數據集。由于對象的結構和詳細信息不能通過亂寫識別,因此直接訓練帶有亂寫的標簽將導致邊界位置局限性的顯著性圖。為了緩解這個問題,我們提出了一個輔助的邊緣檢測任務來明確地定位對象邊緣,并提出了門控結構感知損失以將約束置于要恢復的結構范圍上。此外,我們設計了一種涂鴉增強方案來迭代地整合我們的涂鴉注釋,然后將其作為監督來學習高質量的顯著性圖。我們提出了一種新的度量標準,稱為顯著性結構測量,用于測量預測顯著性圖的結構對齊方式,這與人類的感知更加一致。在六個基準數據集上進行的大量實驗表明,我們的方法不僅優于現有的弱監督/無監督方法,而且與幾種完全監督的最新模型相提并論。

付費5元查看完整內容

相關內容

計算機視覺是一門研究如何使機器“看”的科學,更進一步的說,就是是指用攝影機和電腦代替人眼對目標進行識別、跟蹤和測量等機器視覺,并進一步做圖形處理,使電腦處理成為更適合人眼觀察或傳送給儀器檢測的圖像。作為一個科學學科,計算機視覺研究相關的理論和技術,試圖建立能夠從圖像或者多維數據中獲取‘信息’的人工智能系統。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

題目: Continual Learning of Object Instances

摘要: 我們建議實例持續學習——一種將持續學習的概念應用于區分相同對象類別的實例的任務的方法。我們特別關注car對象,并通過度量學習逐步學會區分car實例與其他實例。我們從評估當前的技術開始我們的論文。在現有的方法中,災難性遺忘是顯而易見的,我們提出了兩個補救措施。首先,通過歸一化交叉熵對度量學習進行正則化。其次,我們使用合成數據傳輸來擴充現有的模型。我們在三個大型數據集上進行了大量的實驗,使用了兩種不同的體系結構,采用了五種不同的持續學習方法,結果表明,標準化的交叉熵和合成轉移可以減少現有技術中的遺忘。

付費5元查看完整內容

從圖像中進行自監督學習的目標是通過不需要對大量訓練圖像進行語義注釋的前置任務來構造語義上有意義的圖像表示。許多前置任務導致與圖像變換協變的表示。相反,我們認為語義表示在這種轉換下應該是不變的。具體來說,我們開發了前置不變表示學習(PIRL,發音為“pearl”),該學習基于前置任務的不變表示。我們將PIRL與一個常用的前置任務一起使用,該任務涉及解決拼圖游戲。我們發現,PIRL極大地提高了學習圖像表示的語義質量。我們的方法設置了一個新的藝術的自監督學習從圖像上幾個流行的基準自我監督學習。盡管是無監督的,但PIRL在學習圖像表示和目標檢測方面的表現優于有監督的前訓練。總之,我們的結果證明了具有良好不變性的圖像表示的自監督學習的潛力。

付費5元查看完整內容

題目: Instance-aware, Context-focused, and Memory-efficient Weakly Supervised Object Detection

摘要:

弱監督學習通過減少訓練過程中對強監督的需求,已經成為一種引人注目的對象檢測工具。然而,主要的挑戰仍然存在:(1)對象實例的區分可能是模糊的;(2)探測器往往聚焦于有區別的部分,而不是整個物體;(3)如果準確性不高,對象建議對于高回憶來說是冗余的,這會導致大量的內存消耗。解決這些挑戰是困難的,因為它經常需要消除不確定性和瑣碎的解決方案。為了解決這些問題,我們開發了一個實例感知和上下文相關的統一框架。它采用了一個實例感知的自訓練算法和一個可學習的具體DropBlock,同時設計了一個內存有效的順序批處理反向傳播。我們提出的方法在COCO(12.1%的AP, 24.8%的AP50)、VOC 2007(54.9%的AP)和VOC 2012(52.1%的AP)上取得了最先進的結果,極大地改善了基線。此外,該方法是第一個對基于ResNet的模型和弱監督視頻對象檢測進行基準測試的方法。

付費5元查看完整內容

題目: Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation

摘要: 圖像級弱監督語義分割是近年來深入研究的一個具有挑戰性的問題。大多數高級解決方案都利用類激活映射(CAM)。然而,由于監督的充分性和弱監督的差距,CAMs很難作為目標掩模。在這篇論文中,我們提出了一個自我監督的等變注意機制(SEAM)來發現額外的監督并縮小差距。我們的方法是基于等方差是完全監督語義分割的一個隱含約束,其像素級標簽在數據擴充過程中與輸入圖像進行相同的空間變換。然而,這種約束在圖像級監控訓練的凸輪上丟失了。因此,我們提出了對不同變換圖像的預測凸輪進行一致性正則化,為網絡學習提供自監督。此外,我們提出了一個像素相關模塊(PCM),它利用上下文外觀信息,并改進當前像素的預測由其相似的鄰居,從而進一步提高CAMs的一致性。在PASCAL VOC 2012數據集上進行的大量實驗表明,我們的方法在同等監督水平下表現優于最先進的方法。

付費5元查看完整內容

主題: Exploring Categorical Regularization for Domain Adaptive Object Detection

摘要: 在本文中,我們解決了域自適應對象檢測問題,其中主要挑戰在于源域和目標域之間的顯著域間隙。先前的工作試圖使圖像級別和實例級別的轉換明確對齊,以最終將域差異最小化。但是,它們仍然忽略了跨域匹配關鍵圖像區域和重要實例,這將嚴重影響域偏移緩解。在這項工作中,我們提出了一個簡單但有效的分類正則化框架來緩解此問題。它可以作為即插即用組件應用于一系列領域自適應快速R-CNN方法,這些方法在處理領域自適應檢測方面非常重要。具體地,通過將??圖像級多標簽分類器集成到檢測主干上,由于分類方式的定位能力較弱,我們可以獲得與分類信息相對應的稀疏但至關重要的圖像區域。同時,在實例級別,我們利用圖像級別預測(通過分類器)和實例級別預測(通過檢測頭)之間的分類一致性作為規則化因子,以自動尋找目標域的硬對齊實例。各種域移位方案的大量實驗表明,與原始的域自適應快速R-CNN檢測器相比,我們的方法獲得了顯著的性能提升。此外,定性的可視化和分析可以證明我們的方法參加針對領域適應的關鍵區域/實例的能力。

付費5元查看完整內容

題目: Context-Transformer: Tackling Object Confusion for Few-Shot Detection

摘要:

小樣本目標檢測是一個具有挑戰性但又很現實的場景,只有少數帶注釋的訓練圖像可用于訓練檢測器。處理這個問題的一個流行的方法是遷移學習,對在源域基準上預先訓練的檢測器進行微調。然而,由于訓練樣本的數據多樣性較低,這種轉移的檢測器往往不能識別目標域中的新對象。為了解決這一問題,我們提出了一個新穎的上下文轉換器:一個簡潔的深層傳輸框架。具體來說,Context-Transformer可以有效地利用源域對象知識作為指導,并自動地從目標域中的少量訓練圖像中挖掘上下文。然后,自適應地整合這些相關線索,增強檢測器的識別能力,以減少在小樣本場景下的目標混淆。此外,上下文轉換器靈活地嵌入到流行的ssd風格的檢測器中,這使得它成為端到端小樣本學習的即插即用模塊。最后,我們評估了上下文轉換器對小樣本檢測和增量小樣本檢測的挑戰性設置。實驗結果表明,我們的框架比目前最先進的方法有更好的性能。

付費5元查看完整內容

近年來,自適應目標檢測的研究取得了令人矚目的成果。盡管對抗性自適應極大地增強了特征表示的可遷移性,但對目標檢測器的特征鑒別能力的研究卻很少。此外,由于目標的復雜組合和域之間的場景布局的差異,在對抗性適應中,可遷移性和可辨別性可能會產生矛盾。本文提出了一種層級可遷移性校準網絡(HTCN),該網絡通過對特征表示的可遷移性進行分級(局部區域/圖像/實例)校準來協調可遷移性和可識別性。該模型由三部分組成:(1)輸入插值加權對抗性訓練(iwati),通過重新加權插值后的圖像級特征,增強了全局識別力;(2)上下文感知實例級對齊(context -aware Instance-Level Alignment, CILA)模塊,該模塊通過捕獲實例級特征與實例級特征對齊的全局上下文信息之間的潛在互補效應,增強了局部識別能力;(3)校準局部可遷移性的局部特征掩碼,為后續判別模式對齊提供語義指導。實驗結果表明,在基準數據集上,HTCN的性能明顯優于最先進的方法。

付費5元查看完整內容

主題: Learning Video Object Segmentation from Unlabeled Videos

摘要:

我們提出了一種新的視頻對象分割方法(VOS),解決了從未標記的視頻中學習對象模式的問題,而現有的方法大多依賴于大量的帶注釋的數據。我們引入了一個統一的無監督/弱監督學習框架,稱為MuG,它全面地捕捉了VOS在多個粒度上的內在特性。我們的方法可以幫助提高對VOS中可視模式的理解,并顯著減少注釋負擔。經過精心設計的體系結構和強大的表示學習能力,我們的學習模型可以應用于各種VOS設置,包括對象級零鏡頭VOS、實例級零鏡頭VOS和單鏡頭VOS。實驗表明,在這些設置下,有良好的性能,以及利用無標記數據進一步提高分割精度的潛力。

付費5元查看完整內容

大多數現有的目標檢測方法依賴于每類豐富的標記訓練樣本的可用性和批處理模式下的離線模型訓練。這些要求極大地限制了在只能容納具有有限標記訓練數據的新類別,特別是模型在部署過程中的準確性和訓練的效率。我們提出了一項研究,旨在通過考慮增量小樣本檢測(iFSD)問題設置來超越這些限制,其中新類必須以增量方式注冊(不需要重新訪問基類),并且只有很少的例子。為此,我們提出了開放式中心網(一次),這是一種用于增量學習的檢測器,用于檢測具有少量實例的新類對象。這是通過將CentreNet檢測器優雅地適應小樣本學習場景和元學習來實現的,元學習是一個類特定的代碼生成器模型,用于注冊新的類。一旦完全尊重增量學習范式,新的類注冊只需要一個前向遍歷的小樣本訓練樣本,并且不訪問基類——因此適合在嵌入式設備上部署。在標準物體檢測和時尚地標檢測任務上進行的大量實驗首次證明了iFSD的可行性,開拓了一個有趣而又非常重要的研究方向。

付費5元查看完整內容
北京阿比特科技有限公司