亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

人工智能作為新一輪產業變革的核心驅動力,正在釋放歷次科技革命和產業變革的巨大能量。持續探索新一代人工智能應用場景,將重構生產、分配、交換、消費等經濟活動各環節,催生 新技術、新產品、新產業。作為數字經濟轉型升級的推動力和新一輪科技競賽的制高點之一,近年來人工智能被提升到國家戰略高度。

2017至2019年,連續三年的政府工作報告中均提及加快人工智能產業發展;2020年,人工智能更是與SG基站、大數據中心、工業互聯網等一起被列入新基建范圍。在 “新基建“ 背景下,人工智能將為智能經濟的發展和產業數字化轉型提供底層支撐, 推動人工智能與SG、云計算、大數據、物聯網等領域深度融合。

付費5元查看完整內容

相關內容

在第四屆數字中國建設峰會“大數據論壇”上,國家工業信息安全發展研究中心副主任何小龍發布了《中國數據要素市場發展研究報告(2020~2021)》(以下簡稱“報告”)。

“十三五”時期是我國大數據產業蓬勃發展的階段,根據國家工業信息安全發展研究中心產值測算數據,截至2020年底,我國大數據產業規模已達萬億元。隨著我國大數據產業與實體經濟深度融合、產業發展不斷壯大,數據作為生產要素的屬性不斷凸顯。如何實現數據要素市場化配置,激活數據要素潛在價值,推動與實體經濟繼續深度融合,是“十四五”期間我國需要面臨的重要課題之一。

國家工業信息安全發展研究中心通過專家訪談、企業調研、案頭研究等方式開展數據要素市場相關研究,結合自有的逾5000家企業大數據案例庫對報告界定的產值規模進行了測算和分析,在報告中提出了數據要素及數據要素市場的邊界,梳理了國內外數據要素市場發展現狀,重點從市場概況、政策脈絡、產業圖譜及市場運行機制等角度,并結合相應的產值規模、技術水平、產品和服務、商業模式等情況,闡釋了我國數據要素市場的發展現狀,分析了現階段我國數據要素市場存在的問題及未來發展趨勢,提出了對策與建議。

付費5元查看完整內容

來源:中國信通院CAICT

近日,中國信通院發布《中國數字經濟發展白皮書(2020年)》,對我國各地區數字經濟發展、各行業數字化轉型、各領域發展亮點、數字經濟政策體系等進行了深入分析。其中,數字經濟測算方法被納入G20(阿根廷)《數字經濟測算工具箱》,測算結果被廣泛引用。

當前,新一輪科技革命和產業變革席卷全球,數據價值化加速推進,數字技術與實體經濟集成融合,產業數字化應用潛能迸發釋放,新模式新業態全面變革,數據已成為數字經濟發展的關鍵生產要素。從產業角度來看,我國已形成較為完整的數據供應鏈,在數據采集、數據標注、時序數據庫管理、數據存儲、商業智能處理、數據挖掘和分析、數據安全、數據交換等各環節形成了數據產業體系,數據管理和數據應用能力不斷提升。

《白皮書》就我國各地區數字經濟的發展情況進行了量化分析。從總量來看,江蘇、浙江、上海、北京、福建、湖北、四川、河南、河北、安徽、湖南等省份數字經濟增加值超過1萬億元;從占比來看,北京、上海數字經濟在地區經濟中占據主導地位,數字經濟GDP占比已超過50%。

白皮書看點如下:

一、數字經濟框架從“三化”擴展到“四化”:數字產業化、產業數字化、數字化治理、數據價值化;

二、我國數字經濟規模不斷擴張、貢獻不斷增強,2019年我國數字經濟增加值規模達到35.8萬億元,占GDP比重達到36.2%;

三、我國數字經濟結構持續優化,2019年數字產業化增加值達7.1萬億元,占GDP比重7.2%;產業數字化增加值達28.8萬億元,占GDP比重為29.0%;

四、數據成為數字經濟發展的關鍵生產要素,數據價值化按照資源化、資產化、資本化三階段加速推進。

數字化治理能力提升,數字政府建設加速推進政府治理從低效到高效、從被動到主動、從粗放到精準、從程序化反饋到快速靈活反應轉變,新型智慧城市已經進入以人為本、成效導向、統籌集約、協同創新的新發展階段,國家治理能力現代化水平得到了顯著提升。

//www.caict.ac.cn/kxyj/qwfb/bps/202104/t20210423_374626.htm

付費5元查看完整內容

當前人工智能已經成為全球最為活躍的創新領域,對經濟社會的發展影響深遠。白皮書提出,在過去一年中,人工智能的新算法不斷涌現,深度學習仍是這一時期發展主線,嘗試解決更為復雜的應用任務。人工智能的產業格局與生態體系更為明晰,開源開發框架格局逐步確立,以科技巨頭引領的生態系統垂直整合速度不斷加快;同時,產業發展重心開始轉變,企業比拼重點從單項技術的“理論”準確率轉向應用場景白熱化的“跑馬圈地”;人工智能的技術應用開始全面覆蓋日常生活、科學研究、社會治理、商業創新和國家安全等經濟社會的關鍵領域,以空前的廣度和深度推動社會發展。基于以上人工智能技術產業發展態勢判斷,白皮書建議“十四五”期間,我國應通過加快AI基礎原創技術創新突破、構建協同發展AI基礎核心生態、實現區域差異化發展布局、加快垂直行業深度融合、主動融入全球治理框架等措施,實現我國人工智能產業突破發展。

//www.caict.ac.cn/kxyj/qwfb/bps/202104/P0202578238.pdf

付費5元查看完整內容

日前,在“2020 AIoT產業年終盛典”上,物聯網智庫正式發布全新升級版的《2021中國AIoT產業全景圖譜報告》(以下簡稱“報告”)。據悉,這是物聯網智庫連續第五年推出“中國AIoT產業全景圖譜”,繼續通過近距離觀察AIoT產業及主要參與者,梳理產業現狀,并分析、預測市場發展趨勢,幫助讀者把握產業發展脈絡。

報告指出,AIoT產業是多種技術融合,賦能各行業的產業,整體市場潛在空間超十萬億元。艾瑞咨詢數據顯示,2019年中國AIoT產業總產值為3808億元,預計2020年達5815億元,同比增長52.7%,高增長主要得益于5G等新技術規劃化商用和AIoT應用在消費和公共事業等領域大規模落地。未來三年,在消費端和政策驅動端應用市場的繼續推動下,AIoT產業仍將保持高速增長。長期來看,產業驅動應用市場潛力巨大,將成為遠期增長點。

本報告依舊分為端、邊、管、云、用、產業服務六大板塊。整體來看,邊板塊下沉,更加貼近端側。同時,因為IoT和AI的進一步融合,AI相關內容在整個圖譜中將被更充分地體現。報告將從產業全貌和上述六大板塊來介紹產業現狀及趨勢,勾勒產業全景,并將通過優秀的案例,來展示AIoT產業發展成果及應用落地情況。

“端”指的是終端,主要包括底層的芯片、模組、傳感器、屏幕、AI底層算法、操作系統等。 “邊”是相對于“中心”的概念,泛指中心節點之外的位置。邊緣計算則指的是將計算及相關能力從中心處理節點下放至邊緣節點后形成的,貼近終端的計算能力。 “管”主要指的是連接通道,及相關產品和服務。大物聯時代帶來的大連接數和復雜設備現場環境,使得有線連接網絡捉襟見肘,因此在AIoT應用場景中,網絡以無線連接為主。 “云”主要指PaaS平臺,包括物聯網平臺、AI平臺和其他能力平臺。 “用”指的是AIoT產業應用行業。從核心驅動要素來看,可分為消費驅動型、政府驅動型和產業驅動型行業。 “產業服務”板塊主要包括AIoT產業相關的各類聯盟、協會、機構、媒體、投資基金等,這些組織為產業提供包括檢測、標準制定、媒體、咨詢、投融資等服務,是推動產業發展的重要力量。

付費5元查看完整內容

第四屆世界智能大會在津召開期間,中國新一代人工智能發展戰略研究院發布了《中國新一代人工智能科技產業發展報告?2020》和《中國新一代人工智能科技產業區域競爭力指數?2020》。報告指出,中國人工智能科技產業發展已經步入融合產業部門主導的新階段。人工智能和實體經濟的深度融合正在成為驅動中國經濟轉型升級和可持續發展的動力源泉。

  據中國新一代人工智能發展戰略研究院首席經濟學家、南開大學經濟研究所所長劉剛介紹,作為第四次工業革命的引擎,人工智能技術屬于典型的通用技術(General Purpose Technologies)。從前三次工業革命發生發展的歷程看,通用技術只有與經濟社會全球融合的條件下,才能成為帶動經濟長期發展的驅動力量。通用技術創新和產業化創造出前所未有的“關鍵生產要素”,例如,第一次工業革命的蒸汽機和第二次工業革命的電力。“關鍵生產要素”具有廣泛的應用領域、低成本和無限供給的特征。當“關鍵生產要素”被廣泛投入到現有產業,不斷提高企業和產業的生產力水平,才能帶來經濟和社會的長期發展。例如,作為第二次工業革命通用技術的電力,從照明到生產流程的改造再到以電力為能源的生活用品的普及,在與經濟社會融合的過程中,不僅帶來了社會生產力的大幅躍升,而且改變了人類的生產和生活方式。

  第四工業革命的核心技術是包括互聯網、物聯網、大數據、云計算、區塊鏈、5G和人工智能在內的新一代信息技術。新一代信息技術的產業化使“數據和計算”成為第四次工業革命的“關鍵生產要素”。數據是網絡空間的所有存在物,是網絡空間對物理和社會空間映射的產物。網絡空間及其與物理和社會空間的互動和融合產生海量數據,大數據、云計算和區塊鏈技術解決了數據的采集、整理、存儲和分析。人工智能則實現了數據的精準匹配、仿真模擬和優化控制。作為新型基礎設施建設的重要內容,5G保證了網絡空間的發展和數據的瞬時傳輸。新一代信息技術的發展使“數據和計算”成為類似蒸汽機和電力一樣的廉價投入品,為賦能和改造現有產業創造條件。

  作為通用技術,在人工智能科技產業的發展過程中,形成了兩個主要產業部門:核心產業部門和融合產業部門。核心產業部門是指包括人工智能在內的新一代信息技術產業化過程中創造的新興產業部門。核心產業部門產出“數據和計算”。而融合產業部門則是人工智能與實體經濟融合發展過程中創造的產業部門,例如,智能制造、智能交通、新零售、新媒體和數字內容產業。融合產業部門把“數據和計算”作為投入品,產出則是我們日常生產和生活中的智能化產品。

  中國新一代人工智能發展戰略研究院對人工智能科技產業的動態追蹤研究表明,隨著核心產業部門的發展和核心技術的成熟,面對新冠疫情的沖擊和包括5G在內的新型基礎設施建設步伐的加快,中國的人工智能科技產業開始步入融合產業部門主導的新發展階段。

  首先,從797家中國人工智能骨干企業中的581家應用層企業的應用領域分布看,人工智能技術已經廣泛分布在十八個應用領域。其中,企業技術集成與方案提供、智能機器人兩個應用領域的企業數占比最高,分別為15.43%和9.66%。關鍵技術研發和應用平臺、新媒體和數字內容、智能醫療、智能硬件、金融科技、智能商業和零售和智能制造領域企業數占比相對較高,分別為8.91%、8.91%、7.65%、7.03%、6.65%、6.52%、6.15%。智能農業的占比最低,僅為0.75%。企業技術集成與方案提供和關鍵技術研發及應用平臺占比排名第一和第三位,說明在人工智能與實體經濟的融合發展過程中,技術集成和應用方案提供發揮著至關重要的作用。而智能機器人企業數排名第二則說明制造業的智能化是人工智能發展的迫切需求。

  在581家人工智能樣本企業中,可獲得577家企業截至2019年底的融資數據。通過577家企業所屬產業領域的融資額占比,可以看出哪些應用領域更受資本的青睞。從人工智能應用領域企業融資額的分布看,智慧零售、新媒體和數字內容、智慧金融類應用領域的融資額最高,占比分別為18.37%、15.96%和15.94%。除此以外,關鍵技術研發和應用平臺、智慧交通、智能硬件融資額占比在5%以上,屬于占比較高的應用領域。

  其次,人工智能基礎和技術層企業通過與實體經濟企業的協同,共同構建產業智能化創新生態,推動人工智能與實體經濟的融合發展。其中,最為典型的是智能安防產業的發展。在傳統安防產業智能化的過程中,圍繞著視頻數據結構化、智能終端和邊緣計算在內的關鍵技術突破,形成了富有活力的產業創新生態系統。在智能制造、智能醫療、智能交通、金融科技和智能教育等領域,都出現了產業智能化創新生態系統。適合于特定產業領域智能化的創新生態系統建設,成為人工智能與實體經濟深度融合發展的標志。

  第三,處于“極化”中的人工智能核心產業部門企業,通過與其他地區優勢產業企業的合作,通過技術“擴散”,推動人工智能與實體經濟的融合發展。該報告基于15家人工智能開放創新平臺和4家計算機視覺獨角獸公司的技術“擴散”數據分析表明,通過與其他地區優勢產業的合作,共同推動人工智能與實體經濟的融合發展。其中,電子信息制造業和汽車制造成為智能化發展的前沿產業。

  最后,傳統產業的龍頭企業,通過自主創新、技術引進和與核心技術企業合作的方式,轉型升級為人工智能企業,成為推動人工智能與傳統產業融合發展的主導者。報告基于50家非初始人工智能上市公司的分析表明,傳統產業的龍頭企業通過智能化轉型,與掌握人工智能核心技術的企業共同構建產業創新生態系統,推動產業的智能化。從技術來源看,50家非初始人工智能上市公司主導的融合產業部門的技術來源,主要是核心產業部門的人工智能初創企業,占比為16%。其次是人工智能上市公司,例如,阿里巴巴和科大訊飛,占比為16%,排名第三和第四的分別是非初創人工智能技術公司和獨角獸公司,占比為10%和7%。除了平臺公司,人工智能初創企業和中小企業是產業智能化的重要技術來源方。

  在系統調查研究的基礎上,報告發現,人工智能與實體經濟的融合發展,不是簡單的技術引進和集成,而是一系列互補性創新和專用技術體系的形成過程。因而,推動人工智能與實體經濟融合發展需要創新思維。尤其是對后發地區而言,不能僅僅把工作的重心放在招商引資上,而應當重視通過培育和構建適宜當地產業智能化需求的產業創新生態系統和創新創業環境,通過互補性創新和專用性技術積累,才能通過人工智能與當地優勢產業的融合發展過程中,不斷提升區域企業和產業競爭力。

付費5元查看完整內容

主題: 2019年人工智能的發展

摘要:

人工智能是一個很寬泛的概念,概括而言是對人的意識和思維過程的模擬,利用機器學習和數據分析方法賦予機器類人的能力。人工智能將提升社會勞動生產率,特別是在有效降低勞動成本、優化產品和服務、創造新市場和就業等方面為人類的生產和生活帶來革命性的轉變。據Sage預測,到2030年人工智能的出現將為全球GDP帶來額外14%的提升,相當于15.7萬億美元的增長。全球范圍內越來越多的政府和企業組織逐漸認識到人工智能在經濟和戰略上的重要性,并從國家戰略和商業活動上涉足人工智能。全球人工智能市場將在未來幾年經歷現象級的增長。據中國產業信息網和中國信息通信研究院數據,世界人工智能市場將在2020年達到6800億元人民幣,復合增長率達26.2%,而中國人工智能市場也將在2020年達到710億元人民幣,復合增長率達44.5%。

我國發展人工智能具有多個方面的優勢,比如開放的市場環境、海量的數據資源、強有力的戰略引領和政策支持、豐富的應用場景等,但仍存在基礎研究和原創算法薄弱、高端元器件缺乏、沒有具備國際影響力的人工智能開放平臺等短板。此份報告不但對人工智能關鍵技術(計算機視覺技術、自然語言處理技術、跨媒體分析推理技術、智適應學習技術、群體智能技術、自主無人系統技術、智能芯片技術、腦機接口技術等)、人工智能典型應用產業與場景(安防、金融、零售、交通、教育、醫療、制造、健康等)做出了梳理,而且同時強調人工智能開放平臺的重要性,并列舉百度Apollo開放平臺、阿里云城市大腦、騰訊覓影AI輔診開放平臺、科大訊飛智能語音開放創新平臺、商湯智能視覺開放創新平臺、松鼠AI智適應教育開放平臺、京東人工智能開放平臺NeuHub、搜狗人工智能開放平臺等典型案例呈現給讀者。最后,列舉國內外優秀的人工智能公司與讀者共勉。隨著技術的進步、應用場景的豐富、開放平臺的涌現和人工智能公司的創新活動,我國整個人工智能行業的生態圈也會逐步完善,從而為智慧社會的建設貢獻巨大力量。

付費5元查看完整內容

德勤發布中國人工智能產業白皮書,內容關于人工智能行業綜述,人工智能商業化應用,以及中國主要人工智能產業發展區域及定位。

主要發現

  1. 中國人工智能產業發展迅速, 但整體實力仍落后于美國。中國人工智能產業發展迅速, 2018年中國人工智能市場規模有望超過300億元人民幣。人工智能企業數量超過1000家,位列全球第二。本次人工智能浪潮以從實驗室走向商業化為特征, 其發展驅動力主要來自計算力的顯著提升、 多方位的政策支持、 大規模多頻次的投資以及逐漸清晰的用戶需求。與此同時,中國處于人工智能發展初期, 基礎研究、 芯片、 人才方面的多項關鍵指標與美國差距較大。

  2. 中國企業價值鏈布局側重技術層和應用層, 對需要長周期的基礎層關注度較小。人工智能產業鏈分為基礎層(芯片、 算法框架)、 技術層(計算機視覺、自然語義理解、 語音識別、 機器學習) 和應用層(垂直行業/精確場景)。中國企業布局比較偏好技術相對成熟、 應用場景清晰的領域, 對基礎層關注度較小。瞄準AI專用芯片或將為中國企業另辟蹊徑。

3.科技巨頭生態鏈博弈正在展開,創業企業則積極發力垂直行業解決方案,深耕巨頭的數據洼地, 打造護城河。科技巨頭構建生態鏈, 已經占據基礎設施和技術優勢。創業企業僅靠技術輸出將很難與巨頭抗衡, 更多的創業企業將發力深耕巨頭的數據洼地(金融、 政府事務、 醫療、 交通、 制造業等),切入行業痛點, 提供解決方案, 探索商業模式。

  1. 政府端是目前人工智能切入智慧政務和公共安全應用場景的主要渠道,早期進入的企業逐步建立行業壁壘, 未來需要解決數據割裂問題以獲得長足發展。各地政府的工作內容及目標有所差異, 因而企業提供的解決方案并非是完全標準化的,需要根據實際情況進行定制化服務。由于政府一般對于合作企業要求較高,行業進入門檻提高, 強者恒強趨勢明顯。

  2. 人工智能在金融領域的應用最為深入, 應用場景逐步由以交易安全為主向變革金融經營全過程擴展。傳統金融機構與科技企業進行合作推進人工智能在金融行業的應用, 改變了金融服務行業的規則, 提升金融機構商業效能,在向長尾客戶提供定制化產品的同時降低金融風險。

  3. 醫療行業人工智能應用發展快速,但急需建立標準化的人工智能產品市場準入機制并加強醫療數據庫的建設。人工智能的出現將幫助醫療行業解決醫療資源的短缺和分配不均的眾多民生問題。但由于關乎人的生命健康, 醫療又是一個受管制較嚴的行業。人工智能能否如預期廣泛應用, 還將取決于產品商業化過程中如何制定醫療和數據監管標準。

  4. 以無人駕駛技術為主導的汽車行業將迎來產業鏈的革新。傳統車企的生產、 渠道和銷售模式將被新興的商業模式所替代。新興的無人駕駛解決方案技術公司和傳統車企的行業邊界將被打破。隨著共享汽車概念的興起。無人駕駛技術下的共享出行將替代傳統的私家車的概念。隨著無人駕駛行業規范和標準的制定, 將衍生出更加安全和快捷的無人貨運和物流等新興的行業。

  5. 人工智能在制造業領域的應用潛力被低估,優質數據資源未被充分利用。制造業專業性強, 解決方案的復雜性和定制化要求高, 所以人工智能目前主要應用在產品質檢分揀和預測性維護等易于復制和推廣的領域。然而, 生產設備產生的大量可靠、 穩定、 持續更新的數據尚未被充分利用, 這些數據可以為人工智能公司提供優質的機器學習樣本, 解決制造過程中的實際問題。

  6. 人工智能加速新零售全渠道的融合,傳統零售企業與創業企業結成伙伴關系, 圍繞人、 貨、 場、 鏈搭建應用場景。人工智能在各個零售環節多點開花, 應用場景碎片化并進入大規模實驗期。傳統零售企業開始布局人工智能, 將與科技巨頭在應用大數據和人工智能領域同臺競技, 意味零售商將更加積極與創業公司建立伙伴關系。

  7. 政策與資本雙重驅動推動人工智能產業區域間競賽, 京滬深領跑全國, 杭州發展逐步加速。京津冀、 珠三角、長三角以及西部川渝地區成為人工智能企業聚集地區。北京、 上海、 深圳牢牢占據人工智能城市實力第一梯隊的位置, 廣州的大型企業與初創企業數量較少, 杭州主要依靠阿里巴巴,因而屬于第二梯隊, 重慶則受到技術與人才基礎限制處于第三梯隊。

  8. 各地政府以建設產業園的方式發揮人工智能產業在推動新舊動能轉換中的作用。人工智能產業園呈現多點開花、 依托原有高科技產業園以及與原有園區企業產生聯動效應的特點。但由于建設速度過快, 園區也出現了空心化與人才缺口的問題。

12.杭州未來科技城抓住人工智能產業快速發展的機會并取得顯著成績,未來可以從人才、 技術、 創新三要素入手進一步打造產業競爭力。推出培養、 吸引、 保留人才的具體措施, 建立具有成長性的人才庫;通過完善產業鏈布局, 發現高價值技術企業并了解企業訴求。提高對技術型企業的招商效率;從創新主體、創新資源和創新環境三個層次聚集創新要素, 打造利于企業創新創業的有利條件。

付費5元查看完整內容

12月2日,國家工業信息安全發展研究中心發布了《人工智能中國專利技術分析報告》。在科學分類和深入研究的基礎上,對人工智能下深度學習技術、語音識別、計算機視覺、云計算、自然語言處理、智能駕 駛、智能機器人這七個分支在中國的專利態勢進行深度分析。該報告主題明確、內容翔實、數據嚴謹,前瞻探索頗具深度。

新一輪科技革命和產業變革正在萌發,在移動互聯網、大數據、 超級計算、傳感網、腦科學等新理論新技術的驅動下,人工智能發展 進入新階段,智能化成為技術和產業發展的重要方向。作為引領新一 輪科技革命和產業變革的戰略性技術,人工智能具有溢出帶動性很強 的“頭雁”效應。世界發達國家均將人工智能上升為國家戰略,紛紛 出臺相關計劃,力圖在新一輪國際科技競爭中搶占產業技術制高點。近二十年來,全球各大企業、大學、研究機構等紛紛加快人工智能技 術研發腳步,全球人工智能專利申請量成快速上升趨勢,IBM、微軟、 三星等國外企業均積極在人工智能領域進行專利布局。

中國高度重視人工智能產業的發展。2017 年國務院發布《新一 代人工智能發展規劃》,對人工智能產業進行戰略部署;在 2018 年 3 月和 2019 年 3 月的政府工作報告中,均強調指出要加快新興產業發 展,推動人工智能等研發應用,培育新一代信息技術等新興產業集群 壯大數字經濟。截至 2019 年 10 月,中國人工智能專利申請量累計 44 萬余件,超越美國成為 AI 領域專利申請量最高的國家。國家電網、 百度、中國科學院、騰訊、清華大學等國內主要專利權人正不斷形成 人工智能技術積累,提升在全球人工智能專利布局中的競爭實力。

付費5元查看完整內容

該白皮書對大數據與實體經濟融合發展情況進行了全景展現,報告顯示我國大數據融合發展已具備技術、產業、應用和政策基礎,大數據在制造業、農業、服務業等實體經濟各領域應用不斷深入,給經濟社會帶來的益處和價值日益顯現。此外,白皮書還對大數據與實體經濟融合發展機遇與挑戰進行了深入分析,對推動我國大數據與實體經濟融合創新發展提出了政策建議。

付費5元查看完整內容
北京阿比特科技有限公司