近年來,隨著大國在數量和質量上不斷增強其核武庫,以往由美國和俄羅斯主導的兩極核秩序已讓位于更加動蕩的三極核秩序。與此同時,包括軍事應用在內的人工智能(AI)技術領域也取得了重大突破。由于這兩種趨勢,在美中俄地緣政治競爭的背景下理解人工智能與核的關系變得日益迫切。
人工智能在軍事上的用例多種多樣,包括分類模型、分析和預測模型、生成式人工智能和自主性。鑒于其種類繁多,有必要從三大類別來研究人工智能與核的關系:核指揮、控制和通信;核平衡的結構要素;以及人工智能支持的常規系統與核風險的糾纏。雖然這些類別中的每一類都有可能產生風險,但本報告認為,特定情況造成的風險程度取決于三大因素:人類的作用、人工智能系統成為單點故障的程度以及人工智能攻防平衡。
隨著大國日益致力于實現核武庫現代化并將人工智能融入軍隊,政策制定者必須意識到人工智能與核的關系所帶來的風險。在當前的外交和軍事背景下,美國與中國和俄羅斯之間的雙邊關系日益緊張,中俄協調也有所加強,在這種情況下與大國就這一關聯問題深度探討可能會困難。盡管如此,美國決策者仍可采取各種措施來加強在這些問題上的威懾力和穩定性。這些措施包括
圍繞人工智能與核的關系問題積累知識和能力;
將人工智能納入與核及其他戰略風險相關的外交舉措,反之亦然;
建立和促進與核武庫和其他戰略能力有關的人工智能安全使用規范;
制定政策和技術標準,準確評估如何以及何時讓人類參與所有核相關進程;
將人工智能技術作為監督和審查美國核武庫的一個因素;
投資人工智能支持的網絡和空間能力,以加強防御和復原能力,減少攻擊這些領域的動機,并降低糾纏風險;
就人工智能將如何影響與核能力和常規能力有關的延伸威懾計算與美國盟國密切磋商;以及
建立一套全面的風險降低和危機管理機制,同時認識到取得進展的障礙。
如果不采取這些措施,美國和世界就可能面臨危險,并且沒有準備好抓住人工智能-核關系日益突出所帶來的任何機遇。
隨著人工智能(AI)領域的飛速發展,這些技術的變革潛力對國家和國際安全產生了深遠的影響。因此,全世界的政策制定者和監管者越來越認識到,迫切需要超越國界和個人利益的共同理解,尤其是在人工智能應用于安全和國防領域的情況下。
然而,國家和非國家行為者之間在人工智能、安全和防衛方面缺乏既定的全球合作框架,這構成了一項重大挑戰。這種共同治理的缺失導致技術進步不協調和各自為政,給國際和平與安全、穩定和繁榮帶來嚴重后果。然而,各國與非國家行為者合作的愿望日益強烈。各國認識到,這種參與至少可以為治理方法和解決方案提供信息,并確保其制定、采納和實施都有據可依。此外,它還可以確保行業、民間社會組織、研究、技術和科學界以及學術界的認識和支持。
高層也有同感:聯合國秘書長在其《和平新議程》中強調,必須 “確保工業界、學術界、民間社會和其他部門的利益攸關方參與 ”制定 “關于通過多邊進程設計、開發和使用人工智能軍事應用的規范、規則和原則”。因此,迫切需要建立、促進和支持一個獨立、中立和可信賴的平臺,該平臺將促成多方利益攸關方對話,并為軍事領域負責任地開發、獲取、部署、整合和使用人工智能技術孵化治理途徑和解決方案。
通過跨地區、跨學科和多方利益相關者的投入,在軍事領域建立一個共享的、堅實的人工智能知識庫。
建立對技術和他人的信任
解讀人工智能系統在軍事領域的開發、測試、部署和使用中的人的因素
了解和解讀軍事領域負責任人工智能的數據實踐
了解人工智能系統的生命周期影響(包括生命周期的終結),在軍事領域推廣負責任的人工智能
了解與人工智能有關的破壞穩定問題的驅動因素、手段、方法和應對措施,包括人工智能系統促成、誘發和倍增的破壞穩定問題
隨著人工智能(AI)領域的飛速發展,這些技術的變革潛力對國家和國際安全產生了深遠的影響。因此,全世界的政策制定者和監管者越來越認識到,迫切需要超越國界和個人利益的共同理解,尤其是在人工智能應用于安全和國防領域的情況下。
然而,國家和非國家行為者之間在人工智能、安全和防衛方面缺乏既定的全球合作框架,這構成了一項重大挑戰。這種共同治理的缺失導致技術進步不協調和各自為政,給國際和平與安全、穩定和繁榮帶來嚴重后果。然而,各國與非國家行為者合作的愿望日益強烈。各國認識到,這種參與至少可以為治理方法和解決方案提供信息,并確保其制定、采納和實施都有據可依。此外,它還可以確保行業、民間社會組織、研究、技術和科學界以及學術界的認識和支持。
聯合國秘書長在其《和平新議程》中強調,必須 “確保工業界、學術界、民間社會和其他部門的利益攸關方參與”,“通過多邊進程,圍繞人工智能軍事應用的設計、開發和使用制定規范、規則和原則”。因此,迫切需要建立、促進和支持一個獨立、中立和可信賴的平臺,該平臺將促成多方利益攸關方對話,并為軍事領域負責任地開發、獲取、部署、整合和使用人工智能技術孵化治理途徑和解決方案。
人工智能(AI)有可能在社會、經濟和政策的各個方面帶來變革,包括國防和安全。英國希望成為在民用和商業應用領域推廣人工智能以及負責任地發展國防人工智能的領頭羊。這就要求對與人工智能軍事應用相關的新出現的風險和機遇,以及英國如何與其他國家開展最佳合作以減輕或利用這些風險和機遇,有一個清晰而細致的認識。
2024 年 3 月,英國國防部(MOD)國防人工智能與自主單元(DAU)和外交、聯邦與發展辦公室(FCDO)聯合委托蘭德歐洲公司(RAND Europe)開展一項簡短的范圍界定研究。該研究的目的是初步探討人工智能在軍事上的應用可能在戰略層面產生風險和機遇的方式,因為迄今為止的大部分研究都集中在戰術層面或非軍事主題(如人工智能安全)上。后續工作將更詳細地探討這些問題,為英國在這些問題上的國際參與戰略提供信息。
本技術報告旨在為理解人工智能軍事應用所帶來的戰略風險和機遇設定一個基線。一份獨立的總結報告則側重于為決策者提供高層次的研究結果。
人工智能最好被理解為一套雙重用途的通用技術,以硬件為基礎,但以軟件為核心。與傳統軍事技術不同的是,它們高度民主化,擴散速度極快。創新是由商業用途的私營部門驅動的,而不是由政府或國防部門驅動的。對軍事應用和影響的集體認識正在提高,但起點較低。辯論往往優先考慮某些引人注目的問題,如致命自主武器系統(LAWS)或人工智能(AGI),而忽略了其他議題。它只關注戰術,而忽視戰略;只關注風險,而忽視機遇;或只關注軍事人工智能的直接后果,而忽視從長遠來看可能影響最大的二階和三階效應。
為了解決這個問題,國防部和國防和外交、聯邦與發展辦公室(FCDO)委托進行這項研究,以制定一個概念框架,規劃軍事人工智能帶來的戰略風險和機遇。
圖 0.1 框架:人工智能軍事應用的戰略風險與機遇
本報告詳細探討了許多風險和機遇,其中最緊迫的包括
信息操縱,如人工智能深度偽造,這不僅會引發政治、經濟和社會問題,還會在危機時刻影響軍事決策。
賦予非國家行為者挑戰國家軍隊主導地位的不對稱能力,或者在最壞的情況下,賦予他們新的大規模毀滅性工具(如生物武器)。
人工智能對對手之間攻防平衡、戰爭升級動態以及核威懾穩定性的相互影響。這些問題在超級大國競爭加劇的情況下,在世界已經在應對其他不安全因素(如烏克蘭、以色列-伊朗\移民、氣候變化等)的情況下,尤其令人擔憂。
與未來出現的任何人工智能相關的潛在災難性安全和安保風險。
在英國國內,還需要應對對國內政治和經濟產生破壞性影響的重大問題。這些問題決定了國防的目的和手段。在國外,人工智能同樣會對以規則為基礎的國際秩序的健康產生深遠影響,這取決于各國、工業界和民間社會是否以及如何有效地共同管理其影響。人工智能專家非常擔心,人工智能會在多大程度上使世界許多地方的平衡傾向于壓制性和獨裁的治理模式,同時有可能顛覆民主政治、污染信息環境和破壞社會的戰斗意志。
其中許多潛在風險也可能成為戰略優勢的機遇。人工智能的利弊平衡取決于各國如何快速有效地調整武裝部隊等機構,以利用人工智能的優勢。同樣,這也取決于各國政府如何在國際上施加影響,使全球軍事人工智能行為朝著符合本國利益和價值觀的方向發展。這就意味著各國政府要愿意進行重大投資、組織改革和文化變革,以改變國防部門對新技術的態度。
為了應對這些挑戰,各國必須緊急制定一項全面的行動計劃,考慮到人工智能技術進步、圍繞人工智能或通過人工智能進行的地緣政治競爭以及國際體系中圍繞人工智能不斷演變的規范之間復雜的相互作用。這應利用一套影響不同受眾的機制工具包,運用外交、信息、軍事和經濟(DIME)杠桿,匯集一套積極主動的行動方案:
這也應借鑒其他領域的經驗教訓--如本報告所述--以及最近關于人工智能的高級別倡議的勢頭。突出的例子包括布萊切利峰會、軍事領域負責任的人工智能(REAIM)峰會和《軍事人工智能政治宣言》。
表0.2塑造全球國防人工智能發展的機制工具包
工具包類別 | 優先行動手冊 |
---|---|
促進英國國防采用人工智能并從中獲益的機制 | 加快整個國防領域對人工智能的投資和采用,同時提高抵御惡意或意外濫用人工智能的能力 |
限制采用人工智能的機制和對手的利益 | 采取競選方式,限制、減緩或增加對手(國家或非國家)部署軍事人工智能的成本 |
形成新的軍事人工智能管理安排的機制 | 在提高對軍事人工智能風險的認識、發現問題和分享學習成果方面發揮領導作用;與主要盟國(如美國)和競爭對手制定透明度和建立信任措施,以降低升級風險;促進采用包容性和參與性方法,就人工智能軍事領域負責任的行為規范達成新的全球共識,為今后達成更強有力的具有約束力的協議做好準備;促進減少核和生物相關的人工智能緊急風險的小型多邊機制的平行發展;研究如何將人工智能納入核查和合規機制,反之亦然;隨著時間的推移,將當前零散的人工智能治理倡議整合為一個更加具體的架構 |
人工智能(AI)領域發展迅速。新的人工智能技術不斷被開發出來,有時甚至是突破性的。這些技術越來越多地融入日常生活的方方面面,對商業、經濟和科學發展與創新至關重要。國防部門也在尋求利用人工智能,并將這些新技術引入安全領域,這并不奇怪。正如 Murugesan 所解釋的那樣(2022 年,第 4 頁),除其他外,人工智能可用于 “重復性任務,從而將安保人員解放出來,從事需要人類智慧的項目”。此外,為了證明人工智能的好處,“北約成員國已經開始投資這項技術,并將其納入國防戰略”(Carlo, 2021, 第 269 頁)。
盡管人工智能好處多多,但預計它將給 “交戰雙方的戰略、作戰藝術、戰術和條令帶來巨大變化”(Ploumis, 2022, 第 1 頁)。因此,需要仔細考慮和研究這些變化,以防止它們可能帶來的風險。例如,人工智能技術 “對網絡戰有重大影響,但也可能產生不利影響,并在未來顯著增加網絡攻擊的數量和威脅程度”(Kline et al.)
因此,人工智能系統有望影響 “戰爭的進行,帶來新的能力,并改變力量平衡”(辛格-吉爾,2019 年,第 169 頁)。根據這些假設,本文旨在研究人工智能如何影響沖突的性質。特別是,考慮到技術兼容性和倫理因素,本文試圖更好地理解在軍事聯合行動中將人工智能技術引入安全部門所帶來的益處和風險。人工智能系統在國防領域的發展如何影響軍事合作?將人工智能納入國防部門有哪些好處和風險?
在討論了人工智能的定義問題之后,本文將討論將人工智能技術納入國防領域的諸多影響。人工智能軍事應用的利弊是什么?人工智能會帶來哪些安全后果?為了回答這些重要問題,本文分為四個主要部分。
第一部分討論網絡戰問題。它側重于人工智能對網絡安全的影響。在定義了網絡戰的概念并解釋了該主題的相關性之后,將根據其主要目標分析人工智能的兩種主要應用:進攻型人工智能和防御型人工智能。前者旨在改進網絡攻擊,后者旨在增強網絡空間中特定行為者的防御能力。
第二部分側重于人工智能在物理空間的應用。人工智能可以通過監視、偵察和改進組織的形式,為戰場上的軍事行動帶來巨大的戰術效益。人工智能還可應用于無人系統和車輛,也稱為無人機和機器人。然而,這并非沒有風險,因為人工智能系統并非無懈可擊,可能成為網絡攻擊的目標,給軍事行動帶來嚴重后果。
第三部分分析了人工智能的地緣政治影響。這項技術為國家行為體提供了重大戰略優勢。這些優勢吸引他們增加對人工智能的投資,并將其納入國防能力。這有可能引發新一輪軍備競賽,將人工智能技術武器化。將人工智能系統納入國防領域也給軍事合作帶來了挑戰,特別是在技術兼容性方面。最后,最后一節將討論將人工智能納入安全部門的主要倫理考慮因素。
法國、俄羅斯、英國、美國、中國等核武器國家日益認識到將人工智能(AI)融入核武器指揮、控制和通信(NC3)系統的意義。盡管風險和隱患已得到廣泛承認,但在瞬息萬變的核領域獲得戰略優勢的誘惑,加上擔心落后于競爭對手的人工智能創新,可能會推動這些國家競相將人工智能技術整合到可靠性尚待驗證的 NC3 系統中。
人工智能并不是一個新名詞,核武器國家已經將屬于這一范疇的技術整合到 NC3 系統中。但是,與當前基于規則的模型相比,當今最先進的基于深度學習的人工智能模型的可能集成帶來了一系列明顯不同的、更大的挑戰。人們對功能強大的大型模型在影響核武器決策等關鍵功能方面的可靠性和適用性存在重大擔憂。
歐洲領導力網絡(ELN)開展的題為"研究人工智能對戰略穩定的影響:歐洲和五核國的觀點"。在美國國務院軍控、核查與合規局的支持下,該項目確定了核武器國家如何在其 NC3 系統中使用和尋求使用人工智能技術,并探討了這種整合的反響。
報告探討了當今先進人工智能系統的固有風險,揭示了該技術不同分支的特點和風險。報告為通用風險評估框架奠定了基礎,以分析考慮整合的模型,并為暫停將高風險人工智能系統整合到 NC3 奠定了規范和門檻基礎。
在一系列秘密對話中,來自核武器國家的專家比較了他們對在 NC3 系統中使用人工智能的風險和益處的評估,以期建立防止危機情況下核升級的防范措施。
該項目的核心發現包括
核武器國家將人工智能納入 NC3 系統的方式各不相同,反映了特定的核條令、軍事文化、軍民關系和道德考量。不過,它們都看到了人工智能在提高態勢感知、早期威脅探測和決策支持方面的價值。
所有核武器國家都強調人類監督核決策的重要性。它們都同意讓 “人在回路中 ”的概念,但不清楚它們的解釋在多大程度上有重疊。
整合尖端人工智能模型,如大型語言模型,由于其不透明性和不穩定性,對戰略和危機的穩定性構成了特殊風險。
核武器國家應同意迅速暫停整合高風險的人工智能模型。可在本報告介紹的風險分析系統基礎上對暫停措施進行詳細說明,以提供一個評分系統,對高風險人工智能系統進行分類。
對于不具有同樣高風險的人工智能模型,第一軌道層面的雙邊倡議應圍繞保留人類對核系統的控制展開。與此同時,第二軌道對話應深入探討技術問題,如確保人類監督的實用方法。
近年來,人工智能(AI)和機器學習領域的進步為增強人類能力和提高各種自主系統的功能創造了前所未有的機遇,包括在國際安全領域。然而,在國防領域,訓練日益復雜的人工智能系統所需的高質量、高度多樣化和相關的真實世界數據集卻十分稀缺。因此,合成數據正逐漸成為開發和訓練人工智能系統的數據工具箱中必不可少的工具。合成數據的特點和潛在優勢,以及該技術在各個領域的成熟應用,使其成為圍繞在國際安全背景下使用人工智能的辯論的一個相關話題。
本入門指南簡要概述了合成數據,包括其特點、生成方式、增加的價值、風險以及在國防組織和軍事行動中的潛在用例。此外,本手冊還概述了現有的數據挑戰和限制,這些挑戰和限制促使合成數據成為開發日益復雜的人工智能系統的重要工具。
迄今為止,合成數據在國際安全領域的應用大多停留在實驗和探索階段。不過,合成數據的特點可對訓練人工智能系統產生有益影響。特別是,合成數據可以生成高度多樣化甚至新穎的數據集,對數據屬性進行精細控制,必要時自動注釋或標記數據,而且成本效益高。這本入門書探討了合成數據的主要特點如何使軍隊和國防組織受益,讓他們能夠在防御性和進攻性自主系統中集成能力更強、更可靠的人工智能系統。
雖然合成數據有利于訓練人工智能系統,并有助于緩解軍隊和國防組織面臨的一些數據問題,但它并不是靈丹妙藥,也伴隨著風險和挑戰。使用合成數據所帶來的好處將取決于各組織是否有能力駕馭這些風險,以便以負責任和安全的方式并按照法律要求和道德價值觀使用根據合成數據訓練的人工智能系統。
圖1所示。真實世界與合成數據
本報告調查了對抗性機器學習 (AML),即研究基于機器學習 (ML) 的人工智能系統弱點的研究方法。近年來,機器學習,尤其是深度學習 (DL),在圖像分類、自然語言處理和自主代理等多個領域取得了快速進展。因此,深度學習在軍事環境中也很受關注。然而,隨著進步,人們對 AML 方法的興趣不斷增加,新的攻擊變體不斷發布。實際上,所有 DL 系統在某種程度上都容易受到影響,無論是混淆它們、避免被它們檢測到,還是提取它們可能持有的秘密信息。從軍事角度來看,重要的是要意識到這種利用的可能性,無論是針對自己的人工智能系統還是針對對手使用的系統。
該報告概述了AML研究,然后展示了針對不同類型人工智能系統的一系列攻擊方法:
每個案例都描述和討論了攻擊并評估了實施。本報告的重點是攻擊。雖然在適用的情況下簡要討論了針對 AML方法的防御,但后續報告的主題是對AML防御的更深入研究。
關鍵詞:人工智能、機器學習、深度學習、深度神經網絡、欺騙、網絡攻擊、攻擊向量、漏洞、對抗樣本、數據中毒、數據提取、對抗策略
深度學習 (DL) 的出現將智能計算機軟件的性能和能力帶入了新的性能水平。將基于 DL 的軟件嵌入軍事指揮、控制、通信、計算機、情報、監視和偵察 (C4ISR) 系統中,有可能徹底改變創建準確及時的共同作戰圖 (COP) 的能力,從而使軍事決策過程可以比以往任何時候都更快、更精確地執行。從長遠來看,深度學習還可以用于在遠遠超出人類能力范圍的復雜戰爭環境中制定軍事計劃。
然而,由深度神經網絡 (DNN) 實施的基于 DL 的軟件容易受到各種威脅或網絡攻擊。這些是在對抗性機器學習 (AML) 研究領域研究和開發的。這些攻擊可能被用來欺騙決策者、降低系統性能、降低最終用戶信任度,甚至從系統中提取(即逆向工程)敏感的軍事數據。圖 1.1 展示了一個典型的 AML 攻擊示例,其中目標是用于對圖像內容進行分類的 DNN。在這種情況下,DNN 能夠正確地識別出圖 1.1a 中的原始圖像包含一架戰斗機,幾乎是絕對確定的。圖 1.1b 中的惡意圖像是通過在原始圖像上應用 AML 技術創建的,能夠欺騙相同的 DNN 將輸入分類為西伯利亞雪橇犬而不是戰斗機。在這種情況下,攻擊是有效的,盡管人眼無法察覺。
圖 1.1 – 使用 AML 的樣本攻擊。在這種情況下,目標是由 DNN 表示的圖像分類系統。圖 1.1a 顯示 DNN 能夠以近乎完美的確定性將良性(非操縱)輸入正確分類為戰斗機。圖 1.1b 顯示了使用 AML 技術創建的經過處理的圖像。被操縱的圖像成功地欺騙了 DNN,將輸入分類為西伯利亞雪橇犬而不是戰斗機。
據我們所知,AML 尚未被對手或高級持續威脅 (APT) 參與者用來瞄準和攻擊嵌入在現實世界軍事系統中的基于 DL 的軟件。然而,研究團隊和安全專家不斷證明,針對依賴 DL 來實現尖端性能廣泛應用程序的攻擊是可能的 [1]。例如,小心地替換句子中的單詞可能會導致語言模型對情緒進行錯誤分類 [2]。自動駕駛汽車使用的交通標志和車道檢測系統可以通過分別在標志和道路上貼上標簽來攻擊 [3, 4]。轉錄服務可能會被注入精心設計的噪聲所誤導,迫使系統將語音轉換為任意文本 [5、6]。因此,假設基于 DL 的軟件將在未來的 C4ISR 支持系統中普遍使用,預計對手和 APT 最終將利用這些漏洞來欺騙、拒絕訪問或收集情報。
本報告的目標是:(1) 概述迄今為止 AML 研究領域中已確定的攻擊向量,(2) 根據經驗估計這些攻擊的子集在軍事環境中的有效性,以及最后 (3) 提供見解并討論 AML 在何種程度上是深度學習在現實世界軍事應用中的現實和嚴重威脅。
盡管 AML 適用于任何基于 ML 的系統和算法,但本報告重點關注基于 DL 的 ML 系統。此外,本報告將重點關注攻擊。在 AML 研究領域提出和開發的防御機制將在未來的工作中涵蓋。最后,我們將范圍限制在與指揮和控制 (C2)、情報、監視和偵察相關的 DL 應用。
本報告的目標讀者是操作、獲取或開發軍事系統的人員,這些系統使用或嵌入了 AI、ML 和 DL 技術。
本報告假定讀者具有有關 ML 和 DL 概念的基本知識,例如監督學習、強化學習、損失函數、梯度下降和反向傳播。
第 2 章介紹了 AML,并介紹了用于對本報告中的攻擊進行分類和比較的分類法。第 3 章介紹了從軍事角度來看可能具有相關性的已知攻擊方法的三個案例研究。實施和評估這些方法。第 4 章總結了報告,討論了 AML 在現實世界中的適用性,包括在軍事領域。
本章提供了三個案例研究,探討了針對基于ML的系統的不同類型攻擊。在每種情況下,從AML文獻中選擇一種攻擊方法,并從軍事角度實現或測試。評估了攻擊的有效性,然后討論了實際考慮因素。選擇這三個案例研究是因為它們與軍事領域的潛在相關性,涵蓋了廣泛的攻擊,并說明了各種ML應用和方法。
第一章以欺騙深度神經網絡將戰斗機圖像誤認為是狗的例子開始。雖然將軍事裝備隱藏在顯眼的地方有明顯的吸引力,但介紹性的例子是高度理想化的。實際應用面臨的一個障礙是,攻擊僅限于數字領域:操作是在數字圖像本身上進行的,也就是說,在戰斗機被拍攝后的一個階段。如果圖像是由對手創建的(例如,飛機是由監視攝像機拍攝的),那么操縱圖像將需要深入訪問敵人的系統。這是不太可能的(如果是,更簡單和更健壯的攻擊變得可行,例如消除圖像或阻止其記錄)。此外,雖然關于目標深度神經網絡的黑盒知識足以計算所需的圖像修改(例如,觀察分類標簽結果[18]),但在實踐中,即使是這種知識也無法預期。
因此,第3.1節中的第一個案例研究調查了數據中毒。這種攻擊的目的與前面的示例相同:通過欺騙敵人的DNN,使其對車輛進行錯誤分類,從而使軍用車輛(在本例中為坦克)逃避檢測。盡管方法也很相似,但是中毒攻擊解決了介紹性示例的實際缺點。
圖3.2 -僅使用正確標記的訓練圖像和直到測試時間才顯示的隱藏觸發器的數據中毒攻擊。在這個圖中,所有打補丁的坦克圖像都用紅色標出,而所有中毒的汽車圖像都用黃色標出。
第3.2節將范圍擴展到通過數據提取對語言模型的攻擊。語言模型是在廣泛的文本語料庫(通常是數十億個單詞)上訓練的非常大的dnn,在某種意義上能夠“理解”(書面)語言。它們引起了自然語言處理的范式變化,在許多任務中設定了新的基準[26],并因其生成文本的能力而獲得了媒體的廣泛關注[27]。事實上,即使在編寫本報告期間,也取得了顯著的進展,例如,ChatGPT系統的提出。語言模型正在不斷接近人類的自然語言處理水平,它們對社會幾乎所有方面的潛在影響和后果,包括軍事應用,目前很難預測。除了機會之外,它們也帶來了風險,例如,它們可能會將敏感信息暴露給對手。第3.2節中的案例研究調查了這種形式的對抗性提取攻擊的可行性。
圖3.5 -兩種語言模型的微調過程,展示了數據和最終的微調模型之間的細微差異(左為FTorig,右為FTpatch)。請注意,Dpatch的補丁文章約占CC新聞數據集總數的24%,即剩余的76%與未修改的數據集相同。
第3.3節研究了對通過強化學習訓練的模型的攻擊。這種模型通常用于無人駕駛車輛、機器人、游戲等領域的自主智能體。它們不是在一組固定的例子上以監督的方式訓練的。相反,智能體用一個獎勵函數來評估它的情況,并選擇一個獎勵最大化的行動過程。雖然這種操作模式為智能體提供了處理現實世界的靈活性和彈性,但它們仍然容易受到攻擊和欺騙,正如本案例研究將在基于強化學習的各種系統上展示的那樣。
圖3.10 -來自[51]的四個零和模擬機器人博弈的示例,用于評估對抗性策略[49]。
圖3.11 -“你不能通過”的博弈序列,敵對的對手(紅色)應該阻礙受害者(藍色)到達終點線。上面的四個數字顯示了一個普通的智能體是如何鏟斷對手的。下面的四個圖形顯示了敵對的對手如何使受害者在沒有任何接觸的情況下摔倒在地[49]。
對抗性機器學習在科學界引起了越來越大的興趣,每天都有關于新的攻擊變體的論文發表。幾乎任何形式的機器學習都容易受到某種類型的AML的影響,正如本報告通過攻擊方法的示例所證明的那樣。隨著越來越多的應用程序采用深度學習,攻擊的機會和潛在的回報也在增加。例如,圖像識別模型正以某種形式用于與敵方相關的情況,無論是民用還是軍用:機場和體育場開始采用人臉識別以各種原因拒絕個人進入[58],為上述個人應用AML來逃避系統提供了動機。軍用車輛在衛星圖像上的自動探測已經研究了幾十年,避免敵方衛星的這種探測顯然是任何軍隊都感興趣的。
然而,這些攻擊在很大程度上仍停留在學術界的實驗階段。已知很少有針對實際部署的深度學習系統的真正攻擊發生,也就是說,沒有得到深度學習系統操作員的同意,并且目標不僅僅是測試攻擊方法的可行性。可能的原因有很多:這種攻擊可能很少見,因為它們很難執行,或者潛在的目標還不多。攻擊可能很難被注意到(可以說逃避攻擊的主要目的是不被注意到)。攻擊者不太可能公布成功的攻擊,甚至受害者也可能認為保持沉默而不是進一步暴露自己的弱點是明智的。
盡管如此,一些攻擊已經傳播到公眾。Stable Diffusion[59]、DALL·e2[60]和Midjourney等生成圖像模型可以基于文本提示創建圖形。這使得他們在社交媒體上很受歡迎,但也引發了藝術家們的批評,他們懷疑他們的作品被用作訓練數據。2023年2月,媒體公司Getty Images對Stability AI提起訴訟,指控其未經許可使用Getty目錄中的受版權保護的庫存圖像訓練其Stable Diffusion模型。通過對Stable Diffusion的提取方法獲取證據,發現AI系統生成的圖像與Getty擁有的圖像具有很高的相似性,包括該公司的水印[61]。
針對語言模型的快速攻擊是一種更有趣的攻擊,仍然受到媒體的廣泛關注。這種類型的攻擊是一種簡單的提取變體,其目標不是訓練數據,而是隱藏的輸入指令。對于像ChatGPT這樣的大型語言模型,操作人員可能希望在沒有任何微調階段的情況下快速調整模型以適應某些應用程序。相反,對話只是在語言模型的文本指令之前,這些指令會影響它在與用戶對話過程中的行為,例如模型應該使用什么名稱,以及要展示什么樣的個性。這些指令通常不會顯示給語言模型的用戶,但好奇的用戶已經能夠讓模型暴露它們,例如通過告訴模型“忽略之前的指令”,從而覆蓋任何隱藏的指令,而不顯示隱藏的指令,然后問“上面文檔開頭寫了什么?”“[62]
這種由人群發起的攻擊雖然相對溫和,但表明評估人工智能系統對“AML”方法的穩健性很困難,更不用說實際防御它們了。這兩個挑戰都將成為該項目的未來報告的主題。
然而,從攻擊者的角度來看,情況可能至少同樣困難。很少有人工智能系統像上面的模型一樣具有公共接口,可以進行實驗。在防御環境中,攻擊者通常只有有限的機會研究目標系統,而傳統障礙(網絡安全和物理安全)可能構成與各種AML方法固有困難一樣多的挑戰。3.1節中描述的投毒攻擊是一種旨在繞過安全措施的方法,利用訓練數據的稀缺性誘使對手自己投毒他們的系統。未來的攻擊也有可能將AML與更傳統的方法(例如社會工程)結合起來。
隨著人工智能的日益普及,對攻擊方法的研究必然會增加。隨著人工智能使用的增加,對這一新領域的持續警惕和研究對于識別新出現的機會至關重要,但也要意識到自身的脆弱性。
自主系統將塑造戰爭的未來。因此,土耳其的國防人工智能(AI)發展主要側重于提高自主系統、傳感器和決策支持系統的能力。提高自主系統的情報收集和作戰能力,以及實現蜂群作戰,是發展國防人工智能的優先事項。雖然土耳其加強了自主系統的能力,但在可預見的未來,人類仍將是決策的關鍵。
人類參與決策過程提出了一個重要問題:如何有效確保人機互動?目前,自主系統的快速發展和部署使人機互動的問題更加惡化。正如土耳其國防工業代表所爭論的那樣,讓機器相互交談比較容易,但將人類加入其中卻非常困難,因為現有的結構并不適合有效的人機互動。此外,人們認為,人工智能對決策系統的增強將有助于人類做出更快的決定,并緩解人機互動。
土耳其發展人工智能的意圖和計劃可以從官方戰略文件以及研發焦點小組報告中找到。突出的文件包括以下內容:
第11個發展計劃,其中規定了土耳其的經濟發展目標和關鍵技術投資。
《2021-2025年國家人工智能戰略》,它為土耳其的人工智能發展制定了框架。
焦點技術網絡(Odak Teknoloji A??,OTA?)報告,為特定的國防技術制定了技術路線圖。這些文件提供了關于土耳其如何對待人工智能、國防人工智能和相關技術的見解。
土耳其特別關注人工智能相關技術,如機器學習、計算機視覺和自然語言處理,其應用重點是自主車輛和機器人技術。自2011年以來,自主系統,主要是無人駕駛飛行器(UAV),仍然是土耳其人工智能發展的重點。此后,這已擴大到包括所有類型的無機組人員的車輛。同時,用人工智能來增強這些車輛的能力也越來越受到重視。人工智能和相關技術的交織發展構成了土耳其人工智能生態系統的核心。
土耳其的人工智能生態系統剛剛起步,但正在成長。截至2022年10月,有254家人工智能初創企業被列入土耳其人工智能倡議(TRAI)數據庫。土耳其旨在通過各種生態系統倡議在其國防和民用產業、學術機構和政府之間創造協同效應。由于許多組織都參與其中,這些倡議導致了重復和冗余。冗余也來自于人工智能技術本身的性質。由于人工智能是一種通用技術,可以應用于不同的環境,各種公司都有用于民用和國防部門的產品;因此相同的公司參與了不同的生態系統倡議。此外,民用公司與國防公司合作,在國防人工智能研究中合作,并提供產品,這是司空見慣的。
土耳其鼓勵國際人工智能在民用領域的合作,但不鼓勵在國防領域的合作。然而,由于技能是可轉移的,國防人工智能間接地從這種合作中受益。
土耳其非常關注自主系統發展中的互操作性問題,特別是那些具有群集能力的系統。除了蜂群,北約盟國的互操作性也是一個重要問題。因此,土耳其認為北約標準在發展自主系統和基礎技術方面至關重要。
土耳其目前對人工智能采取了分布式的組織方式。每個政府機構都設立了自己的人工智能組織,職責重疊。目前,盡管國防工業局(Savunma Sanayi Ba?kanl???,SSB)還沒有建立專門的人工智能組織,但SSB的研發部管理一些人工智能項目,而SSB的無人駕駛和智能系統部管理平臺級項目。目前,根據現有信息,還不清楚這些組織結構如何實現國防創新或組織改革。
土耳其尋求增加其在人工智能方面的研發支出,旨在增加就業和發展生態系統。SSB將在未來授予更多基于人工智能的項目,并愿意購買更多的自主系統,鼓勵研發支出的上升趨勢。然而,盡管土耳其希望增加支出,但金融危機可能會阻礙目前的努力。
培訓和管理一支熟練的勞動力對于建立土耳其正在尋找的本土人工智能開發能力至關重要。這包括兩個部分。首先是培養能夠開發和生產國防人工智能的人力資源。因此,土耳其正在投資于新的大學課程、研究人員培訓、開源平臺和就業,同時支持技術競賽。第二是培訓將使用國防人工智能的軍事人員。國防人工智能也正在慢慢成為土耳其武裝部隊(Türk Silahl? Kuvvetleri,TSK)培訓活動的一部分。目前,關于土耳其打算如何培訓軍事人員使用國防人工智能的公開信息非常少。
美國已經進入了一個大國競爭的新時期。俄羅斯和中國的崛起在全球權力結構中形成了復雜的三足鼎立局面。最近人工智能方面的技術進步使這種多變的國際動態進一步復雜化。學者、政治家和高級軍官已經意識到,人工智能的融入是軍事事務中一場新革命的起源,有能力改變權力的戰略平衡。美國在中東被二十年的反叛亂所困擾,并受到僅延伸至2025年的長期人工智能戰略的阻礙,沒有準備好進入這個 "第六代 "軍事能力,以確保其戰略利益。這種人工智能化的部隊將由半自主和自主系統定義,包括致命的自主武器系統。第一個開發和使用這些武器的國家行為者將在這個新時代獲得對其競爭對手的戰略優勢。雖然美國目前在人工智能方面擁有優勢,但由于缺乏前瞻性思維和重點投資政策,這種優勢正在迅速消失。這是一份旨在解決這一差距的政策文件。20世紀90年代中期的中國軍事現代化模式為美國未來的政策提供了一條潛在的途徑。雖然兩國政府結構存在差異,但其中的幾個基本原則可以在美國的制度框架內適用。因此,美國可以通過制定健全的投資政策、集中的技術發展計劃和新的行動概念來確保人工智能的首要地位,以便在新能力出現時將其最大化。
大國競爭必須相對于其他大國的能力進行評估。因此,沒有一種能力可以被評估為產生可持續的絕對優勢。然而,在潛在的對手獲得同樣的能力之前,開發人工智能技術和應用為21世紀沖突設計的CONOPS的能力將在整個政治/軍事領域產生一個暫時的戰略優勢。美國目前的公共政策和戰略并沒有延伸到25年后。隨著中國準備在2030年成為占主導地位的人工智能大國,美國為了確保長期戰略利益,不能接受人工智能競賽的現狀。由于人工智能領域的技術發展速度很快,人工智能RMA的狀態和抓住初始優勢的能力正在接近一個拐點。建議美國采取側重于美國在人工智能競賽中的首要地位的政策,特別是在致命性自主武器系統的研究和開發方面。美國在這一領域保持優勢的能力對于國家安全和參與21世紀人工智能輔助和/或人工智能環境的準備工作是至關重要的。
由于致命性自主武器系統是一項仍在開發中的未來技術,因此不可能確定致命性自主武器系統對戰略環境的完整影響。本研究承認,對于評估一個未來武器系統的影響沒有預測性的措施,該系統在實現其全部潛力之前還將經過幾代技術的演變。然而,評估投資政策、技術和CONOPS演變的影響以及它如何影響軍事準備、政治資本和戰略環境的能力是有據可查的。
本文的建議將以1990年至今的中國軍事投資戰略為藍本。在此期間,中國國防開支的增加創造了一個前所未有的能力和軍事力量的增長,為美國未來的人工智能政策提供了一個框架。由于全球力量是以相對而非絕對的方式衡量的,美國至少必須在多極環境中與不斷增長的大國保持平等。雖然從美國的角度來看,中國戰略的某些方面,特別是盜竊知識產權的因素是不切實際的,但那些關于教育和貨幣投資的內容可以被納入美國未來的人工智能政策中。這項研究建議:
1.設立一個負責人工智能政策的助理國防部長的新職位,直接負責人工智能的發展和整合到美國防部。
2.指示ASDAI為美國軍隊制定一個關于第六代能力的預期最終狀態,每十年更新一次。
3.建立30年、15年和5年的人工智能目標,每五年更新一次,讓各個機構,如DARPA、JAIC、國防創新部門(DIU)和相關組織負責特定的發展水平。這將使美國政策制定者有能力根據ASDAI評估和更新的多變的戰略環境,為每個機構提供適當的資金。
4.成立一個委員會,負責發展和保留研究生水平的科學、技術、工程和數學(STEM)人才。
5.建立一個戰略規劃組織,負責研究和整合新的人工智能技術,因為它們出現在15年和5年的基準點上,以便在收購過程中納入其中。
對這些政策的評估必須對照美國對手在人工智能領域的成就和進步。建立在美國在人工智能領域的首要地位上的政策應該集中在教育和經濟投資,新的人工智能技術的初步發展,以及新的CONOPS的發展,以便在新的人工智能能力可用時充分和有效地進行。本研究報告的其余部分重點關注中國國防現代化計劃對美國未來人工智能政策和建議的調整。
近日,美國智庫蘭德發布《用博弈論和人工智能洞悉太空競爭和沖突動態》,講述了通過博弈論和人工智能方法開發對太空競爭和沖突動態進行評估的模型過程。
大國競爭經常在太空上演。隨著太空日益軍事化,了解這些國家在太空安全方面的投資以及投資的用途變得具有重要戰略意義。2014年,蘭德公司開始開發一種博弈論模型,以評估美國和競爭對手太空投資所產生的戰略影響。在此后的項目中,蘭德公司的研究人員在傳統博弈論的基礎上,對這些投資如何發揮作用進行了評估。雖然以前使用這一模型探索了投資對阻止地面戰爭升級到太空的影響,但在這里側重于評估太空競爭的動態。他們盡可能描述戰略互動模式;它們產生的條件;以及投資會如何塑造這些條件。但是,多數情況下,還沒有發現這些條件與由此產生的動態和戰略互動模式間的相關性。
為了對太空競爭進行深入評估,研究人員使用復雜的人工智能(AI)方法開發了一個更為復雜的模型。雖然發現這種復雜性增加了評估投資產生的可能情況,但也妨礙了他們隔離不同戰略互動模式條件的能力。這份報告不僅會對太空政策決策者提供參考,也會有助于使用人工智能模型進行探索性研究的人員。
假設太空領域意識(SDA)提高了一個國家防御動態攻擊的能力,那么這些提高的防御能力能阻止敵人攻擊嗎?它們會改變沖突的結果嗎?
對對手進攻能力的誤解是穩定還是不穩定?這些誤解會改變沖突的結果嗎?
當太空沖突發生時,各國是否會采取不同的攻擊策略,類似于在國際象棋比賽或其他戰略競賽中觀察到的策略?
提高對防御能力只是改變對手的戰術,而并非其戰略。如果攻擊太空資產實對手長期戰略意圖,降低他們首選攻擊對象的成功概率僅僅意味著他們將轉向下一個攻擊目標。
當對手認為處于不利地位,或處于不利地位的對手被認為是對手時,錯誤認知就一直會延續。
決定是否披露或隱藏攻擊能力的投資或實際程度并不容易,特別是考慮到并非所有潛在的空間對手都是同行競爭者。
在競爭中有三種戰略互動模式,在這些模式中,威懾失去作用,但沒有達到全面失效程度。
在作戰早期形成階段,攻擊發生在地面沖突之前兩年或更久。
在武器消耗戰中,雙方都將攻擊保留到地面戰爭開始之前或同時,雙方的攻擊主要集中在削弱對手的進攻能力。
在橫向升級游戲中,攻擊是在地面沖突開始后很久進行的,并且集中于在對手從太空投射力量的能力上制造可利用的缺陷。
在博弈論模型中更好地理解因果關系,有助于描述構建沖突中起作用的力量。使用類似的博弈論方法可以進行有針對性的檢查,以闡明其中的因果關系。
對太空中的戰略互動進行更針對性研究,可以幫助確定有利戰術,即使對手長期戰略保持不變。
其他工作可以利用類似但更簡單的游戲模型,以及蘭德和其他人在戰略信息方面的現有工作,來確定感知的不確定性如何影響沖突結果和戰略互動模式。
第一章 介紹
第二章 方法學
第三章 防御性投資的戰略價值和進攻性投資的考慮因素
第四章 表征戰略互動模式
第五章 總結和對未來工作的建議
附錄A 項目階段概述
附錄B 游戲結構和方法