亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

圖聚類是無監督學習中的一個基本問題,在計算機科學和分析現實世界數據中有著廣泛的應用。在許多實際應用中,我們發現聚類具有重要的高層結構。這在圖聚類算法的設計和分析中經常被忽視,因為這些算法對圖的結構做了強烈的簡化假設。本文討論了聚類結構是否可以有效學習的自然問題,并描述了四個用于學習圖和超圖中聚類結構的新算法結果。論文的第一部分對經典的譜聚類算法進行了研究,并對其性能進行了更嚴格的分析。這一結果解釋了為什么它在更弱、更自然的條件下工作,并有助于縮小譜聚類算法的理論保證與其優秀的經驗性能之間的差距。

論文的第二部分在前一部分的理論保證的基礎上,表明當底層圖的簇具有一定的結構時,少于k個特征向量的譜聚類能夠比使用k個特征向量的經典譜聚類產生更好的輸出,其中k是聚類的個數。本文首次討論和分析了少于k個特征向量的譜聚類的性能,并表明一般的聚類結構可以用譜方法學習。第三部分考慮使用局部算法高效地學習簇結構,其運行時間僅依賴于目標簇的大小,且與底層輸入圖無關。經典的局部聚類算法的目標是找到一個與圖其他部分稀疏連接的簇,本文的這一部分提出了一種局部聚類算法,它可以找到一對彼此緊密連接的簇。這一結果表明,即使在現實世界中普遍存在的大圖中,某些聚類結構也可以在局部環境中有效地學習。

論文的最后研究了超圖中密集連接聚類的學習問題。該算法基于一種新的熱擴散過程,擴展了最近在超圖譜理論方面的一系列工作。它允許在建模對象的高階關系的數據集中學習簇的結構,可以應用于有效分析在實踐中發生的許多復雜數據集。在不同領域的合成數據集和真實數據集上進行了廣泛的評估,包括圖像分類和分割、遷移網絡、合著網絡和自然語言處理。實驗結果表明,新提出的算法是實用、有效的,可以立即應用于實際數據的聚類結構學習。

付費5元查看完整內容

相關內容

,簡稱愛大,全球20強頂尖名校。位于英國蘇格蘭首府愛丁堡市,創建于1583年,是英語國家中第六古老的大學。愛丁堡大學產生過23名諾貝爾獎獲得者。達爾文、大衛?休謨、亞當?斯密、麥克斯韋、亞當?弗格森等諸多名家均曾在愛丁堡學習或從事研究。由于其悠久的歷史、龐大的規模、卓越的教學質量與科研水平,愛丁堡大學在2016/17年QS世界大學排名中位居全球第19位,其實力與美國著名的常青藤盟校相當。

//dataspace.princeton.edu/handle/88435/dsp01v979v6238 強化學習在過去幾年里獲得了極大的興趣,主要是由于實際成功和在各個領域的新應用。然而,我們對這些強化學習技術的理論理解與其經驗上的成功之間仍然存在差距。本文從主要的理論角度研究強化學習,并為1)帶約束的強化學習和2)帶函數逼近的強化學習這兩個具有挑戰性的情況設計了可證明有效的算法,從而加深了我們的理解。 1)在標準強化學習中,學習智能體尋求優化整體獎勵。然而,期望行為的許多關鍵方面更自然地表示為約束。提出了一種算法方案,可以處理具有一般凸約束的強化學習任務,改進了之前局限于線性約束或缺乏理論保證的工作。其次,專注于樣本高效的探索,開發了第一個可證明有效的表格式偶發約束強化學習算法,具有處理凸約束和背包設置的能力。最后,在無獎勵強化學習最新進展的激勵下,本文提出了一種簡單的元算法,在給定任何無獎勵強化學習oracle的情況下,約束強化學習問題可以直接解決,而樣本復雜度的開銷可以忽略不計。 2)尋找能夠支持樣本高效學習的最小結構假設是強化學習最重要的研究方向之一。本文通過引入一種新的復雜性度量——bellman Eluder (BE)維度,推進了對這一基本問題的理解。低BE維的強化學習問題家族非常豐富,包含了絕大多數現有的可處理的強化學習問題。本文進一步設計了一個新的基于優化的算法——GOLF,并針對幾個著名的低BE維問題子類提供了匹配或改進現有最佳結果的遺憾和樣本復雜度結果。為了實現更具挑戰性的部分可觀察強化學習,研究了部分可觀察馬爾可夫決策過程(POMDPs)的一個新的子類,其潛狀態可以用短長度m的最近歷史來解碼。結果表明,短期記憶對這些環境中的強化學習足夠了。

付費5元查看完整內容

深度學習為我們提供了越來越復雜的神經網絡,可以通過梯度上升來調整,以最大化某些目標。貝葉斯統計為我們提供了一種原則性和統一的方法來指定統計模型和執行推斷。將這兩種方法配對的一種有效方法產生了深度生成模型(DGM),其中概率模型中統計參數之間的映射本身使用神經網絡進行參數化。在本文中,我們研究了這種方法可以用于解決機器學習中的各種問題的方法,以及由此產生的模型的屬性。在這篇論文中,有三個反復出現的主題,魯棒性,結構和層次,貫穿始終。

首先研究如何構建一個深度生成模型,以在一種稱為半無監督學習的新學習機制中進行學習。這是半監督學習的一個極端情況,對于某些類別的數據,沒有給定的標記示例。在學習將數據劃分為不同的成分,不同的基礎真值類時,模型必須能夠在未標記的類上進行聚類,并在給出了一些標記示例的類上進行半監督學習。本文展示了如何在一系列標準數據集上實現這一點。

從處理一個離散潛變量聚類分配開始,研究具有離散潛變量層次結構的模型。我們提出了一種新的方法來參數化這種類型的模型中的潛在變量,放松的責任向量量化,可以訓練非常深的潛在變量層的層次結構。該方法在一系列標準數據集上,對端到端的分層離散DGM進行訓練,在最大化數據證據(訓練和測試集)的下界方面取得了最先進的結果。在這樣做的過程中,這些模型有助于縮小具有離散潛在的分層DGM和具有連續潛在的分層DGM之間的差距,并提供極其穩定的訓練。

然后我們切換到另一個問題,如何構建一個模型,以有效地從高維數據中學習統計獨立的潛在表示。本文提出一種分層方法,使用雙射函數flow來產生一個中間表示,然后由高度約束的線性獨立成分分析(ICA)模型起作用。與其他方法相比,這導致了在各種玩具和真實數據集上的優越性能。

然后,研究迄今為止未考慮的問題,即如何使DGM對對抗性攻擊具有魯棒性。對這些模型的潛空間進行正則化可以可靠地誘導魯棒性,并通過將這種正則化應用于分層的DGM來獲得更魯棒的模型。最后,從理論角度研究了DGM算法的魯棒性問題。我們定義r-魯棒性,DGM魯棒性的新標準,然后得出該標準上的間隔,在該間隔內的模型可以說是魯棒的。與潛空間被正則化的各種DGM的最佳模型的新理論相結合,這種間隔的形式有助于了解這種正則化如何提高魯棒性。

**本文提出的工作表明,深度學習和貝葉斯統計的結合是多么有效,并提供了對他們的組合所產生的模型本質的見解。**這為這兩個方向開辟了新的研究——為建立在所提出工作之上的新模型,也為研究深度生成模型的理論工作開辟了新途徑。

//ora.ox.ac.uk/objects/uuid:fa76ad20-30bb-48a3-8ae4-56da578a1767

付費5元查看完整內容

機器學習的現實應用通常具有復雜的目標和安全關鍵約束。當代的機器學習系統擅長于在具有簡單程序指定目標的任務中實現高平均性能,但它們在許多要求更高的現實世界任務中很困難。本文致力于開發可信的機器學習系統,理解人類的價值觀并可靠地優化它們

機器學習的關鍵觀點是,學習一個算法通常比直接寫下來更容易,然而許多機器學習系統仍然有一個硬編碼的、程序指定的目標。獎勵學習領域將這種見解應用于學習目標本身。由于獎勵函數和目標之間存在多對一的映射,我們首先引入由指定相同目標的獎勵函數組成的等價類的概念。

在論文的第一部分,我們將等價類的概念應用于三種不同的情形。首先,我們研究了獎勵函數的可識別性:哪些獎勵函數集與數據兼容?我們首先對誘導相同數據的獎勵函數的等價類進行分類。通過與上述最優策略等價類進行比較,我們可以確定給定數據源是否提供了足夠的信息來恢復最優策略。

其次,我們解決了兩個獎勵函數等價類是相似還是不同的基本問題。我們在這些等價類上引入了一個距離度量,即等價策略不變比較(EPIC),并表明即使在不同的過渡動態下,低EPIC距離的獎勵也會誘導具有相似回報的策略。最后,我們介紹了獎勵函數等價類的可解釋性方法。該方法從等價類中選擇最容易理解的代表函數,然后將代表函數可視化。

在論文的第二部分,我們研究了模型的對抗魯棒性問題。本文首先介紹了一個物理上現實的威脅模型,包括在多智能體環境中行動的對抗性策略,以創建對防御者具有對抗性的自然觀察。用深度強化學習訓練對手,對抗一個凍結的最先進的防御者,該防御者通過自訓練,以對對手強大。這種攻擊可以可靠地戰勝最先進的模擬機器人RL智能體和超人圍棋程序。

最后,研究了提高智能體魯棒性的方法。對抗性訓練是無效的,而基于群體的訓練作為一種部分防御提供了希望:它不能阻止攻擊,但確實增加了攻擊者的計算負擔。使用顯式規劃也有幫助,因為我們發現具有大量搜索的防御者更難利用。

付費5元查看完整內容

由于深度學習在計算機視覺和自然語言處理等各種任務中的顯著能力,它已成為機器學習領域的一個里程碑。神經網絡的結構對性能有顯著影響,因此確定神經網絡的結構非常重要。通常,神經架構設計的方法可以分為兩類。一類是利用搜索方法設計神經結構,目的是自動實現潛在的神經結構。例如,NASNet架構是在使用強化學習算法定義的搜索空間中找到的。另一類是基于領域知識手工設計神經體系結構。大多數實用的體系結構,如ResNet和Transformer都是基于先驗知識提出的。在本文中,我們從以上兩個角度對神經架構設計進行了全面的討論。

首先,我們介紹了一種基于貝葉斯優化的神經結構搜索算法BONAS。在搜索階段,GCN嵌入提取器和貝葉斯sigmoid回歸器構成貝葉斯優化的代理模型,并根據采集函數選擇搜索空間中的候選架構。在查詢階段,我們將它們合并為一個超級網絡,并通過權值共享機制對各個體系結構進行評估。提出的BONAS可以獲得開發與勘探平衡的重要體系結構。

其次,針對著名的Transformer中的自注意力模塊,提出了一種可微架構搜索方法來查找重要的注意力模式。與以往的研究不同,我們發現注意力地圖中的對角線元素可以在不影響性能的情況下被丟棄。為了理解這一觀察結果,我們從普遍近似的角度提供了理論證明。基于所提出的搜索方法,實現了一系列用于高效架構設計的注意力掩碼。

第三,我們試圖從一個統一的框架來理解Transformer中的前饋模塊。具體來說,我們引入了記憶標記的概念,并建立了前饋和自注意力之間的關系。在此基礎上,我們提出了一種新的結構——單注意力,它包含了所有四種類型的注意力連接。在給定相同數量的內存令牌的情況下,與以前的基線相比,Uni-attention實現了更好的性能。

最后,我們研究了整個Transformer體系結構中的過平滑現象。我們通過建立自注意力與圖域之間的關系來進行理論分析。具體而言,我們發現層歸一化在過平滑問題中起著重要作用,并通過經驗驗證了這一點。為了緩解這個問題,我們提出了分層融合體系結構,這樣輸出可以更加多樣化。

付費5元查看完整內容

設計具有不確定性的深度學習模型,使其能夠在預測的同時提供合理的不確定性,一直是部分機器學習社區的目標。從業者也經常需要這樣的模型。最普遍和最明顯的方法是采用現有的深層架構,并嘗試將現有的貝葉斯技術應用于它們,例如,將神經網絡的權重作為貝葉斯框架中的隨機變量處理。本文試圖回答這個問題: 現有的神經網絡架構是獲得合理不確定性的最佳方式嗎?在本文的第一部分,我們提出了在對抗環境下貝葉斯神經網絡的不確定性行為的研究,這表明,雖然貝葉斯方法在數據分布附近的確定性網絡上有顯著的改進,但外推行為是不受歡迎的,因為標準神經網絡架構在結構上偏向于自信外推。基于此,我們探索了兩種標準深度學習架構的替代方案,試圖解決這一問題。首先,我們描述了一種新的膠囊網絡生成公式,它試圖通過對場景結構的強假設來將結構強加到學習任務中。然后,我們使用這個生成模型來檢查這些潛在的假設是否有用,并論證它們實際上存在重大缺陷。其次,我們探索了bilipschitz模型,這是一種解決深度神經網絡中確保先驗回歸這一更有限目標的體系結構。這些方法基于深度核學習,試圖通過使用最終分類層來控制神經網絡的行為,當與支持向量集的距離增加時,分類層會恢復到先驗值。為了在使用神經特征提取器的同時保持這一特性,我們為這些模型描述了一種新的“bilipschitz”正則化方案,該方案基于通過施加由可逆網絡上的工作激發的約束來防止特征崩潰。我們描述了這些模型的各種有用的應用,并分析了為什么這種正則化方案似乎仍然有效,即使它背后的原始動機不再成立,特別是在特征維度低于輸入的情況下。我們的結論是,雖然膠囊網絡可能不是一個有前途的方向,但本文最后部分討論的模型是未來研究的一個富有成果的領域,在許多應用中作為標準貝葉斯深度學習方法的一個有前途的潛在替代方案。

付費5元查看完整內容

在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。

//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。

付費5元查看完整內容

深度學習推動了應用的爆炸式增長,然而訓練深度神經網絡通常需要昂貴的人工注釋。在這篇論文中,我們探索了在訓練深度神經網絡時避免大量依賴人工注釋示例的替代方案。具體來說,要么采用自監督方法來自動糾正自由獲得的數據標簽,要么完全放棄使用人工標簽,而是利用音頻和視覺信息的自然共生來學習視頻中的對象表示。越來越多的數字數據通常會提供噪聲標簽,這些標簽可以用來監督學習過程。傳統的數據預處理包括在訓練識別模型之前糾正/清理數據,但這可能需要大量的人工工作。我們考慮自動更正注釋噪聲,從而避免了昂貴的手動注釋的需要。我們構建和擴展了最近的突破,使用一致性損失(consistency loss)和空間記憶映射(space memory map)來提供靈活的實例級注冊,從而實現更大的泛化。進一步探索了多模態感覺流,利用模態冗余,即模態之間的重疊信息,為模型提供自監督。表示是通過利用不同的模式來學習的,而不使用任何人類注釋的標簽。我們將使用三個不同的應用程序演示此技術

首先,我們自動管理一個大型音頻數據集VGG-Sound,使用視覺引導收集了超過200k的視頻,并在此基礎上進行訓練,生成最先進的音頻識別模型。其次,我們提出了一種改進和擴展最近聲源定位技術的方法,通過引入一種機制來挖掘硬樣本并自動將其添加到對比學習公式中。最后,與在一個特定領域執行的現有視聽同步任務不同,我們建議通過探索使用幾種基于transformer的體系結構來解決開放世界設置中的同步問題。通過這些模型,我們在具有挑戰性的語音數據集中獲得了最先進的結果,并在一般聲音數據集中顯示了出色的泛化效果。

付費5元查看完整內容

深度神經網絡在學習給定數據集上的表示方面取得了巨大的成功。然而,在許多情況下,學習到的表示是依賴于數據集的,不能轉移到具有不同分布的數據集,即使是對于相同的任務。如何處理域漂移是提高模型泛化能力的關鍵。域適應提供了一個潛在的解決方案,允許我們將具有豐富標簽的源域轉移到只有有限標簽或沒有標簽的目標域。

在本論文中,我將介紹在不同場景下學習可遷移表示的許多方法,包括1) 當源域只有有限的標簽,甚至每個類只有一個標簽時,2) 當有多個標記源域時,3) 當有多個未標記的目標域時。這些方法在不同的數據模態(如視覺和語言)中是通用的,并且可以很容易地組合起來解決其他類似的領域轉移設置(如從具有有限標簽的多個源適應),使模型能夠泛化到源域之外。許多工作將知識從模擬數據轉移到真實數據,以減少對昂貴的手動注釋的需求。最后,介紹了我們在構建LiDAR 點云模擬器方面的開創性工作,進一步實現了LiDAR 點云分割的大量領域適配工作。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-213.html

付費5元查看完整內容

盡管最近在深度學習方面取得了進展,但大多數方法仍然采用豎井式的解決方案,即為每個單獨的任務訓練一個單獨的神經網絡。然而,許多現實世界的問題需要同時解決許多任務。例如,一輛自動駕駛汽車應該能夠檢測場景中的所有物體,對其進行定位,估計其距離和軌跡等,以便在其周圍環境中安全導航。類似地,用于商業應用的圖像識別系統應該能夠標記產品、檢索類似的商品、提出個性化的建議等,以便為客戶提供盡可能好的服務。這類問題促使研究人員建立多任務學習模型。多任務學習的核心思想是并行學習多個任務,同時共享學習到的表示。與單任務情況相比,多任務網絡具有許多實際的優點,單任務情況下,每個單獨的任務由自己的網絡單獨解決。首先,由于層的共享,產生的內存占用大大減少。其次,由于它們避免在共享層中重復計算特征,每個任務一次,它們顯示出提高的推理速度。第三,如果相關的任務共享互補信息,或者作為一個正則化器,它們有可能提高性能。

在構建多任務學習模型時,我們面臨著兩個重要的挑戰。首先,我們需要想出能夠處理多個任務的神經網絡架構。其次,我們需要為共同學習任務制定新的訓練方案。特別是,由于我們并行地優化多個目標,一個或多個任務可能會開始主導權重更新過程,從而阻礙模型學習其他任務。在這份手稿中,我們在視覺場景理解的背景下鉆研了這兩個問題。我們提出了兩種新的模型類型來解決體系結構問題。首先,我們探索了分支多任務網絡,其中神經網絡的更深層次逐漸成長為更具體的任務。我們介紹了一種有原則的方法來自動構建這樣的分支多任務網絡。構造過程將可以用一組相似特征來解決的任務組合在一起,同時在任務相似性和網絡復雜性之間進行權衡。通過這種方式,我們的方法生成的模型可以在性能和計算資源量之間做出更好的權衡。

其次,我們提出了一種新的神經網絡結構,用于聯合處理多個密集的預測任務。其關鍵思想是從多個尺度上對其他任務的預測中提取有用信息,從而提高對每個任務的預測。包含多個尺度的動機是基于這樣的觀察:在某個尺度上具有高相似性的任務不能保證在其他尺度上保持這種行為,反之亦然。在密集標記的兩個流行基準上進行的廣泛實驗表明,與之前的工作不同,我們的模型提供了多任務學習的全部潛力,即更小的內存占用,減少的計算數量,以及更好的性能w.r.t.單任務學習。此外,我們還考慮了多任務學習優化問題。我們首先分析幾種平衡任務學習的現有技術。令人驚訝的是,我們發現了這些工作之間的一些差異。我們假設,這可能是由于多任務學習缺乏標準化的基準,不同的基準受益于特定的策略。基于這個結果,我們然后分離最有希望的元素,并提出一組啟發式方法來平衡任務。啟發式具有實際性質,并在不同的基準測試中產生更魯棒的性能。

在最后一章中,我們從另一個角度來考慮場景理解的問題。文獻中描述的許多模型都受益于有監督的預訓練。在這種情況下,在轉移到感興趣的任務之前,模型首先在一個更大的帶注釋的數據集(如ImageNet)上進行預訓練。這使得模型能夠很好地執行,即使是在只有少量標記示例的數據集上。不幸的是,有監督的預訓練依賴于帶注釋的數據集本身,這限制了它的適用性。為了解決這個問題,研究人員開始探索自監督學習方法。我們以對比學習為基礎來回顧最近流行的作品。首先,我們展示了現有的方法,如MoCo可以在不同的數據集上獲得穩健的結果,包括以場景為中心的數據、長尾數據和特定領域的數據。其次,我們通過增加額外的不變性來改進學習的表示。這一結果直接有利于許多下游任務,如語義分割、檢測等。最后,我們證明了通過自監督學習所獲得的改進也可以轉化為多任務學習網絡。綜上所述,本文提出了幾個重要的貢獻,以改進多任務學習模型的視覺場景理解。創新集中在改進神經網絡結構、優化過程和訓練前方面。所有方法都經過了各種基準測試。該代碼公開發布://github.com/SimonVandenhende。

付費5元查看完整內容

空間數據的精確統計分析在許多應用中都很重要。如果不能正確地解釋空間自相關,可能會導致錯誤的結論。與此同時,空間數據集不斷增長的規模帶來了巨大的計算挑戰,因為許多空間分析的標準方法都被限制在幾千個數據點上。

在本論文中,我們探討了高斯馬爾可夫隨機場(GMRFs)如何用于可擴展的空間數據分析。GMRFs與常用的高斯過程密切相關,但具有稀疏性,這使得它們在計算時間和內存方面都很便宜。貝葉斯框架使GMRF作為一個空間先驗,包含了在空間上平滑變化的假設,并給出了一個原則的方法來估計參數和傳播不確定性。

我們開發了一種新的算法,可以將GMRF先驗應用于功能磁共振成像(fMRI)數據中固有的大腦活動,并進行數百萬次觀察。我們表明,我們的方法比以前的工作更快,更準確。提出了一種對后驗不確定性進行估計的逆精度矩陣(即協方差矩陣)中選定元素的近似方法。此外,我們在GMRFs和deep convolutional neural networks之間建立了一個鏈接,這個鏈接已經成功應用于無數的機器學習圖像任務中,形成了一個deep GMRF模型。最后,我們展示了GMRFs如何用于實時機器人搜索和救援行動,以建模受傷人員的空間分布。

//liu.diva-portal.org/smash/record.jsf?pid=diva2%3A1433819&dswid=-2934

空間統計處理描述存在于跨空間測量的數據中的統計模式。以空間位置作為參考的數據在廣泛的領域中是常見的和自然產生的。許多應用是在地理范圍內進行的,例如描述動植物的分布、疾病的傳播或城市中房價的變化。空間數據的一個重要方面是,附近的測量結果往往比距離較遠的更相似,這可以被描述為空間自相關。同一物種的植物更經常發現彼此接近,和房子往往賣類似的價格在同一地區的其他房子,而不是在其他地區的房子。在分析空間數據時,正確地考慮這些依賴關系是得出正確結論和做出可信預測的關鍵。

本文的目的是為了使貝葉斯分析能夠應用于醫學圖像等大尺度空間數據的空間先驗。許多應用需要分層的、結構化的、靈活的貝葉斯空間模型來恰當地描述數據,正確地傳播不確定性,并得出正確的結論。我們通過開發貝葉斯推理的快速算法來解決這個問題,并在幾個應用中展示了它們的性能。

論文分為兩個部分,第一部分是對研究領域的基本介紹,第二部分是研究論文的集合。本章以對這些文章的總結結束。在第二章中,我們回顧了貝葉斯和空間統計模型,特別關注了GMRFs。第三章介紹了貝葉斯推理的方法。第四章介紹了fMRI數據的統計分析,特別是空間先驗。第五章總結了本文的研究成果,并對未來的研究方向進行了展望。

付費5元查看完整內容
北京阿比特科技有限公司