亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Probability Calibration for Knowledge Graph Embedding Models

摘要: 知識圖譜嵌入的研究忽略了概率定標問題。我們展示了流行的嵌入模型確實是未經校準的。這意味著與預測三元組相關的概率估計是不可靠的。摘要針對知識圖譜中常見的情況,提出了一種新的校準模型的方法。我們建議在我們的方法的同時使用普拉特尺度和等滲回歸。在三個帶有地面真值負樣本的數據集上進行的實驗表明,與使用負樣本的黃金標準相比,我們的貢獻使模型得到了很好的校準。我們得到的結果顯著優于未校準的模型從所有校準方法。我們證明等滲回歸提供了最好的整體性能,而不是沒有權衡。我們還表明,經過校準的模型不需要定義特定于關系的決策閾值就可以達到最先進的精度。

付費5元查看完整內容

相關內容

知識圖譜(Knowledge Graph),在圖書情報界稱為知識域可視化或知識領域映射地圖,是顯示知識發展進程與結構關系的一系列各種不同的圖形,用可視化技術描述知識資源及其載體,挖掘、分析、構建、繪制和顯示知識及它們之間的相互聯系。 知識圖譜是通過將應用數學、圖形學、信息可視化技術、信息科學等學科的理論與方法與計量學引文分析、共現分析等方法結合,并利用可視化的圖譜形象地展示學科的核心結構、發展歷史、前沿領域以及整體知識架構達到多學科融合目的的現代理論。它能為學科研究提供切實的、有價值的參考。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

題目: Multi-view Knowledge Graph Embedding for Entity Alignment

摘要: 我們研究了知識圖譜之間基于嵌入的實體對齊問題。之前的研究主要集中在實體的關系結構上。有些還進一步合并了另一種類型的特性,比如屬性,以進行細化。然而,大量的實體特征尚未被探索或沒有被平等地放在一起處理,這損害了基于嵌入的實體對齊的準確性和魯棒性。在本文中,我們提出了一個新的框架,統一實體的多個視圖來學習嵌入來實現實體對齊。具體來說,我們根據實體名稱、關系和屬性的視圖嵌入實體,并使用幾種組合策略。此外,我們設計了一些跨KG推理方法來增強兩個KG之間的對齊。我們在真實數據集上的實驗表明,所提出的框架顯著優于目前最先進的基于嵌入的實體對齊方法。所選擇的視圖、跨KG推理和組合策略都有助于性能的提高。

付費5元查看完整內容

題目: Low-Dimensional Hyperbolic Knowledge Graph Embeddings

摘要: 知識圖譜(KG)嵌入通過學習實體和關系的低維表示,以預測缺失事實。KGs通常具有層次結構和邏輯模式,必須在嵌入空間中保留這些模式。對于分層數據,雙曲嵌入方法已顯示出高保真度和簡潔表示的優勢。然而,現有的雙曲嵌入方法不能解釋KGs中豐富的邏輯模式。在本工作中,我們引入了一類雙曲KG嵌入模型,可以同時捕獲層次和邏輯模式。我們的方法結合雙曲反射和旋轉注意力模型復雜的關系模式。在標準KG基準上的實驗結果表明,我們的方法在低維的平均倒數(MRR)方面比預先的歐幾里得和雙曲的工作提高了6.1%。此外,我們觀察到不同的幾何變換捕捉不同類型的關系,而基于注意的變換則推廣到多重關系。在高維情況下,我們的方法在WN18RR和YAGO3-10上分別獲得了49.6%和57.7%的最先進的MRR。

付費5元查看完整內容

題目: KG-BERT: BERT for Knowledge Graph Completion

摘要: 知識圖譜是許多人工智能任務的重要資源,但往往是不完整的。在這項工作中,我們使用預訓練的語言模型來對知識圖譜進行補全。我們將知識圖譜中的三元組視為文本序列,并提出了一種新的框架結構——知識圖譜雙向編碼方向轉換器(KG-BERT)來對這些三元組進行建模。該方法以一個三元組的實體描述和關系描述作為輸入,利用KG-BERT語言模型計算三元組的評分函數。在多個基準知識圖譜上的實驗結果表明,我們的方法在三元組分類、鏈接預測和關系預測任務上都能達到最新的性能。

付費5元查看完整內容

題目: Knowledge Graph Embeddings and Explainable AI

摘要: 知識圖譜嵌入是一種廣泛采用的知識表示方法,它將實體和關系嵌入到向量空間中。在這一章中,我們通過解釋知識圖譜嵌入是什么,如何生成它們以及如何對它們進行評估,向讀者介紹知識圖譜嵌入的概念。我們總結了這一領域的最新研究成果,對向量空間中表示知識的方法進行了介紹。在知識表示方面,我們考慮了可解釋性問題,并討論了通過知識圖譜嵌入來解釋預測的模型和方法。

付費5元查看完整內容

題目: A Complete Characterization of Projectivity for Statistical Relational Models

摘要: 關系數據的生成概率模型由一系列不同大小域上的關系結構的概率分布組成。在現有的大多數統計關系學習(SRL)框架中,當尺寸為n的結構在尺寸為k < n的誘導子結構上的分布邊際與尺寸為k的結構的給定分布相等時,這些模型就不是投影的。投影性是非常有益的,因為它可以直接從子采樣的關系結構中進行提升推理和統計一致性學習。在早期的工作中,一些SRL語言的簡單片段被識別出來,它們代表了投影模型。然而,對于射影模型還沒有給出完整的描述和表示框架。在本文中,我們填補了這一空白:利用無窮可交換陣列的表示定理,我們引入了一類與投影關系模型完全對應的有向圖潛變量模型。作為一個副產品,我們還獲得了一個表征,當給定的尺寸為k的結構上的分布是尺寸為k的子結構在更大的size-n結構中的統計頻率分布。這些結果為如何將Halpern等人的隨機世界方法應用于一般關系簽名的概率推斷這一老的開放問題提供了新思路。

付費5元查看完整內容

有關實體及其關系的真實世界事實的知識庫是各種自然語言處理任務的有用資源。然而,由于知識庫通常是不完整的,因此能夠執行知識庫補全或鏈接預測是很有用的。本文全面概述了用于知識庫完成的實體和關系的嵌入模型,總結了標準基準數據集上最新的實驗結果。

付費5元查看完整內容

題目: Probabilistic Regression for Visual Tracking

簡介:

從根本上說,視覺跟蹤是在每個視頻幀中使目標狀態回歸的問題。盡管取得了重大進展,但跟蹤器仍然容易出現故障和不準確的情況。因此,至關重要的是在目標估算中表示不確定性。盡管當前的主要范式依賴于估計與狀態有關的置信度得分,但是該值缺乏明確的概率解釋,使它的使用變得復雜。因此,在這項工作中,我們提出了概率回歸公式,并將其應用于跟蹤。我們的網絡預測給定輸入圖像后焦油狀態的條件概率密度。至關重要的是,我們的配方能夠對由于任務中不正確的注釋和歧義而產生的標簽噪聲進行建模。通過最小化Kullback Leibler差異來訓練回歸網絡。當應用于跟蹤時,我們的公式不僅允許輸出的概率表示,而且還可以顯著提高性能。我們的跟蹤器在六個數據集上設置了最新的技術,在LaSOT上實現了59.8%的AUC,在Tracking Net上實現了75.8%的成功。可以在//github.com/visionml/pytracking獲得代碼和模型。

付費5元查看完整內容

題目: Bayesian Neural Networks With Maximum Mean Discrepancy Regularization

摘要: 貝葉斯神經網絡(BNNs)訓練來優化整個分布的權重,而不是一個單一的集合,在可解釋性、多任務學習和校準等方面具有顯著的優勢。由于所得到的優化問題的難解性,大多數BNNs要么通過蒙特卡羅方法采樣,要么通過在變分近似上最小化一個合適的樣本下界(ELBO)來訓練。在這篇論文中,我們提出了后者的一個變體,其中我們用最大平均偏差(MMD)估計器代替了ELBO項中的Kullback-Leibler散度,這是受到了最近的變分推理工作的啟發。在根據MMD術語的性質提出我們的建議之后,我們接著展示了公式相對于最先進的公式的一些經驗優勢。特別地,我們的BNNs在多個基準上實現了更高的準確性,包括多個圖像分類任務。此外,它們對權重上的先驗選擇更有魯棒性,而且它們的校準效果更好。作為第二項貢獻,我們提供了一個新的公式來估計給定預測的不確定性,表明與更經典的標準(如微分熵)相比,它在對抗攻擊和輸入噪聲的情況下表現得更穩定。

付費5元查看完整內容

【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 在美國紐約舉辦。Michael Galkin撰寫了AAAI2020知識圖譜論文相關研究趨勢包括:KG-Augmented語言模型,異構KGs中的實體匹配,KG完成和鏈路預測,基于kg的會話人工智能和問題回答,包括論文,值得查看!

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, Graham Neubig: Latent Relation Language Models. AAAI 2020

  • 潛在關系語言模型:本文提出了一種潛在關系語言模型(LRLMs),這是一類通過知識圖譜關系對文檔中詞語的聯合分布及其所包含的實體進行參數化的語言模型。該模型具有許多吸引人的特性:它不僅提高了語言建模性能,而且能夠通過關系標注給定文本的實體跨度的后驗概率。實驗證明了基于單詞的基線語言模型和先前合并知識圖譜信息的方法的經驗改進。定性分析進一步證明了該模型的學習能力,以預測適當的關系在上下文中。

付費5元查看完整內容

Embedding methods which enforce a partial order or lattice structure over the concept space, such as Order Embeddings (OE) (Vendrov et al., 2016), are a natural way to model transitive relational data (e.g. entailment graphs). However, OE learns a deterministic knowledge base, limiting expressiveness of queries and the ability to use uncertainty for both prediction and learning (e.g. learning from expectations). Probabilistic extensions of OE (Lai and Hockenmaier, 2017) have provided the ability to somewhat calibrate these denotational probabilities while retaining the consistency and inductive bias of ordered models, but lack the ability to model the negative correlations found in real-world knowledge. In this work we show that a broad class of models that assign probability measures to OE can never capture negative correlation, which motivates our construction of a novel box lattice and accompanying probability measure to capture anticorrelation and even disjoint concepts, while still providing the benefits of probabilistic modeling, such as the ability to perform rich joint and conditional queries over arbitrary sets of concepts, and both learning from and predicting calibrated uncertainty. We show improvements over previous approaches in modeling the Flickr and WordNet entailment graphs, and investigate the power of the model.

北京阿比特科技有限公司