亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

城市環境下的移動數據分析與行為建模研究

在全球城鎮化進程方興未艾、我國轉向高質量的新型城鎮化發展的背景下,深 入理解城市環境下的移動行為模式是提升城市在規劃、管理、交通等方面綜合能力 的重要研究課題。近年來,通過智能終端、移動互聯網和社交媒體等多種渠道采集 的移動數據日益豐富,為研究城市移動數據分析與行為建模問題提供了契機。該研 究課題存在以下挑戰:首先,移動數據體量大、質量低,現有數據挖掘算法難以直 接適應;其次,城市環境下的移動行為模式復雜多樣,且與城市結構緊密關聯,現 有移動模型難以刻畫;最后,移動數據極易泄漏用戶隱私,目前仍然缺乏有效的隱 私保護方案。針對以上挑戰,本文對多尺度復雜移動行為建模、結合城市結構的移 動行為建模和保護移動數據隱私安全三個關鍵問題展開研究,為系統認知城市環 境下的移動行為模式提供了理論模型與關鍵技術。論文的主要創新點與貢獻如下:

第一,在個體移動行為建模方面,本文重點研究了意圖感知的移動行為模式識 別問題。首先,通過大規模真實數據分析證明了已有工作基于社交媒體簽到數據推 斷用戶移動意圖的方法存在顯著誤差,43%的簽到數據與真實移動行為不符。其次, 提出了一種基于無標注移動數據的意圖感知的移動模式識別算法,在用戶職業推 斷和訪問地點類型推斷上較基線算法取得了 112.5%~126.4%的性能提升。

第二,在群體移動行為建模方面,本文通過建模用戶連接移動網絡的行為模式, 建立了基于移動網絡連接數據的高質量群體移動行為估計算法,其較基線算法降 低了 22.5%的誤差。在此基礎上,本文進一步研究了城市結構感知的群體移動模式 識別問題,并提出了一種基于頻譜分解的規律性和隨機性群體移動行為分解算法。

第三,在移動行為驅動的城市演化方面,研究了移動行為與城市演化的內在關 聯,提出了基于個體移動行為模式的城市演化模型,其在微觀層面建模了個體移動 的關鍵行為規律,并在宏觀層面準確預測了城市演化中形態、面積、人口的分布規 律,為關聯微觀層面的移動行為和宏觀層面的城市演化搭建了重要的理論橋梁。

最后,在移動數據隱私保護方面,揭示了移動數據中個體移動行為的高唯一性 和強規律性分別會對匿名個體移動數據和聚合群體移動數據帶來嚴重的去匿名攻 擊和軌跡恢復攻擊的隱私風險。基于分析所得的個體移動行為中導致隱私風險的 關鍵因素,提出了通過時空泛化和添加噪音來隱藏移動行為規律的隱私安全保護 算法,實現了高效、可靠的移動數據隱私保護。

付費5元查看完整內容

相關內容

多層圖分析技術研究

近年來,越來越多的領域都使用“圖”來表示和管理數據,稱為“圖數據”。針對 圖數據的分析可以發現其中的結構特征、頻繁模式、演變規律等有用的知識,具有 重要的科研意義和應用價值。隨著研究的深入,人們發現現實世界的圖數據往往 包含數據對象間多種類型的關系。例如,社交網絡數據包括多個社交媒體組成的 網絡;交通網絡數據涵蓋了多種交通工具組成的網絡。這種圖數據稱為“多層圖”, 其每一層包含了數據對象間某種特定類型的關系。

多層圖分析可以發現準確可靠、價值更高的知識。然而,多層圖分析面臨兩 方面的挑戰:一方面,單層圖上的計算語義在多層圖場景下不再適用,多層圖上 的計算語義更加復雜;另一方面,多層圖分析涉及多個圖層上的計算任務,使得 問題的固有計算復雜性大大增加。現有的多層圖分析方法在計算語義和算法設計 兩個方面都存在缺陷,不能很好的解決多層圖分析的有關問題。

本文綜合運用數據分析的相關理論、技術和方法,對于多層圖分析進行了系統研究。本文同時考慮了無概率的普通多層圖和帶概率的多層圖,從圖數據的稠 密性、可靠性、傳播性和相似性四方面重要性質出發,對多層圖分析領域中的一 系列重要問題進行了深入研究,主要研究成果如下:

  1. 本文研究了多層圖上的多樣化稠密區域發現問題,該問題在生物蛋白復合 體檢測和社區發現上具有重要應用。在無概率的普通多層圖模型基礎上,本文提 出了一種新的稠密區域概念 d-Coherent-Core(簡稱 d-CC),設計了兩種近似比為 1/4 的高效搜索算法來求解該 NP-難問題,算法在結果質量和執行時間兩個方面 均優于基于準團的傳統算法。d-CC 概念同時刻畫了稠密區域的稠密度和支持度兩 方面重要特性,滿足唯一性、包含性和層次性 3 個重要數學性質。自底向上和自 頂向下兩種搜索算法采用了高效的搜索策略和剪枝方法,分別適用于支持度參數 較小和較大兩種情況。真實數據上的實驗結果表明:自底向上和自頂向下兩種搜 索算法是高效、準確的。

  2. 本文研究了多層圖上的 top-k 可靠頂點搜索問題,該問題在通信網絡中具 有重要的研究意義,相比基于閾值的搜索問題自適應性更好。本文給出了一種圖 層帶概率的多層圖模型,提出了一種新的多層圖計算框架——共享計算,其可以 有效利用多層圖不同圖層間的重疊結構以減少搜索代價、提高算法效率。基于此,本文設計了求解 top-k 可靠頂點搜索問題的共享 BFS 精確算法和隨機算法。真實 數據上的實驗結果表明:共享 BFS 精確算法具有很高的效率和擴展性;共享 BFS 隨機算法具有很高的準確率。

  3. 本文研究了多層圖上的影響力最大化問題,該問題在病毒式營銷和輿情控 制中應用廣泛。為描述影響力最大化問題中的圖數據,本文給出了一種帶概率的 多層圖模型,其可以表示由于邊的不確定性而形成的多層圖。針對已有算法的缺 陷,本文設計了一種能夠同時達到高時間效率、高結果質量、低內存開銷和高健 壯性的影響力最大化算法,具有線性的時間和空間復雜度。該算法采用高質量的 分數估計方法和增量式的分數更新方法,在實際社交網絡中表現出良好的性能和 很高的擴展性。

  4. 本文研究了多層圖上 SimRank 頂點相似性測度問題,該問題是推薦系統、 實體識別等眾多應用的基礎。在帶概率的多層圖模型基礎上,本文嚴格給出了符 合其可能世界語義的 SimRank 相似性測度定義,設計了高效、準確的計算頂點間 SimRank 相似性的方法。同時,作為 SimRank 相似性測度的基礎,本文提出了多 層圖上隨機游走的定義,嚴格證明了這一定義滿足馬爾可夫性,設計了計算隨機 游走概率的高效算法。真實數據上的實驗結果表明:本文提出的 SimRank 算法是 高效、準確的;本文提出的 SimRank 測度比傳統測度在實際應用中效果更好。

付費5元查看完整內容

深度預測學習問題與方法研究

隨著移動互聯網、傳感器網絡、計算機視覺的快速發展,人們獲得了海量的 時空數據。本文面向這類數據的時間與空間結構特性,系統研究基于神經網絡的 深度預測學習方法。該方法旨在學習時空序列背后的演變規律,并對其未來狀態 給出近似估計。本文討論深度預測學習的以下難點問題:(1)如何在對時空相關 性的統一建模中考慮層次化的深度網絡特征;(2)如何緩解循環網絡深度和梯度 消失的矛盾,平衡短期與長期的時空特征;(3)針對各種確定性時空數據,研究 如何建模其復雜的趨勢非平穩過程與季節性變化;(4)針對開放視覺環境中的感 知不確定性和動態不確定性,研究如何解決概率預測模型的可信度問題;(5)如 何促進深度預測學習特征向下游語義級的有監督任務泛化。圍繞這些問題,本文 的研究過程可分為以下三個階段,呈遞進關系,每個階段包含 2-3 個創新點:

第一階段,本文探索深度預測學習的基礎網絡結構。針對難點(1),研究基于 循環網絡的記憶狀態跨層轉移方法,實現了時間記憶狀態與多層空間特征的融合;在此基礎上,針對難點(2),本文研究如何在延長循環網絡的記憶狀態轉移路徑 的同時,延緩該路徑上的反向梯度消失。

第二階段,本文根據傳統時間序列分析中的 Cramér 分解理論[1],分別從時空 信號的非平穩性、季節性和隨機性的角度出發,針對難點(3-4)研究相應的深度 預測學習方法。這些方法依次適用于存在固有動力學模式但趨勢信息相對復雜的 確定性時空數據(如短時雷達回波序列)、季節性時空數據(如交通流量序列)和 從部分可見的環境中采集的時空數據(如帶有噪聲的視頻片段)。

第三階段,本文在數據級的時空序列預測任務的基礎上更進一步,從時序關 系推理的角度出發,再度審視深度預測學習的特征表達。針對難點(5),本文在 循環網絡的狀態轉移方程中分別引入三維卷積算子和可微分的記憶狀態讀寫機制, 旨在同時促進模型對短期時空特征的感知和對長期語義關系的推理。實驗表明,這 些改進對預測模型的任務泛化大有裨益,進而說明了面向時空數據的深度預測學 習是一種有效的無監督表征學習框架。

此外,本文還設計了一套名為 PredLearn 的模型庫,從系統實現的角度對上述 創新性方法及其特點和適用范圍進行了整理、歸納和對比,以便用戶可以根據具 體的場景特性合理選擇模型。最后,本文以災害天氣短時臨近預報作為一種典型 的應用案例,介紹如何實現從本文方法到實際業務平臺的技術轉化。

付費5元查看完整內容

軟件系統網絡化建模、質量度量與保證

軟件開發活動中,質量問題層出不窮。例如軟件功能沒有滿足用戶的需求,軟件 不健壯,由于低可靠性而引起的經常性失效,交付有缺陷的軟件產品,需求不完整 亦或概念模糊等。多數情況下,軟件產品問題發生原因是質量監控人員沒有及時發 現問題并且修正,包括未對設計與需求進行評審或者評審方案不具備有效性,導致 開發過程中常常帶著問題進入下一階段的研發。因此需要花費更多的人力物力和時 間來糾正問題。因而,軟件質量保證是解決上述問題的有效手段之一。

經過長期的研究和實際案例分析,雖然現有軟件質量度量方法的有效性已經在 實踐中得到了檢驗,它們依然存在著許多不足之處,如傳統的方法側重于微觀層面 的統計,使得開發人員難以在較高層次分析和度量軟件體系結構的全局特性;現有 的質量模型企圖以單一模型廣泛地應用于軟件和信息系統的開發過程,但這與質量 本身的特征多樣性相背離;軟件質量模型設計的初衷沒有考慮其在軟件開發過程中 的應用場景,并未對軟件開發中的特定活動提供相應支持。因此開發出一個操作性 強,具有較高應用價值且能夠高效地發現質量隱患的模型仍是一個開發性的課題。本文圍繞著軟件質量模型構建、質量保證及質量改善開展工作,主要的研究內容包括:

(1) 針對現有的軟件質量模型均以靜態視角描述軟件某單一維度結構特征的局 限性,本文從多粒度、多類型依賴關系及多功能剖面等角度出發,提出了多維度軟 件網絡模型。并結合概率風險分析理論評估軟件設計的缺陷及軟件模塊的風險,借 助于多維度網絡模型將軟件系統映射為多功能剖面,使用故障樹模型分析不同功能 剖面上節點的組合失效因果鏈,給出了一種基于故障樹分析的可靠性度量方法。通 過實驗分析,驗證了上述方法可以有效檢測軟件高風險的關鍵節點,詮釋了軟件系 統拓撲結構因素與系統可靠性的相關性,可作為軟件設計早期階段確保軟件設計質 量的指導準則。

(2) 在軟件集成測試的場景之中,基于多維度軟件網絡模型,結合軟件風險分析 方法提出了一種兼顧測試成本與測試效率的集成測試序列生成算法。利用成本收益。分析方法,在生成測試用例的過程中保證兩條原則:一是為高風險的類賦予較高權 重,二是最小化測試樁復雜度。在此基礎上,我們從構造測試樁的成本和測試序列 對軟件系統運行風險的影響兩個方面,提出了評估測試序列優劣的度量方案及針對 集成測試序列合理分配測試資源的方法。通過與現有算法的實驗對比分析,證明了 所提出算法生成的類級集成測試序列,既能夠保證風險因子高的節點優先被測試, 又降低了構造測試樁的總復雜度,有效地降低了測試代價。

(3) 將本文提出的軟件質量模型應用于軟件回歸測試的場景之中,以保障軟件產 品質量。在多維度軟件網絡模型基礎上,結合可靠性度量方法提出了一種基于動態 反饋機制的自適應測試用例優先級排序技術。在計算測試用例優先級的過程中,利 用已經執行的測試用例對軟件可靠性變化信息進行動態反饋,以不斷更新系統的可 靠性數值,進而高效地定位到軟件缺陷,提高故障檢測效率。通過在不同的軟件系 統的實驗分析,驗證了所提出的自適應優先級排序技術具有較高的穩定性,尤其對 于嚴重故障具有較強的檢測能力,同時可以兼顧最大化軟件系統的可靠性。

(4) 為了從軟件體系結構的角度得到最佳的功能分布,基于多維度軟件網絡模型 提出了一種系統級別的自動化重構技術。將軟件系統映射成多依賴關系類型網絡和 方法級加權依賴網絡,借助于前者我們完成了重構預處理操作,借助于后者我們利 用加權聚類算法,根據“高內聚、低耦合”原則對系統的模塊進行重新劃分。為了移除 非繼承體系和繼承體系內部由內聚和耦合性引起的代碼壞味道,提出三種不同類型 的重構建議(包括搬移函數、搬移方法和提煉類重構的操作)。經過世界知名軟件公司 軟件質量評估專家的評估和驗證,證明了自動化重構算法的有效性。

付費5元查看完整內容

大規模數據中心帶寬分配與流量調度技術研究

隨著互聯網和計算機技術的發展,基于互聯網提供的各種應用和服務也越來越多了。作為這些應用服務載體的數據中心,其建設需求也在不斷增加。然而,在數據中心發展的過程中,還面臨著諸多亟待解決的關鍵科學問題和挑戰。本論文主要關注大規模數據中心中帶寬資源受限、帶寬資源分散、流量總量巨大、流量時空變化這四類挑戰,在總結現有方法和研究成果的基礎之上,圍繞數據中心內的流量、數據中心間的流量、以及用戶服務請求這三個研究主體,展開對帶寬分配和流量調度這兩類問題的研究,具體的研究內容和貢獻如下:

在數據中心內部,集群計算應用觸發的流量顯著增加,從而使得鏈路帶寬經常成為稀缺資源。為此,本文針對多種集群計算框架共享同一數據中心網絡所引發的鏈路帶寬傾斜使用、帶寬資源非彈性使用、以及應用完成時間被延長這三方面的后果,研究跨集群計算框架的帶寬分配和流量調度問題,以實現高鏈路帶寬利用率和低應用完成時間的雙重目標。在帶寬分配方面,本文提出了虛擬鏈路組抽象模型,以構建虛擬帶寬資源共享池,并據此設計了三層帶寬分配方法,從而保障應用的網絡性能,并實現帶寬資源在集群計算框架間的彈性共享。在流量調度方面,本文設計了虛擬鏈路組依賴關系圖,并提出了一個近似比為3/2的鏈路選擇算法,從而實現負載均衡化的流量調度,并同時緩解鏈路帶寬傾斜使用的情況。實驗結果表明本文所提出的方法能夠大幅降低應用完成時間,且提高鏈路帶寬資源利用率。

在數據中心間,本文主要圍繞成本和性能兩個目標來展開針對數據中心間流量的帶寬分配和流量調度問題研究。首先,在成本方面,本文發現Internet服務供應商(Internet Service Provider,ISP)對數據中心間流量所采用的比例計費模型中存在著相當多的免費時間間隙:在這些時間間隙上傳輸的流量不影響整體傳輸成本。為此,本文提出了基于李雅普諾夫優化(Lyapunov Optimization)技術的帶寬分配和流量調度方法,以利用比例計費模型中的免費時間間隙進行流量傳輸,從而減少流量傳輸成本。實驗結果表明本文所提出的方法能夠大幅減少流量傳輸成本。其次,在性能方面,本文發現在進行帶寬分配和流量調度時,靈活地放置網絡流的端點能夠顯著地減少跨數據中心傳輸的Coflow的完成時間。為此,本文研究流量端點放置、帶寬分配和流量調度的聯合優化問題,以最小化跨數據中心運行的Coflow的平均完成時間。為了解決該問題,本文首先提出針對單個Coflow的端點放置、帶寬分配和流量調度算法,然后將此算法擴展到多個Coflow的場景。實驗結果表明本文所提出的方法能夠大幅減少Coflow的平均完成時間。最后,在兼顧成本和性能方面,本文研究了針對數據中心間流量的帶寬分配和流量調度問題,并提出了基于交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)的分布式帶寬分配和流量調度算法,從而最小化供應商的網絡帶寬成本,并同時為數據中心間流量提供帶寬保障。實驗結果表明本文所提出的方法能夠大幅減少供應商的網絡帶寬成本,并同時還能為數據中心間流量提供帶寬保障。

在面向用戶服務方面,本文主要研究帶寬分配和用戶請求流量調度兩個子問題。在帶寬分配方面,本文首先提出了“數據中心間的網絡即服務”模型,以將用戶在Internet上傳輸的流量引入到了大公司(如Google和Microsoft)的私有廣域網中,并且重點研究該模型下的多用戶多供應商的帶寬分配問題。本文設計了基于兩階段斯塔爾伯格博弈(Stackelberg Game)理論的帶寬分配方法,實驗結果表明本文所提出的帶寬分配方法能夠同時保證供應商和用戶的利益。在用戶請求流量調度方面,本文研究了供應商帶寬資源效率和用戶延遲聯合優化的用戶服務請求調度問題,并提出了基于對數平滑技術的請求調度算法。實驗結果表明,本文提出的請求調度算法能夠大幅提高數據中心帶寬資源利用率,且還能明顯減少用戶的延遲。

付費5元查看完整內容

搜索引擎中的實體推薦關鍵技術研究

搜索引擎是獲取信息的重要工具。近年來,為了更好地滿足用戶的信息獲取 需求,搜索引擎從最初只能被動地根據查詢返回相關網頁,逐步改進到能夠主動 地根據查詢提供相關信息推薦。實體推薦,即以實體為粒度進行信息推薦,是其 中推薦粒度最細且信息量最豐富的一種信息推薦形式。實體推薦旨在為用戶提供 與其查詢存在直接或間接關系的實體列表,能夠幫助用戶拓展知識面,因而越來 越受到用戶的歡迎。因此,實體推薦不僅成為現代搜索引擎必不可少的功能之一, 也正成為學術界重視的研究問題。

在搜索引擎實體推薦系統中,不僅需要為用戶提供與其查詢相關的實體推薦 結果,還需要對實體推薦結果進行恰當且合理的解釋以幫助用戶更好地理解推薦 結果。相應地,搜索引擎中的實體推薦研究主要包含以下兩個方面:(1)實體推薦算法,其目標是獲取與查詢相關的實體集合并對其進行排序;(2)實體推薦的可 解釋性,其目標是為實體推薦結果生成推薦理由,以提升推薦結果的可信度。針 對上述問題,本文研究了實體推薦算法的改進以及推薦理由的生成兩個方面的關 鍵技術,具體包括:(1)適用于搜索引擎的大規模實體推薦算法,以及基于上下文 優化實體推薦算法的具體策略;(2)實體對推薦理由的識別,以及實體推薦理由 的生成。本研究的主要內容包括以下幾個方面:

1. 基于排序學習與信息新穎性增強的實體推薦。構建適用于搜索引擎的大規 模實體推薦系統主要面臨以下 4 個挑戰:查詢與實體規模龐大、查詢的領域無關 性、用戶實體點擊數據極其稀疏以及很難為用戶推薦具有信息新穎性的實體。針 對上述挑戰,本文提出了一種基于排序學習框架的實體推薦算法,并圍繞信息新 穎性設計了相關特征與優化目標。一方面可以靈活地對召回與排序進行分階段優 化,另一方面可以直接基于查詢并面向信息新穎性構建多種粒度的排序特征,進 而能針對不同用戶偏好以及任何類型的查詢,為用戶提供個性化且兼具信息新穎 性的實體推薦結果,因此能夠大幅顯著提升實體推薦效果以及用戶參與度。

2. 基于深度多任務學習的上下文相關實體推薦。針對目前實體推薦方法普遍 忽略上下文信息以及上下文相關實體點擊數據存在數據稀疏問題,本文提出了一 種基于深度多任務學習的上下文相關實體推薦模型。一方面可以借助于上下文相 關文檔排序這一輔助任務中的大規模多任務交叉數據,另一方面可以基于多任務 學習來實現知識遷移,進而有效緩解數據稀疏問題并提升實體推薦結果的相關性,因此能夠顯著提升推薦效果。

3. 基于卷積神經網絡的實體對推薦理由識別。當推薦實體與查詢實體之間存 在確定的實體關系時,將能夠翔實地描述該實體對之間的關系的句子作為推薦理 由(簡稱為實體對推薦理由)展現給用戶,可以幫助用戶理解兩個實體間的關系, 從而提升推薦結果的可信度。目前的實體對推薦理由識別方法嚴重依賴于人工標 注的數據集以及人工設計的排序特征,從而導致識別出的實體對推薦理由的質量 較低。針對上述問題,本文提出了一種基于卷積神經網絡的實體對推薦理由識別 方法。一方面可以借助于搜索引擎點擊日志自動構建大規模訓練數據,另一方面 可以通過卷積神經網絡自動學習排序特征,進而顯著提升排序效果并帶來實體對 推薦理由質量的顯著提升。

4. 基于機器翻譯模型的實體推薦理由生成。當推薦實體與查詢之間不存在可 歸類的關系時,將能夠刻畫推薦實體特點的簡短描述作為推薦理由(簡稱為實體 推薦理由)展現給用戶,可以幫助用戶理清當前實體與查詢間的關聯,從而提升 推薦結果的可信度。然而,前人在實體推薦理由生成研究上鮮有涉獵。為此,本文 提出了基于機器翻譯模型的實體推薦理由生成方法,尤其是提出了一種由實體信 息指導的基于序列到序列學習的實體推薦理由生成模型。一方面可以有效識別并 保留源句子中的重要信息,另一方面可以指引模型生成與實體相關的結果,從而 能夠生成質量更高的實體推薦理由。

在應用方面,上述研究成果已在百度搜索引擎得到了大規模應用,取得了重 大的經濟效益和社會效益,并獲得了 2017 年中國電子學會科技進步一等獎。

付費5元查看完整內容

復雜場景中的人群行為解析及其應用

隨著人口的不斷增長,行人聚集活動帶來的安全問題日益突出。面向大規模 人群的智能視頻監控受到各國學者的廣泛關注,成為預防突發性群體事件的關鍵 技術。利用計算機視覺與圖像處理技術對監控視頻中的人群行為進行解析,可以 及時發現場景中的潛在危險因素,有助于公共場所安全性的提升。因此,人群行 為解析成為智能視頻監控的一項熱門研究課題,被廣泛應用于公共安全保障中。

人群行為解析的根本任務是掌握人群的行為模式。在復雜、擁擠的場景中, 行人通常會呈現出有序的集體活動,形成群體,每個群體都具備特定的行為模 式。相比于個體行為,群體行為具有連續、穩定的特點,并包含了宏觀層面的語 義信息。因此,群體行為模式的識別與分析成為人群行為解析的主要研究內容, 涉及異常檢測和人群行為預測等多個研究方向。然而,大規模人群的復雜性為群 體行為的研究帶來了諸多挑戰:1. 流形結構難把握。由于個體間的密切交互,人 群中往往存在流形結構,屬于同一群體的個體可能在行為表現上存在較大差異;2. 研究對象難提取。由于場景中存在嚴重的遮擋,個體的準確提取非常困難。已 有方法通常將運動特征點或粒子作為研究對象,但這些特征點和粒子過于局部化, 運動信息不穩定,在某些場景中難以準確反映個體的運動情況;3. 行為特征難挖 掘。在大規模場景中,個體分布非常密集,計算機視覺中常用的顏色、形狀等特 征難以利用,導致難以挖掘群體的行為特征。

圍繞上述難點,本文對復雜場景中的人群行為解析問題進行了深入研究,以 群體行為的識別與分析為研究重點,提出了一系列新方法,主要包括:

  1. 為挖掘場景中的流形結構,提出了基于錨點的人群行為解析方法。在人群 場景中,群體中往往包含一些代表性個體,其行為可大致反應所在群體的行為模 式。受此現象啟發,該方法提出了交互度的概念,將與周圍特征點交互頻繁的點 作為錨點,每個錨點對應一個類別。進而,利用流形排序方法,計算特征點在拓 撲結構上的關系,并根據與錨點的拓撲關系,對每個特征點分配群體類別,得到 子群體。最后,提出了連續性合并策略,將在空間、運動方向上表現出連續性的 子群體進行合并,得到最終群體。該方法充分挖掘了特征點在結構層面的拓撲關 系,能夠在結構復雜的人群中準確識別群體行為。

  2. 為減輕研究對象局部化問題,提出了基于圖像塊主題的人群行為解析方 法。區別于直接將特征點作為研究對象的工作,該方法對人群圖像進行分割,以 圖像塊為單位研究特征點運動規律,并提出圖像塊描述子,以獲得人群運動的結 構上下文表征。進而,為深入挖掘人群中的潛在行為模式,該方法利用隱狄利克 雷分布模型對圖像塊的語義主題進行推理,找出共享同一主題的圖像塊。同時, 該方法將局部一致性引入隱狄利克雷分布模型中,以挖掘圖像塊的空間關聯線 索。最后,利用類內距離評價標準,自動確定最優的群體數目,并完成群體行為 的識別。該方法通過學習圖像塊的語義主題,在避免研究對象局部化的同時有效 挖掘了群體行為所包含的語義信息。

  3. 為處理場景屬性與拍攝視角多樣化的人群視頻,同時減輕研究對象局部化問題,提出了基于多視角聚類的無參數人群行為解析方法。該方法提出了基于鄰 近點運動方向分布的結構上下文描述子,從宏觀層面理解人群行為。所提描述子 對軌跡抖動不敏感,且能夠反映特征點的結構信息。為結合特征點在運動方向和 結構上的關聯信息,提出了權重自適應的多視角聚類算法,對不同視角的相似圖 進行融合,自適應地學習最優相似圖,并得到初步的子群體。考慮到不同子群體 間可能存在較高的關聯,提出了基于緊密度的子群體融合方法,對相似子群體進 行合并。該方法不涉及任何參數,因此適用于密度、結構分布多樣化的人群場景。

  4. 為充分挖掘人群行為特征,提出了基于圖像塊多視角聚類的人群行為解析 方法。為充分挖掘人群行為特征,該方法分別從交互關系、空間位置、運動方向 分布和運動規律等四個視角比較圖像塊中特征點的運動相似度。為結合不同視角 的信息,提出了一種基于相似圖多樣性的多視角聚類方法,在多視角學習過程中 引入圖多樣性正則項,強調了不同視角的互補性,并自動地學習不同視角的權重, 得到子群體。最后,提出了基于運動方向和中心位置的子群體合并方法,將被劃 分入不同子群體的相似圖像塊進行合并,得到最終群體。該方法提出了多種人群 行為表征方法,并對圖像塊進行多視角聚類,有效緩解了研究行為特征利用不充 分和對象局部化的問題。

付費5元查看完整內容

面向物體語義理解的視覺表示學習

在對真實世界中的物體進行描述時,人們通常使用大量抽象的語義概念,如物體的顏色、形狀、類別等。一方面,這些抽象的語義概念在不同的物體間是可以共享的,因此語義概念天然地可以將不同的物體聯系在一起,從而快速、準確地建立真實世界中身邊的物體與已知的物體之間的關聯,方便人們理解周圍的世界。另一方面,不同抽象程度的語義概念之間也并非完全相互獨立,而是存在一定的關聯關系,因此語義概念也是人在進行推理過程中的重要線索之一。綜上所述,語義概念在感知和認知任務中都有重要的作用,因此對于計算機視覺算法來說,掌握和理解語義概念具有巨大的潛在價值。具體來說,算法對于語義概念的理解可以分為以下四個層次:第一,識別物體具有的語義概念,如物體屬性預測、物體識別等;第二,挖掘物體間由語義概念組成的關聯,如統計出多個物體具有相同的屬性;第三,建立多維度的語義關聯知識網絡,如建立起尐馬少這類物體基本都具有尐四足少屬性這樣的知識;第四,利用語義關聯知識進行邏輯推理。近年來,盡管計算機視覺技術取得了長足的發展,但是由于物體語義的高度復雜,上述感知問題仍然沒有被完全解決。而在更高的層面上,只有很少的工作涉及到了挖掘不同抽象程度的語義概念之間的聯系。針對上述物體間及語義概念間的關聯學習,本文利用表示學習的方法,著手解決其中的三個關鍵問題:(就)快速、準確地識別物體間的語義關聯;(尲)在不同的語義抽象程度上挖掘物體間的關聯關系;(尳)使用盡可能少的人工標注,建立不同抽象程度的語義概念之間的關聯。在理論方面,本文提出的方法可以實現對圖像、場景的深層次理解,在一定程度上解決計算機視覺問題中的知其然而不知其所以然的問題。在應用方面,本文提出的方法在多個不同抽象程度的語義概念上建立了物體之間的關聯,并且通過學習的方式建立了不同抽象程度的語義概念之間的關聯,因此本文提出的方法在個性化圖像檢索、知識推理等任務上具有潛在的應用價值。具體地,本文以最常見的語義概念——類別作為出發點,逐漸深入地展開研究工作,圍繞物體間語義關聯及語義概念間的關聯學習開展以下四個主要工作:

(1)提出了一種端到端的有監督二值碼深度學習算法,用來解決大規模依據類別的圖像檢索任務。該任務中,給定一張查詢圖像,系統的目標是檢索屬于同類的數據庫中圖像。為了引入判別性,該方法對圖像對或圖像三元組之間。的距離進行約束,要求相似的圖像具有相似的二值碼,反之亦然。此外,針對哈希編碼學習中的二值量化導致的損失函數不可導問題,該方法提出了一種全新的量化損失約束,在保持判別性約束的同時,通過施加量化損失約束,減少量化損失帶來的檢索精度損失。

(2)提出了一種基于離散優化的兩階段有監督二值碼深度學習方法,主要針對上一個工作中,由于判別性損失與量化損失的優化目標不同而導致的判別性損失難以收斂到最優的問題。其中,在第一階段,通過設計一種離散優化算法,直接在漢明空間中迭代優化,得到具有強判別性的二值碼;在第二階段,通過訓練模型擬合優化得到的二值碼,從而避免判別性損失與量化損失之間的沖突,得到檢索精度更高的二值碼。

(3)提出了一種可以在多個維度的語義概念上建立物體間關聯的二值碼學習方法,從而相比于前兩個工作,可以更好地建模物體間豐富的語義關聯。該方法通過同時使用多個損失函數對模型進行訓練,將多種不同抽象程度的語義概念編碼到同一組二值碼中。因此,該方法可以根據不同用戶的特定需求,按照不同的方式使用學習到的二值編碼,進行相應的圖像檢索任務,找到在特定語義標準下相似的數據庫圖像。另外,考慮到目前公開的數據集中,只有極少數的數據同時具有多種不同抽象程度的語義概念的標注,為了使模型具有更強的泛化性能,該方法被設計為可以使用大量存在的部分標注數據進行訓練。

(4)設計了一種算法來自動地挖掘語義概念間天然存在的關聯,包括物體的類別之間的關聯,以及物體類別與視覺屬性之間的關聯。在前三個方法中,并沒有很好地利用不同語義概念之間的關聯進行模型的學習。其中一個重要原因是語義概念間關聯數據的匱乏。由于目前的公開數據集上幾乎沒有這類標注,該方法基于表示學習技術,自動地從大量圖像中學習視覺屬性的概念,并基于學習到的視覺屬性,建立類別層級結構中不同語義概念之間的關聯,從而構建起語義關聯知識。在應用層面上,該方法可以對物體識別模型的預測結果給出人類可理解的解釋。此外,該方法學習到的語義關聯知識,對于需要進行知識推理的計算機視覺認知任務具有巨大的潛在應用價值。

付費5元查看完整內容

論文主題:基于屬性圖挖掘的職業流動行為研究

論文作者:胥皇,西北工業大學博士研究生,他的導師是於志文。

指導老師:於志文,工學博士,西北工業大學教授,博士生導師,洪堡學者。西北工業大學計算機學院兼軟件與微電子學院黨委書記,智能感知與計算工信部重點實驗室主任,陜西省嵌入式系統技術重點實驗室主任,普適與智能計算研究所所長。

論文摘要: 職業流動行為是指個人在職業生涯中的工作變動引起的人才流動現象,根據研究的層次,可分為微觀(個人)、中觀(用人單位內)和宏觀(行業和地區間)三個行為粒度。職業流動行為受經濟、文化和政治等環境因素的影響,與知識水平、職業追求和家庭背景等個人因素相關,且對個人、家庭、用人單位、社會經濟甚至國家的人才戰略等都有重要意乂。隨著經濟全球化的發展,職業流動行為呈現岀逐漸活躍的趨勢,為相關分析和研究帶來了新的機會和挑戰。相關硏究主要集中在人力資源管理和組織行為學等領域,且對微觀流動的硏究通常規模較小,對宏觀流動的硏究一般粒度較粗。隨著互聯網的普及,職業流動的信息迅速數字化,為開展大規模細粒度的研究創造了可能。同時,不斷增強的數據挖掘技術,以及日益提髙的計算能力,為復雜藪據建模提供了機會。因此,本文基于屬性圖挖掘技術,研究職業流動行為相關的若干關鍵問題。具體而言,本文以職業流動的屬性圖表示為基礎,通過圖重建技術實現行為粒度的切換,將相關研究問題轉換為屬性圖上的建模任務,并重點解決了靜態圖聚類和動態圖預測兩個關鍵問題。

付費5元查看完整內容
北京阿比特科技有限公司