亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: A Survey of Deep Learning Applications to Autonomous Vehicle Control

摘要:

為自動駕駛車輛設計一個能夠在所有駕駛場景中提供足夠性能的控制器是一個挑戰,因為它的環境非常復雜,而且無法在部署后可能遇到的各種場景中測試系統。然而,深度學習方法已經顯示出巨大的潛力,不僅為復雜的非線性控制問題提供了出色的性能,而且還可以將以前學習的規則推廣到新的場景中。基于這些原因,在車輛控制中使用深度學習變得越來越流行。雖然在這一領域取得了重要的進展,但這些工作尚未得到全面總結。本文調查了文獻報道的廣泛的研究工作,旨在通過深度學習的方法來控制車輛。雖然控制和感知之間存在重疊,但本文的重點是車輛控制,而不是更廣泛的感知問題,包括語義分割和目標檢測等任務。本文通過比較分析,明確了現有深度學習方法的優勢和局限性,并從計算、體系結構選擇、目標規范、泛化、驗證和驗證以及安全性等方面探討了研究的挑戰。總的來說,這項調查為智能交通系統相關的一個快速發展的領域帶來了及時和熱門的信息。

作者:

Sampo Kuutti是薩里大學汽車工程中心碩士研究生,研究興趣是機器學習,強化學習,自動車輛。

Richard Bowden是英國薩里大學計算機視覺和機器學習教授,在倫敦大學獲得計算機科學學士學位,利茲大學獲得理學碩士學位,布魯內爾大學獲得計算機視覺博士學位。Richard Bowden教授領導視覺、語言和信號處理中心的認知視覺小組,他的研究中心是利用計算機視覺來定位、跟蹤和理解人類。他是圖像和視覺計算、IEEE模式分析和機器智能的副主編,是英國機器視覺協會(BMVA)執行委員會的成員。

付費5元查看完整內容

相關內容

 ,又稱為無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,是自動化載具的一種,具有傳統汽車的運輸能力。作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。完全的自動駕駛汽車仍未全面商用化,大多數均為原型機及展示系統,部分可靠技術才下放至商用車型,但有關于自駕車逐漸成為現實,已經引起了很多有關于道德的討論。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

題目: Natural Language Processing Advancements By Deep Learning: A Survey

摘要: 自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。算力的最新發展和語言大數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本綜述對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們并進一步分析和比較不同的方法和最先進的模型。

付費5元查看完整內容

地址:

//www.apress.com/gp/book/9781484251232

利用MATLAB的強大功能來應對深度學習的挑戰。本書介紹了深度學習和使用MATLAB的深度學習工具箱。您將看到這些工具箱如何提供實現深度學習所有方面所需的完整功能集。

在此過程中,您將學習建模復雜的系統,包括股票市場、自然語言和僅確定角度的軌道。您將學習動力學和控制,并使用MATLAB集成深度學習算法和方法。您還將使用圖像將深度學習應用于飛機導航。

最后,您將使用慣性測量單元對ballet pirouettes進行分類,并使用MATLAB的硬件功能進行實驗。

你會學到什么

  • 使用MATLAB探索深度學習,并將其與算法進行比較
  • 在MATLAB中編寫一個深度學習函數,并用實例進行訓練
  • 使用與深度學習相關的MATLAB工具箱
  • 實現托卡馬克中斷預測

這本書是給誰看的:

工程師、數據科學家和學生想要一本關于使用MATLAB進行深度學習的例子豐富的書。

付費5元查看完整內容

簡介:

使用Python、OpenCV庫構建計算機視覺的實際應用程序。這本書討論了不同方面的計算機視覺,如圖像和對象檢測,跟蹤和運動分析及其應用實例。作者首先介紹了計算機視覺,然后使用Python從頭開始創建OpenCV。下一節討論專門的圖像處理和分割,以及計算機如何存儲和處理圖像。這涉及到使用OpenCV庫進行模式識別和圖像標記。接下來,將使用OpenCV處理對象檢測、視頻存儲和解釋,以及人類檢測。跟蹤和運動也進行了詳細的討論。該書還討論了如何使用CNN和RNN創建復雜的深度學習模型。最后對計算機視覺的應用現狀和發展趨勢進行了總結。

閱讀本書之后,您將能夠理解并使用Python、OpenCV實現計算機視覺及其應用程序。您還將能夠使用CNN和RNN創建深度學習模型,并了解這些前沿的深度學習架構是如何工作的。

您將學習

  • 了解什么是計算機視覺以及它在智能自動化系統中的整體應用。
  • 探索構建計算機視覺應用程序所需的深度學習技術。
  • 使用OpenCV、Python和NumPy中的最新技術構建復雜的計算機視覺應用程序。
  • 創建實際的應用程序,如:人臉檢測和識別,手寫識別,對象檢測,跟蹤和運動分析。

作者:

Sunila Gollapudi是Broadridge Financial Solutions India (Pvt)有限公司的執行副總裁。擁有超過17年的架構、設計和開發以客戶為中心、企業級和數據驅動的解決方案的經驗。在過去的十年中,她主要專注于銀行和金融服務領域,是一名數據鑒賞家和架構師,擅長設計一個通過分析最大化數據價值的整體數據策略。她的專長包括通過綜合業務和領域驅動因素以及大數據工程和分析領域的新興技術趨勢來構建整體智能自動化戰略;領導針對CI/CD的云遷移和DevOps戰略;指導應用程序現代化、重用和技術標準化計劃。

付費5元查看完整內容

題目: Review: deep learning on 3D point clouds

簡介:

點云是在三維度量空間中定義的點集。點云已經成為三維表示中最重要的數據格式之一。由于激光雷達等獲取設備的可用性增加以及機器人、自動駕駛、增強和虛擬現實等領域的應用增加,它越來越受歡迎。深度學習現在是計算機視覺中最強大的數據處理工具,成為分類、分割和檢測等任務的首選技術。深度學習技術主要應用于具有結構化網格的數據,而點云則是非結構化的。點云的無結構使得深度學習直接處理點云非常具有挑戰性。早期的方法通過將點云預處理成結構化的網格格式來克服這一挑戰,代價是計算成本的增加或深度信息的丟失。然而,最近許多先進的深度學習技術正在開發中,這些技術可以直接操作點云。這篇論文包含了對當前最先進的深度學習技術的調查,這些技術主要集中在點云數據上。我們首先簡要地討論了在點云上直接使用深度學習所面臨的主要挑戰,我們還簡要地討論了通過將點云預處理成結構化網格來克服這些挑戰的早期方法。然后,我們回顧了各種先進的深度學習方法,直接處理點云的非結構化形式。我們介紹了流行的3D點云基準數據集。我們還進一步討論了深度學習在當前流行的三維視覺任務中的應用,包括分類、分割和檢測。

作者:

王程,福建省特支“雙百計劃”入選者、福建省科技創新領軍人才、廈門大學計算機科學系教授、博士生導師、副院長。研究方向:三維視覺,空間大數據分析,激光雷達,虛擬/增強現實。個人主頁:

付費5元查看完整內容

題目: Coordination of Autonomous Vehicles: Taxonomy and Survey

摘要:

在不久的將來,我們的街道上將會有無數的自動駕駛汽車,以滿足我們多樣化的移動需求。這就需要協調他們的行動,以便正確處理對共享資源的訪問(例如,十字路口和停車位)和移動任務的執行(例如,排隊和坡道合并)。在這篇論文中,我們首先介紹了與自動駕駛車輛協調相關的一般問題,通過識別和構建協調問題的關鍵類別。接下來,我們概述了可以用來管理這些協調問題的不同方法,方法是根據協調過程中留給自動駕駛車輛的決策自主權對它們進行分類。最后,我們概述了一些特殊的挑戰,在自動協調的車輛能夠安全到達我們的街道之前,研究必須解決這些挑戰。

作者簡介:

Stefano Mariani,摩德納雷焦艾米利亞大學工程科學系的固定期限研究助理(博士后)。研究興趣:基于元組的協調模型和語言、社會技術系統、自我組織機制、多智能體系統、邏輯編程、Agent-oriented技術、普適系統&物聯網。個人主頁:

付費5元查看完整內容

題目: A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications 摘要: 圖形是一種重要的數據表示形式,它出現在現實世界的各種場景中。有效的圖形分析可以讓用戶更深入地了解數據背后的內容,從而有利于節點分類、節點推薦、鏈路預測等許多有用的應用。然而,大多數圖形分析方法都存在計算量大、空間開銷大的問題。圖嵌入是解決圖分析問題的有效途徑。它將圖形數據轉換為一個低維空間,其中圖形結構信息和圖形屬性被最大程度地保留。在這項調查中,我們對圖嵌入的文獻進行了全面的回顧。本文首先介紹了圖嵌入的形式化定義及相關概念。之后,我們提出了兩個分類的圖形嵌入,對應于什么挑戰存在于不同的圖形嵌入問題設置,以及現有的工作如何解決這些挑戰,在他們的解決方案。最后,我們總結了圖形嵌入在計算效率、問題設置、技術和應用場景等方面的應用,并提出了四個有前途的研究方向。

作者簡介: Hongyun Cai,經驗豐富的研究人員,有在研究行業工作的經驗。精通計算機科學,C++,數據庫,Java和機器學習。昆士蘭大學計算機科學專業研究生,哲學博士。

Vincent W. Zheng,新加坡先進數字科學中心(ADSC)的研究科學家,也是伊利諾伊大學香檳分校協調科學實驗室的研究附屬機構。他目前領導著ADSC的大型社交項目。該項目旨在利用目前在我們的數字社會(即社交媒體)中普遍存在的巨大“人類傳感器”,并實現對此類數據的社會分析,從而建立一個以人為中心的網絡系統。他還對圖形表示學習、深度學習、自然語言處理、移動計算等領域感興趣,并在社交挖掘、文本挖掘、實際位置和活動識別、用戶分析、移動推薦、增強現實等方面有應用。

Kevin Chen-Chuan Chang是伊利諾伊大學香檳分校計算機科學教授,他領導了數據搜索、集成和挖掘的前沿數據實驗室。他在國立臺灣大學獲得理學學士學位,在斯坦福大學獲得電機工程博士學位。他的研究涉及大規模信息訪問,用于搜索、挖掘和跨結構化和非結構化大數據的集成,目前的重點是“以實體為中心”的Web搜索/挖掘和社交媒體分析。他在VLDB 2000年和2013年獲得了兩項最佳論文獎,2002年獲得了NSF職業獎,2003年獲得了NCSA院士獎,2004年和2005年獲得了IBM院士獎,2008年獲得了創業領導力學院院士獎,并在2001年、2004年、2005年、2006年、2010年和2011年獲得了伊利諾伊大學不完整的優秀教師名單。他熱衷于將研究成果帶到現實世界中,并與學生共同創辦了伊利諾伊大學(University of Illinois)的初創公司Cazoodle,致力于在網絡上深化垂直的“數據感知”搜索。

付費5元查看完整內容

講座題目

深強化學習及其在交通運輸中的應用:Deep Reinforcement Learning with Applications in Transportation

講座簡介

交通領域,特別是移動共享領域,有許多傳統上具有挑戰性的動態決策問題,這些問題有很長的研究文獻,很容易從人工智能(AI)中受益匪淺。一些核心例子包括在線乘車命令調度,它將可用的駕駛員與在共享平臺上請求乘客的行程實時匹配;路線規劃,它規劃行程的起點和終點之間的最佳路線;交通信號控制,它動態和自適應地調整實現低延遲的區域。所有這些問題都有一個共同的特點,即當我們關注某一特定時間范圍內的一些累積目標時,需要做出一系列的決定。強化學習(RL)是一種機器學習范式,它通過與環境的交互和獲取反饋信號,訓練agent學會在環境中采取最佳行動(以獲得的總累積回報衡量)。因此,它是一類求解序列決策問題的優化方法。

講座嘉賓

Jen-Tzung Chien在臺灣新竹國立清華大學取得電機工程博士學位。現任職于臺灣新竹國立交通大學電子及電腦工程學系及電腦科學系講座教授。2010年,他擔任IBM沃森研究中心的客座教授。他的研究興趣包括機器學習、深度學習、自然語言處理和計算機視覺。在2011年獲得了IEEE自動語音識別和理解研討會的最佳論文獎,并在2018年獲得了AAPM Farrington Daniels獎。2015年,劍橋大學出版社出版《貝葉斯語音與語言處理》;2018年,學術出版社出版《源分離與機器學習》。他目前是IEEE信號處理技術委員會機器學習的當選成員。

付費5元查看完整內容

題目: Deep Learning for Visual Tracking: A Comprehensive Survey

簡介: 視覺目標跟蹤是計算機視覺領域中最受關注和最具挑戰性的研究課題之一。考慮到這個問題的不適定性質及其在現實世界中廣泛應用的情況,已經建立了大量的大型基準數據集,在這些數據集上已經開發了相當多的方法,并在近年來取得了顯著進展——主要是最近基于深度學習(DL)的方法。這項綜述的目的是系統地調查當前基于深度學習的視覺跟蹤方法、基準數據集和評估指標。它也廣泛地評價和分析領先的視覺跟蹤方法。首先,從網絡體系結構、網絡利用、視覺跟蹤網絡訓練、網絡目標、網絡輸出、相關濾波優勢利用六個關鍵方面,總結了基于dll的方法的基本特征、主要動機和貢獻。其次,比較了常用的視覺跟蹤基準及其各自的性能,總結了它們的評價指標。第三,在OTB2013、OTB2015、VOT2018和LaSOT等一系列成熟的基準上,全面檢查最先進的基于dll的方法。最后,通過對這些最先進的方法進行定量和定性的批判性分析,研究它們在各種常見場景下的優缺點。它可以作為一個溫和的使用指南,讓從業者在什么時候、在什么條件下選擇哪種方法。它還促進了對正在進行的問題的討論,并為有希望的研究方向帶來光明。

付費5元查看完整內容

論文題目: A Survey of Deep Learning-based Object Detection

論文摘要: 目標檢測是計算機視覺中最重要和最具挑戰性的分支之一,它已廣泛應用于人們的生活中,例如監視安全性,自動駕駛等。隨著用于檢測任務的深度學習網絡的迅速發展,對象檢測器的性能得到了極大的提高。為了深入地了解目標檢測的主要發展狀況,在本次調查中,我們首先分析了現有典型檢測模型的方法并描述了基準數據集。之后,我們以系統的方式全面概述了各種目標檢測方法,涵蓋了一級和二級檢測器。此外,我們列出了傳統和新的應用程序。還分析了對象檢測的一些代表性分支。最后,我們討論了利用這些對象檢測方法來構建有效且高效的系統的體系結構,并指出了一組發展趨勢,以更好地遵循最新的算法和進一步的研究。

作者介紹: Licheng Jiao 1982年獲得中國上海交通大學博士學位,并分別于1984年和1990年獲得西安交通大學的博士學位。 1990年至1991年,他是西安電子科技大學雷達信號處理國家重點實驗室的博士后研究員。自1992年以來,焦博士一直是中國西安電子科技大學電子工程學院的教授,目前是電子工程學院的院長,也是智能感知與圖像理解重點實驗室的主任。 西安電子科技大學中國教育部 1992年,焦博士獲得了青年科學技術獎。 1996年,他獲得了中國教育部跨世紀專家基金的資助。 從1996年起,他被選為“中國第一級人才計劃”的成員。2006年,他被霍英東教育基金會授予高中青年教師獎一等獎。 從2006年起,他被選為陜西省特別貢獻專家。

付費5元查看完整內容

題目: Deep Learning in Video Multi-Object Tracking: A Survey

簡介: 多對象跟蹤(MOT)的問題在于遵循序列中不同對象(通常是視頻)的軌跡。 近年來,隨著深度學習的興起,提供解決此問題的算法得益于深度模型的表示能力。 本文對采用深度學習模型解決單攝像機視頻中的MOT任務的作品進行了全面的調查。 確定了MOT算法的四個主要步驟,并對這些階段的每個階段如何使用深度學習進行了深入的回顧。 還提供了對三個MOTChallenge數據集上提出的作品的完整實驗比較,確定了表現最好的方法之間的許多相似之處,并提出了一些可能的未來研究方向。

付費5元查看完整內容
北京阿比特科技有限公司