R和Python語言是Power BI的強大補充。它們支持高級的數據轉換技術,這些技術在Power BI的默認配置中很難執行,但通過利用R和Python的功能變得更容易。如果您是一位業務分析師、數據分析師或數據科學家,希望推動Power BI,并將其從一個商業智能工具轉變為一個高級數據分析工具,那么這本書將幫助您實現這一目標。
你將學到什么
這本書是給誰的
使用Python的高級數據科學和分析使數據科學家能夠繼續發展他們的技能,并將其應用于商業和學術設置中。這本書中討論的主題是補充和后續主題討論的數據科學和分析與Python。其目的是使用Python開發的工具,如SciKit-learn、Pandas、Numpy、Beautiful Soup、NLTK、NetworkX等,覆蓋數據科學中重要的高級領域。使用Keras、TensorFlow、Core ML等框架,以及用于iOS和MacOS應用開發的Swift來支持模型開發。
首先加速介紹R生態系統、編程語言和工具,包括R腳本和RStudio。通過使用許多例子和項目,這本書教你如何將數據導入R,以及如何使用R處理這些數據。一旦基礎扎實,《實用R 4》的其余部分將深入具體的項目和例子,從使用R和LimeSurvey運行和分析調查開始。接下來,您將使用R和MouselabWeb執行高級統計分析。然后,您將看到在沒有統計信息的情況下R如何工作,包括如何使用R自動化數據格式化、操作、報告和自定義函數。
本書的最后一部分討論了在服務器上使用R;您將使用R構建一個腳本,該腳本可以運行RStudio服務器并監視報表源的更改,以便在發生更改時向用戶發出警報。這個項目包括定期電子郵件提醒和推送通知。最后,您將使用R創建一個定制的個人最重要信息的每日綱要報告,例如天氣報告、每日日歷、待辦事項等等。這演示了如何自動化這樣一個過程,以便用戶每天早上導航到相同的web頁面并獲得更新的報告。
你將學到什么
這本書是給誰的
使用Microsoft Excel中流行的數據挖掘技術,更好地理解機器學習方法。
軟件工具和編程語言包接受數據輸入并直接交付數據挖掘結果,對工作機制沒有任何見解,并在輸入和輸出之間造成了鴻溝。這就是Excel可以提供幫助的地方。
Excel允許您以透明的方式處理數據。當您打開一個Excel文件時,數據立即可見,您可以直接使用它。在執行挖掘任務時,可以檢查中間結果,從而更深入地理解如何操作數據和獲得結果。這些是隱藏在軟件工具和編程語言包中的模型構建過程的關鍵方面。
這本書教你通過Excel進行數據挖掘。您將了解當數據集不是很大時Excel在數據挖掘方面的優勢。它可以為您提供數據挖掘的可視化表示,在結果中建立信心。您將手動完成每一個步驟,這不僅提供了一個主動學習體驗,而且還告訴您挖掘過程是如何工作的,以及如何發現數據內部隱藏的模式。
你將學到什么
這本書是給誰的
本書介紹了自由軟件Python及其在統計數據分析中的應用。它涵蓋了連續、離散和分類數據的常見統計測試,以及線性回歸分析和生存分析和貝葉斯統計的主題。每個測試的Python解決方案的工作代碼和數據,以及易于遵循的Python示例,可以被讀者復制,并加強他們對主題的直接理解。隨著Python生態系統的最新進展,Python已經成為科學計算的一種流行語言,為統計數據分析提供了一個強大的環境,并且是R的一個有趣的替代選擇。本書面向碩士和博士學生,主要來自生命和醫學科學,具有統計學的基本知識。由于該書還提供了一些統計方面的背景知識,因此任何想要執行統計數據分析的人都可以使用這本書。
了解深度學習,不同模型的細微差別,以及這些模型可以應用的地方。
豐富的數據和對優質產品/服務的需求,推動了先進的計算機科學技術的發展,其中包括圖像和語音識別。通過機器學習和深度學習建立在數據科學的基礎上,《使用R進行深度學習的介紹》提供了對執行這些任務的模型的理論和實踐理解。這個分步指南將幫助您理解這些規程,以便您可以在各種上下文中應用該方法。所有的例子都是用R統計語言教授的,允許學生和專業人員使用開源工具來實現這些技術。
你將學習 理解支持深度學習模型的直覺和數學 利用各種算法使用R編程語言和它的包 使用最佳實踐進行實驗設計和變量選擇 作為一個數據科學家,實踐方法來接近和有效地解決問題 評估算法解決方案的有效性并增強其預測能力
這本書是給誰的
熟悉使用R編程的學生、研究人員和數據科學家也可以使用這本書來學習如何在最有用的應用程序中適當地部署這些算法。
Python是一種多范式編程語言,已經成為數據科學家進行數據分析、可視化和機器學習的首選語言。有沒有想過如何成為有效處理數據分析問題的專家,解決這些問題,并從數據中提取所有可用信息?好了,別再找了,這就是你要的書!
通過這個全面的指南,您將探索數據,并以一種有意義的方式展示統計分析的結果和結論。您將能夠快速準確地執行實際操作的排序、縮減和后續分析,并充分理解數據分析方法如何支持業務決策。
您將首先了解Python中可用的數據分析工具,然后探索用于識別數據模式的統計模型。漸漸地,您將使用Python、panda和SciPy回顧統計推斷。在此之后,我們將集中于使用計算工具執行回歸,您將了解如何用算法的方式識別數據中的集群。最后,我們將深入探討使用貝葉斯方法量化因果關系的高級技術,您將發現如何使用Python的工具進行監督機器學習。
你會學到什么
從數據科學的角度研究Python,并學習用于做出關鍵業務決策的數據可視化的成熟技術。從介紹Python的數據科學開始,您將進一步了解Python環境,并熟悉Jupyter Notebook和Spyder等編輯器。通過Python編程入門之后,您將掌握數據科學中使用的基本Python編程技術。接下來是數據可視化,您將看到它如何滿足現代業務需求并形成決策的關鍵因素。您還將了解Python中一些流行的數據可視化庫。
將重點轉移到數據結構,您將從數據科學的角度了解數據結構的各個方面。然后使用Python處理文件I/O和正則表達式,然后收集和清理數據。繼續探索和分析數據,您將看到Python中的高級數據結構。然后,您將深入研究數據可視化技術,了解Python中的許多繪圖系統。
最后,您將完成一個詳細的案例研究,您將有機會重溫到目前為止介紹的概念。
你會學到什么
這本書是給誰看的
具有基本Python編程知識的開發人員希望采用使用Python進行數據分析和可視化的關鍵策略。
在Python中獲得操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,其中包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的panda、NumPy、IPython和Jupyter。
本書由Python panda項目的創建者Wes McKinney編寫,是對Python中的數據科學工具的實用的、現代的介紹。對于剛接觸Python的分析人員和剛接觸數據科學和科學計算的Python程序員來說,它是理想的。數據文件和相關材料可以在GitHub上找到。