隨著全球國防力量從消耗戰策略轉向數據驅動的外科手術式行動,精確制導武器(PGM)已成為現代軍事戰略的基石。該市場預計將從2025年的372.4億美元增長至2030年的497.1億美元——PGM不僅是武器,更是實現戰略精確打擊、戰術機動性及作戰主導權的賦能者。
在此演進格局中,PGM提供的遠非精準打擊能力。其代表人工智能、先進傳感器與全域聯動整合的融合,深刻變革國家應對威脅與施展武力的模式。
??
戰爭本質正在轉變:大規模部隊部署與無差別轟炸時代已終結。當今沖突要求:
PGM以其快速響應、自適應及最小附帶損傷的打擊能力精準回應這些需求。無論針對高價值資產、時效敏感目標,還是在GPS拒止環境中消除威脅,智能彈藥均提供現代戰場亟需的精確打擊能力。
精確制導武器(PGM)已超越單純制導系統范疇,正發展為全集成智能武器體系:
未來戰爭正走向??精確化、智能化、網絡化??,精確制導武器(PGM)正是這場變革的核心驅動力。
對各國防務部門、主機制造商、系統集成商及研究機構而言,信號清晰:投資智能彈藥,或面臨戰場淘汰風險。向PGM轉型不僅是技術變革——更是21世紀戰爭的??戰略剛需??。
參考來源:Ravi L Chavan
在持續演變的戰爭形態中,技術革新始終扮演決定性角色——從鐵制兵器到核武器皆然。但21世紀正催生一股更隱蔽、智能且無形的力量重塑戰場:算法。其中生成式人工智能(GenAI)不僅作為工具崛起,更成為戰略級行為體:自主制定決策、創造戰術體系、重新定義力量投送的本質內涵。
算法是為執行特定任務設計的規則序列。當與海量數據集及高算力結合時,其從簡易計算器蛻變為決策引擎。在戰爭領域,這種進化標志著指揮結構從"人主導"向"數據驅動型作戰"的范式遷移。
傳統戰爭依賴層級化決策:將軍下達指令,士兵執行命令的"自上而下"模式。算法化戰爭引入去中心化架構——決策可由機器在戰術邊緣動態生成。該模式支持更快速反應、自適應規劃及實時戰場優化。
現代戰爭產生巨量數據:衛星影像、無人機畫面、社交媒體流、戰場傳感器信息等。算法以遠超人類的速度解析、分析并響應這些信息。其消化數據越多,預測精度與決策準度越高。
生成式AI指能基于大數據模式生成新內容(文本、圖像、模擬場景或代碼)的AI系統。與傳統AI的分類預測功能不同,GenAI的核心能力在于創造。這種特性在戰爭語境中具有深遠影響。
戰場模擬生成
生成式AI最具價值的應用之一是創建沉浸式真實戰場場景。軍事戰略家可在無需部署兵力的情況下測試新戰術或模擬敵方行動。經生成模型強化的模擬可涵蓋多變地形、氣象條件、平民分布乃至不可預測的敵方行為。生成式AI還能根據實時戰場情報動態調整模擬復雜度,確保決策者與自主系統始終針對最相關威脅進行訓練。
武器設計與測試加速
傳統武器研發周期長達數年,生成式AI顯著壓縮該進程。通過生成設計藍圖、結構模擬及材料成分方案,生成式AI助力工程師在實體模型建造前完成武器系統數字化原型設計。生成設計還能提出人類工程師難以構想的新型配置方案——例如具備自適應編隊能力的無人機群,或通過仿生學優化隱身性能的水下潛航器。
網絡戰與AI生成惡意軟件
在網絡領域,生成式AI可編寫惡意代碼或動態調整既有代碼以應對防御體系演進。對抗性生成式AI能開發多態惡意軟件——通過持續變更特征簽名規避檢測。該技術還可批量生成社會工程腳本或深度偽造內容,用于操縱目標對象、散布虛假信息或破壞軍事通信網絡穩定性。
心理與信息戰
生成式AI成為信息作戰強力工具,可大規模生成虛假新聞、逼真深度偽造視頻及合成虛擬身份。這些產出物能針對特定受眾定制,用于激化社會分裂、引導輿論走向或在沖突期間制造混亂。例如生成模型可創建數千條本土化內容,通過算法優化敘事潛移默化影響民眾、士兵或決策層。
自主決策支持
生成式AI為戰場決策提供輔助:基于敵方位勢、部隊戰備、地形約束等參數生成戰術選項序列,預判行動結果并推演多步后續影響。高壓環境下指揮官可將AI生成的作戰方案作為建議起點。隨著數據流持續輸入,這些模型實時更新參數,構建出在戰斗進程中動態演化的決策樹。
盡管生成式AI不直接操控武器,其在提升現代作戰系統自主性與精確性方面發揮關鍵作用。
AI生成集群行為
無人機或無人地面載具常以集群模式運作。生成式AI可實時生成適應威脅的集群行為模式——包括運動軌跡、協同機制與決策邏輯。這些算法賦予集群集體智能,使其能自主規避障礙、躲避攻擊或精確打擊目標。
自適應偽裝與欺騙手段
通過分析傳感器數據、雷達特征與環境參數,生成式AI可生成迷惑敵系統的偽裝圖案或電子信號。其還能運用誘餌生成算法在雷達上模擬虛假部隊部署或"幽靈軍團"。
人類士兵與軍官同樣受益于生成式AI。軍事教育訓練體系因AI生成的模擬環境、游戲化訓練場及想定規劃工具而變革。
語言文化訓練
生成模型可創建含外語及文化細節的實景角色演練。受訓者與模擬真實行為的AI生成角色互動,為陌生地域作戰預做準備。
情感倫理模擬
現代沖突不僅是物理對抗,更是心理與道德較量。生成式AI構建倫理困境模擬場景:士兵需在涉及平民、盟友或道德悖論的生死抉擇中訓練。這些沉浸式環境不僅磨礪戰術技能,更培育道德判斷力。
幻覺與可靠性
生成式AI核心風險在于"幻覺"現象——系統生成看似合理實則錯誤的信息。戰場此類錯誤可能誤導指揮決策、引發友軍誤擊或升級沖突。
人類控制權喪失
隨著決策權向機器轉移,核心問題浮現:人類操作員應保留多少控制權?若自主武器系統基于AI生成指令行動,人類意圖與機器執行的界限將危險模糊。
合成暴行與戰爭罪行
生成式AI偽造戰爭罪行的風險引發關切——深度偽造技術可虛構未發生的暴行。此類內容可能觸發報復、損毀聲譽或破壞和談。驗證機制難以匹配AI輸出的復雜程度。
不可預測的升級風險
生成模型常以概率化機制運行,其在新環境下的行為難以預判。戰爭迷霧中,AI可能生成攻擊性機動、缺陷談判策略或挑釁行動等意外后果,且責任歸屬機制缺失。
戰爭領域生成式AI的治理機制仍處萌芽階段。現有條約未能充分涵蓋算法化戰爭或AI生成作戰的范疇,亟需建立以下體系:
軍事透明度需與國家安全達成平衡,但若缺乏清晰框架,生成式AI的無序使用恐將引發超越外交遏制速度的沖突升級。
生成式AI在戰爭領域的崛起標志新時代開啟——其核心特征非火力規模,而在于信息掌控、決策速度與合成智能。戰爭算法已非未來概念,而是嵌入無人機系統軟件、導彈制導邏輯、信息戰代碼及國防戰略推演的現實存在。
此時代的根本轉變在于:制勝關鍵從毀滅能力轉向認知優勢。戰爭勝負或將不再取決于兵力規模或坦克數量,而取決于誰掌握更智能的算法體系——誰能運用生成式AI在戰略構思、戰術機動與創新維度超越對手。
當人類踏入此新領域,挑戰已超越技術層面而深入哲學本質:我們能否構建戰爭機器而不被其奴役?能否將倫理準則編入算法?能否在發動智能戰爭時不喪失道德羅盤?這些問題的答案將定義戰爭形態的未來走向,更將塑造人類文明的終極圖景。
參考阿來源:Prof. Ahmed Banafa
戰爭迷霧歷來是任務指揮官的核心挑戰。克勞塞維茨警示的"戰爭摩擦效應"——細微障礙累積導致簡單任務復雜化——在當今戰場數據爆炸與決策周期壓縮的背景下愈發凸顯。全球軍事力量正迎來新范式轉型:軍事信息技術的革命性突破不僅在于自主武器或無人平臺,更在于人類判斷力與人工智能的深度協同,這正根本性重塑任務指揮官在交戰中的決策模式。
圖任務指揮官在未來指控中心交互全息數據,展現AI增強型任務決策的演進方向。
2025年3月美陸軍"融合頂點5"演習揭示:依賴紙質流程與割裂系統的傳統任務式指揮架構,已完全無法適應現代戰爭節奏與復雜性。陸軍任務指揮現代化主管帕特里克·埃利斯少將直言:"此刻某演習現場,必有情報官將系統數據手抄至便簽紙,穿越戰術作戰中心(TOC),遞交給火力協調員重新鍵入系統才能生效。"
這種陳舊模式不僅低效,更蘊含災難性隱患。當中俄部署日益精進的軍事能力時,信息處理更迅捷、決策更精準、行動更高效的一方將贏得決定性優勢。五角大樓深刻認知此現實,近財年投入超30億美元發展AI與聯合全域指揮控制(JADC2),目標直指"在戰術時間窗內建立信息優勢"。
圖人類分析員監控戰場全景圖——該任務日益依賴AI將海量數據流轉化為可執行情報。
美陸軍"下一代任務指揮"(NGC2)項目是踐行該理念的最前沿嘗試。NGC2并非以機器取代任務指揮官,而是構建"人機作戰團隊"框架——AI增強人類認知能力,人類則提供獨有的判斷力、創造力與倫理監督。
NGC2核心運行機制映射人類認知三階段:
圖聯合全域指揮控制(JADC2)依賴連接陸海空天資產的韌性網絡
軍事AI的批評者常將辯論簡化為"人類控制與機器自主"的二元對立。但當前實驗中最有效的軍事AI系統并非取代人類決策,而是實現指數級增強。這一視角應使軍事指揮官、防務戰略家與政策制定者確信:AI在軍事領域的核心價值在于輔助支撐,而非替代人類判斷。
近期"融合計劃"測試中,展示了這種協同效能:坦克乘組在保持戰術機動同時,無縫獲取實時情報流、分析裝備維護數據并協調火力打擊。AI并未代行目標鎖定決策,而是提供增強的戰場感知與分析支持,從而提升作戰效能。
此方案直擊全自主系統的致命缺陷——無法適應真正的新異場景。正如美國陸軍戰爭學院保羅·盧申科所言:"并非所有AI模型都經過全戰場場景訓練,AI自有其局限。"強調人類操作員的適應性,恰彰顯人機協作應對突發挑戰的韌性優勢。
烏克蘭戰場為人機協作的軍事價值提供強力佐證。成功運用AI協調的無人機蜂群,在最小人工干預下識別打擊目標,同時保留關鍵決策的人類監督權。這些系統將"殺傷鏈"(目標識別至打擊全流程)從分鐘級壓縮至秒級。
同樣,五角大樓"梅文計劃"(Project Maven)證明AI可加速OODA循環(觀察-調整-決策-行動),卻不剝奪人類在致命決策中的判斷權。通過自動化分析監控視頻的繁重工作,AI使操作員聚焦高階戰術決策,同時保持打擊決策的問責制。這凸顯人類在AI決策流程中的核心地位,確保軍事行動的人類控制權。
這些應用揭示AI的核心軍事價值:非替代人類決策者,而是賦能其達成前所未有的決策速度與規模。如烏軍所述,AI算法能"持續審查所有偵察數據,捕捉最細微變化",為指揮官提供史無前例的戰場感知。這應使軍事領導者與政策制定者確信AI變革作戰模式的巨大潛力。
AI增強指揮的效能根基在于數據質量、可獲取性與安全性。五角大樓聯合全域指揮控制(JADC2)戰略將數據定位為"戰略軍事資產",需嚴密管理與防護。這驅動了對韌性網絡安全網絡的投資,使其能在"DDIL環境"(拒止/降級/間歇/受限通信場景)中運行。
美參聯會信息主管丹尼斯·克羅爾中將強調:JADC2"超越任何單一能力/平臺/系統",代表軍事力量管理共享信息的范式轉變。其目標是構建關鍵數據從傳感器→決策者→射手無縫流動的體系,即使遭對手通信干擾仍可持續。
這種網絡中心化方案還解決了長期困擾聯盟作戰的互操作性難題。通過建立通用數據標準與接口,AI指揮系統不僅能跨軍種整合,更能實現盟國間互聯——這在未來多伙伴聯合作戰中至關重要。
對高級防務領導者而言,AI驅動轉型的影響遠超戰術改進范疇。掌握軍事行動中人機協同的國家將在未來沖突中擁有決定性優勢——情報處理更快、作戰協同更高效、環境適應更迅捷的一方將掌控軍事對抗節奏與結局。
然此轉型亦存重大挑戰:軍事組織需根本性重構訓練、條令與組織結構以優化人機協作;同時須應對過度依賴AI系統的合理擔憂及對手利用技術依賴性的風險。
投入需求巨大:除AI研發部署直接成本外,軍隊需升級網絡、培訓人員、開發新作戰概念。但落后的代價更為高昂。正如國防部副部長凱瑟琳·希克斯警示:維持信息與決策優勢需持續聚焦"增強應對當前未來威脅的部門能力計劃"。
實施AI增強指揮的最大挑戰不在技術而在人類心理。軍事人員需建立對AI系統的信任,同時對其局限保持清醒認知。這要求研究者所稱的"校準信任"——明晰何時采納AI建議,何時需人類判斷凌駕算法提議。
美陸軍研究實驗室斯圖爾特·楊強調自然語言交互界面的重要性:"士兵應以自然協作方式與機器人互動"。這種以人為本的AI設計確保技術服務軍人而非壓倒軍人。
五角大樓"SABER"(戰場強韌人工智能防護)計劃應對另一關鍵關切:確保AI系統抗對抗攻擊韌性。納撒尼爾·巴斯廷中校指出:"作戰人員有權知曉所用AI具備安全性與抗威脅韌性"。
AI驅動的軍事指揮控制轉型不僅是技術進步,更是軍事領導本質的進化。未來指揮官不在人類直覺與機器智能間抉擇,而將無縫整合二者在復雜戰場實現決策優勢。
美陸軍NGC2計劃、五角大樓JADC2戰略及盟國類似工作,是投資新型戰爭形態——信息優勢直接轉化為戰場優勢。掌握人機協同的軍隊將書寫未來沖突規則。
身處此轉折點,防務領導者須認清:問題非AI是否改變軍事行動,而在多快能調整組織釋放其潛能。"算法指揮官"非遙遠概念,而是需即刻關注、重大投入、清醒認知其機遇風險的現實存在。
戰爭迷霧永難消除,但軍事史上首次,指揮官擁有穿透迷霧的工具。新范式下,勝利不僅屬于技術最先進者,更屬于將人類智慧與機器智能無縫結合服務戰略目標者。未來戰爭將由算法指揮官書寫——這些領導者深諳AI時代最強大武器正是人機無間協作。
參考來源:a5dergi
在威脅飛速演變的時代,國防機構需要處理海量實時戰場數據,以做出更快、更明智的決策。對軍事和國防團隊而言,充分利用實時數據的能力可能意味著任務成功與失敗的區別。
數字孿生——現實世界資產的虛擬復制品——傳統上被用于協助開發復雜結構,例如噴氣發動機。如今,它們正成為一項關鍵的任務工具,用于追蹤戰場空間中的動態威脅、增強態勢感知以及優化國防后勤。
實時數字孿生是基于軟件、駐留在內存中的虛擬呈現,代表物理系統中的一項資產。它們結合實時數據、實況遙測數據和預測建模技術,為作戰行動提供可操作的情報。它們實時鏡像現實世界的實體,根據傳感器數據、歷史趨勢和預測建模算法(如機器學習)持續更新洞察力。它們還可以融入生成式人工智能(Gen AI)以增強其實時監控和數據可視化能力。
這項技術使軍事行動指揮官能夠在變化對關鍵國防行動產生不利影響之前,對其進行監控、分析和預判。數字孿生還能模擬復雜系統,例如機群、自主無人機和國防供應鏈,提供預測性見解,為戰略規劃和風險緩解提供依據。
傳統的離線或批處理數據分析技術可能導致分析延遲,而實時數字孿生則能持續追蹤、分析和預測運行系統中的變化。這使得軍事和國防人員能夠動態監控數千項戰場資產,檢測異常情況,并精準做出戰略決策。
通過獲取空中無人機或衛星監視數據,實時數字孿生能夠持續追蹤并可視化戰場上敵方軍事單位、飛機和火炮資產的動向,使指揮官能夠基于敵方運動的實時情報做出快速、數據驅動的決策。實時數字孿生還通過幫助識別預示未來潛在威脅的歷史移動模式,來支持戰術軍事規劃。它們也能通過檢測后勤漏洞,協助進入新地形的軍用車輛,使人員能夠規劃替代路線,從而降低作戰風險。
實時數字孿生能夠持續處理來自己方資產的實時遙測數據,以檢測部隊運動中的異常、動態供應鏈變化和網絡安全威脅。融入機器學習有助于它們在戰場數據中識別細微模式并對異常(如敵方的意外移動或潛在的系統故障)進行分類。機器學習算法分析傳入的海量遙測數據流,使數字孿生能夠從歷史交戰記錄中學習,幫助軍事指揮官領先于不斷演變的威脅。
在處理實況戰場數據的同時,數字孿生能夠監控機器學習算法的性能,并即時對其進行再訓練,從而提高它們在問題發生前檢測異常和預測問題的能力。這種持續學習能力增強了主動防御措施,使防御策略能夠實時適應新出現的威脅。
數字孿生還可以融入生成式人工智能(Gen AI),在提供持續監控以增強戰場指揮官態勢感知的同時,進一步提升異常檢測能力。生成式人工智能能夠持續攝取和評估經多個數字孿生分析匯總的數據,從而識別具有戰略意義的問題。它還能快速輕松地創建數據可視化圖表,精確定位需要人員實時分析的問題區域。
由于它們實時追蹤單個資產,數字孿生能夠在快速變化的情況下監控后勤需求,并在需要補給時立即向人員發出警報。例如,它們可以持續追蹤單個武器系統的彈藥儲備,防止交戰中發生短缺。實時數字孿生的優勢不僅限于戰場。國防機構可以利用數字孿生來追蹤和管理數千項關鍵任務資產,從戰斗機到火炮,再到自主監視無人機。每項資產都至關重要,意外故障可能危及任務準備狀態和安全。傳統的維護模式依賴于定期檢查或在問題發生后進行補救性維修,這可能導致更高的運維成本和任務延誤。
為避免這些問題,實時數字孿生還可以通過支持機器學習技術的實時監控,持續評估裝備狀態,識別磨損模式,并在設備故障發生前將其檢測出來。數字孿生不再是等待設備損壞,而是預測部件故障并實現預測性維護,從而減少代價高昂的停機時間并確保裝備保持戰備狀態。
美海軍正在利用數字孿生加強其艦隊的維護策略,實現主動維護服務并延長關鍵系統的使用壽命。預測性維護提高了后勤性能和效率,有助于確保更換部件、燃料和維修團隊能夠提前部署,而不是在緊急情況下才做出響應。通過實現這些能力,數字孿生幫助供應鏈最大程度地保障資產的準備狀態和整體彈性。
實時數字孿生正在徹底改變國防行動,它們為戰場上數千甚至數百萬資產提供實時情報、預測性分析以及增強的態勢感知。它們還能夠簡化后勤、模擬高風險交戰,并以前所未有的可視化和控制水平提升任務準備狀態。
通過機器學習和生成式人工智能(Gen AI)的增強,實時數字孿生使軍事領導者能夠進行持續監控,并可靠地檢測細微問題和新出現的威脅。它們利用實時數據自動再訓練機器學習算法的能力,使其能夠適應不斷變化的環境并提供最優洞察力。
隨著國家安全威脅日益復雜化,在一個日益動態變化的國防格局中,實時數字孿生能夠在加強軍事決策、優化部隊部署和確保作戰優勢方面發揮關鍵作用。
參考來源:federalnewsnetwork
在一次訓練演習中,一名美海軍陸戰隊軍官通過生成式AI工具獲取實時地形分析。該系統處理衛星影像的速度遠超人類團隊,可識別隱蔽路線與潛在威脅。這標志著一個轉折點——關鍵任務中機器推導的洞察力正與人類專業判斷形成互補。
國防行動日益依賴先進系統處理海量信息。美五角大樓已對“聯合全域指揮控制(JADC2)”等項目投入重資,該項目通過整合AI與機器學習實現戰場數據統一。這些工具可分析無人機、傳感器及歷史記錄中的模式,在數秒內生成可操作情報。近期技術突破已超越基礎自動化。例如,大型語言模型現可模擬復雜作戰場景,幫助戰略家在部署前測試戰果。蘭德公司研究證實,此類創新使模擬環境中的決策失誤率降低40%。然而人類控制仍是核心——指揮官保留最終決策權,將算法精度與倫理判斷深度融合。
某戰術AI近期通過熱成像模式識別出烏克蘭戰場上人工難以察覺的偽裝炮兵陣地——準確率達94%,而人工分析僅68%。這一突破印證“數據密集型系統”如何重塑現代沖突策略。
生成式工具在實時行動中每小時處理15,000幅衛星圖像——三倍于2022年系統容量。美軍測試的類ChatGPT接口通過分析社交媒體信息繪制阿富汗叛亂網絡,將分析周期從數周壓縮至數小時。“這些系統不替代分析師,”國防創新單元負責人邁克爾·布朗解釋,“但能凸顯人類易忽略的模式。”
傳統監視依賴靜態無人機畫面,如今神經網絡通過交叉分析氣象數據、補給路線與歷史場景預測敵軍動向。2023年聯合演習中,AI調遣部隊使模擬傷亡減少31%。
訓練項目現整合“合成戰場”,算法生成不可預測威脅。但過度依賴自動化決策存在風險——如“對抗性數據投毒”。五角大樓報告警示:“沒有任何系統能在動態壓力下完美運行。”
2023年,“梅文計劃”(Project Maven)神經網絡處理無人機畫面時,12秒內識別隱蔽導彈發射架——此前分析師需45分鐘。這一飛躍源于“多光譜傳感器”與“強化學習架構”的融合,系統算力達147萬億次浮點運算,依托分布式邊緣計算節點運行。
現代國防系統整合三大關鍵要素:“合成孔徑雷達”(94 GHz頻段)、“石墨烯基處理器”及“聯邦學習框架”。“梅文計劃”最新版本每日處理1.2拍字節數據,誤報率較2020年模型降低89%。蘭德公司分析師克里斯·莫頓指出:“這些工具實現‘決策周期壓縮’——將數周分析轉化為數小時可執行計劃。”
實地測試顯示顯著進步:計算機視覺模型現可在3.7公里距離以97%精度識別裝甲車輛(傳統系統為82%)。但自動化系統的倫理框架要求對所有“高置信度警報”進行人工核驗。安全工程師海蒂·克拉夫強調:“我們強制要求‘概率不確定性評分’——若系統無法量化自身誤差范圍,武器不得啟動。”
近期試驗關鍵指標:
太平洋演習的視覺資料揭示現代國防系統如何將原始信息轉化為戰術優勢。2024年對比分析顯示,AI增強工具識別高價值目標時,“地理空間數據處理速度”較傳統方法提升22%。
洛克希德·馬丁公司最新展示的技術示意圖闡明了“威脅評估”等任務在多層網絡中的處理流程。一張詳圖展示了無人機“傳感器-指令”路徑——數據從紅外攝像頭傳輸至邊緣處理器的耗時不足50毫秒。
菲律賓海演習的解密圖像顯示,四旋翼無人機在40節風速下執行精準物資投送。這些影像凸顯控制界面如何管理“載荷分配”“風切變補償”等復雜變量。另一組照片記錄30架無人機群在19分鐘內測繪12平方英里區域——覆蓋范圍三倍于2022年系統。操作員通過增強現實疊加界面實時監控單機能力,確保無縫協同。
喬治城大學2024年研究表明,AI驅動系統在對抗環境中使目標誤判率降低52%。這些工具通過分析傳感器數據、氣象模式與歷史交戰記錄推薦最優行動方案,從戰術與戰略層面重塑國防行動。
現代系統將數小時分析壓縮為可執行洞察。2023年聯合演習中,美軍運用預測算法為補給車隊規劃伏擊區繞行路線——響應時間縮短78%。喬治城大學研究揭示三大關鍵改進:
美國中央司令部近期在敘利亞部署神經網絡處理無人機畫面,達到其所謂“戰斗人員”與“平民”區分準確率97%。北約盟國現測試類似框架,愛沙尼亞KAPO機構運用AI繪制邊境滲透路線。全球防務預算印證此趨勢:澳大利亞“幽靈蝙蝠”項目利用自主系統識別18公里外海上目標(探測距離三倍于2020年系統);韓國AI火炮平臺在實彈演習中將反炮兵響應時間從5分鐘壓縮至22秒。
某海軍打擊群近期使用“自主武器系統”攔截敵對無人機,其目標優先級判定速度18倍于人工操作。指揮官在2.3秒內完成交戰批準,彰顯現代工具如何融合高速處理與關鍵人類控制。
防務承包商現設計需“雙重認證”才啟動致命打擊的模型。例如洛克希德·馬丁“雅典娜系統”標記高風險目標但鎖定武器權限,直至兩名軍官核驗威脅。該方法使2023年野戰測試中友軍誤傷事件減少63%。
網絡安全公司Trail of Bits安全工程總監海蒂·克拉夫強調:“我們設定不確定性閾值——系統必須量化懷疑等級方可行動。”其團隊框架要求人工復核所有置信度低于98%的AI建議。
美海軍“遠程反艦導彈(LRASM)”體現了這一平衡。該自主武器通過23種傳感器輸入識別目標,但需等待最終發射授權。2024年5月演習中,操作員因民用船只接近否決了12%的AI攻擊方案。
現行行業標準強制要求:
隨著系統能力提升,防務專家強調保留人類否決權的重要性。若采用“完全自主”模式,在算法缺乏情境感知的動態戰場中將引發災難性誤判。
美喬治城大學安全與新興技術中心預測,2026年前“抗量子系統”將主導防務升級。這些框架處理加密數據流的速度較現有架構快190倍,并能阻斷對抗性攻擊。洛克希德·馬丁“臭鼬工廠”近期測試的原型傳感器,識別高超聲速威脅的速度較傳統技術提前22秒。
下一代預測模型將融合實時衛星數據與社交媒體情緒分析。諾斯羅普·格魯曼2025年升級計劃包含可“任務中自適應電子戰戰術”的自校準雷達。早期試驗顯示,城市作戰模擬中決策周期縮短70%。
研究管線中的三大關鍵升級:
英國“暴風雨”戰斗機項目體現了通過“認知電子戰系統”超越對手的全球戰略。這些工具能在0.8秒內自動偵測并反制新型雷達頻率。日本2024年防衛白皮書則優先發展“AI驅動潛艇探測技術”,在爭議海域實現94%的準確率。
近期專利揭示了對抗性圖像識別訓練等反制措施。雷神公司原型“數字免疫系統”識別偽造傳感器數據的速度19倍于人工分析師。正如喬治城大學研究者指出:“下一場軍備競賽取決于處理時間——率先破譯模式者掌控戰局。”
五角大樓2024年審計顯示,自動化系統提出的無人機打擊建議中17%存在民用基礎設施誤分類問題,暴露出數據驗證的嚴重漏洞。這些發現引發關于“現代防務行動中如何平衡作戰速度與倫理問責”的全球辯論。 ?? 國際政策制定者面臨三大核心挑戰:
近期聯合國討論強調需建立跨境安全協定。在標準化監督體系成型前,技術發展速度或將超越人類負責任治理的能力邊界。
近期防務技術的進步標志著戰略行動的根本性變革。AI增強系統現處理戰場數據的速度較傳統工具快22倍,使決策在速度與倫理問責間取得平衡。三大優先事項亟待推進:完善“人機協同作戰”訓練體系、加速偏見檢測研究、建立聯盟級驗證標準。
參考來源:editverse
軍事航空領域正持續演變。近年來,為適應當前軍事沖突催生的新威脅并利用技術進步帶來的機遇,該領域已顯著發展。本文將結合近期進展及武裝力量持續推進的項目——如“未來空戰系統”(FCAS)、“西塔普”(SIRTAP)與“歐洲無人機”(Eurodrone)——探討塑造軍事航空未來的主要趨勢。
?? FCAS是歐洲防務領域最具雄心的項目之一。該項目于2019年由西班牙、法國與德國國防部長簽署協議啟動,2024年比利時國防部宣布加入,旨在開發融合有人/無人航空器及陸、海、天基系統的綜合體系。FCAS的核心是“新一代武器系統”(NGWS),包含以下要素:
■ ??新一代戰斗機(NGF)??:第六代戰斗機,具備先進低可觀測性能力、高飛行效率、尖端傳感器系統,并與多種遠程操作平臺兼容。這些平臺涵蓋戰斗型、誘餌型、通信中繼型及執行聯合情報、監視與偵察任務(JISR)的無人機等。
■ ??遠程載具(Remote Carriers)或遠程操作平臺??:與NGF協同作戰的無人機,作為力量倍增器降低有人戰機暴露風險。其任務范圍包括JISR、電子戰乃至進攻性任務。遠程載具將通過人工智能與大數據技術,實現與FCAS有人戰機的實時信息處理與協同作戰。
■ ??戰斗云(Combat Cloud)??:由去中心化高彈性信息網絡構成,實現空、陸、海、天、網多域平臺與部隊的實時整合協作。其主要目標是提供信息優勢。戰斗云還促進戰場空間內不同系統的互操作性與連接能力,使戰斗機、遠程操作平臺、衛星及其他單元能夠協同運作。
“歐洲無人機”(Eurodrone)是歐洲防務現代化進程中的另一關鍵項目。這款中空長航時(MALE)無人機續航時間超24小時,專為監視、軍事行動支持與安全任務設計。其開發基于最小化技術風險原則,采用商用解決方案與先進組件(如自動導航與控制系統)。“歐洲無人機”設計用于情報、監視、目標獲取與偵察(ISTAR)任務,具備模塊化任務能力及可在非隔離空域運行的架構,使其區別于其他同類項目。通過該項目,歐洲航空工業志在MALE無人機領域占據技術領先地位——該領域此前由美國與以色列主導。
與“歐洲無人機”在MALE領域的拉動效應類似,由空中客車公司(Airbus)主導開發的“西塔普”(SIRTAP)將使西班牙航空工業成為高性能戰術無人機領域的領導者。該機型有效載荷超150公斤、續航超20小時,憑借先進任務系統可在全天候條件下執行高級ISTAR任務。
人工智能(AI)與自動化技術正重塑軍事航空領域。這些技術使航空平臺更具自主性,優化決策流程并提升任務效能。FCAS/NGWS集成AI技術以實現高級自主化水平,涵蓋無人機與戰斗機執行集群協同(swarming)行動以及與人類飛行員協作的能力。機載AI的演進將支持“目標驅動型自主操作”,而非基于特定事件的被動響應。作為系統設計的核心要求,明確規定控制回路中必須始終存在具備決策權的人類操作員,以確定哪些功能委托給自主系統。人工智能提升任務與導航系統能力,實現更優任務規劃、路徑優化及對動態條件的實時適應——這對衛星導航不可用(拒止環境)的復雜敵對區域作戰至關重要。
AI支持對傳感器網絡采集的海量數據實施高級分析,輔助用戶提取地形、氣象條件與敵方位等關鍵信息,優化決策流程。人工智能在預測性維護中也發揮關鍵作用:先進算法可預判系統故障,實現預防性維護并減少航空器停飛時間。
電子戰與網絡安全在現代軍事行動中占據核心地位。先進電子對抗措施可干擾與欺騙敵方雷達、導航與通信系統,此類技術對確保戰場優勢及防護空中力量免受電子攻擊至關重要。超互聯環境中的網絡安全是另一重大挑戰:從網絡安全視角,可信平臺模塊(TPM)技術將用于機載設備的身份驗證、加密與完整性驗證;物理不可克隆功能(PUF)技術則防止假冒組件引入系統導致漏洞。這些突破確保飛行控制與通信系統即便在嚴重威脅下仍保持安全與可操作性。
增強現實(AR)與虛擬現實(VR)正變革軍事航空的訓練與作戰模式。AR/VR技術使飛行員可在模擬環境中接受訓練,復現實戰場景而無須承擔實裝訓練的風險與成本,從而提升空軍戰備與響應能力。構造性仿真技術與數字孿生實現更高效的任務規劃、執行與評估,此類系統精確模擬作戰場景,支持實時策略調整優化。
現代戰斗機通過平視顯示器(HUD)向飛行員呈現視覺信息(如影像、飛行參數與戰術數據)。當前趨勢是采用頭盔顯示器(HMD)替代HUD,將信息直接投射至頭盔面罩,這為引入增強現實技術創造條件,可增強飛行員態勢感知并加速決策。
連接性對現代軍事行動至關重要。戰斗網絡的突破性進展實現了不同平臺與系統間的有效整合與協調。FCAS集成基于云架構的可擴展戰斗網絡,提供戰場所有單元共享的作戰視圖。這提升盟軍決策與協調能力,帶來以下優勢: ■ 無人機、衛星及陸海單元的互聯互通與實時數據共享; ■ 多源數據融合分析,具備模式識別能力; ■ 協同行動能力,例如導航或目標指示。
軍事物聯網(IoT)連接各類設備與系統,提升實時通信與信息交換效能。這種先進連接性對執行復雜任務與優化資源分配至關重要。處理器與傳感器微型化技術的預期進展,以及分布式系統間連接能力的提升,將推動可協作執行多樣化功能的平臺集群部署。
傳感器是現代軍事系統的核心組件,為導航、偵察與決策提供關鍵數據。高光譜傳感器是此類新趨勢的范例——多光譜與高光譜傳感器正替代傳統光電傳感器,提供增強的探測與數據分析能力。此類傳感器可提升目標識別與威脅評估精度。
飛行員與航空器間的交互對任務成功至關重要。先進人機界面增強此類交互,優化控制與決策流程。混合現實與觸覺設備提供飛行員與航空器間的新型交互方式,通過更高沉浸感與控制性提升作戰效率并降低飛行員認知負荷。基于AI的虛擬個人助理為飛行員提供實時支持,管理信息與任務以聚焦核心使命。
高效任務管理是軍事行動成功的核心要素。實時評估作戰替代方案的能力對戰場適應性至關重要。計算與數據分析技術的突破使快速精準評估不同選項成為可能,提升決策與任務效能。此領域尤為關鍵,因技術現狀允許引入相關條令變革,開創作戰研究新場景并挑戰現有軍事能力邊界。
軍事航空領域最具創新性與前景的方向之一是有人-無人協同(MUT)技術。該概念通過有人/無人航空器的緊密協作最大化任務效能。MUT技術支持有人機與無人機共享信息并高效分配任務,在有人機監督下執行偵察、監視與打擊任務,提升作戰能力并降低飛行員風險。此類協作涵蓋導航、通信、傳感器與武器系統等領域。
MUT技術成功的核心在于有人/無人平臺間安全可靠的通信。連接性、網絡安全與控制系統的突破性進展,確保所有單元能在動態戰場條件下無縫協調與快速適應。
軍事航空的未來將由提升空軍效率、殺傷力與生存能力的先進技術整合所塑造。從自主系統與先進推進技術到電子戰與網絡安全,每項技術趨勢均在變革軍事行動中扮演關鍵角色。“未來空戰系統”(FCAS)、“西塔普”(SIRTAP)與“歐洲無人機”(Eurodrone)等項目,清晰展現了創新與國際合作如何重塑防空體系未來。隨著這些技術持續發展,空軍將更有效應對21世紀及未來的挑戰。GMV公司憑借其在多項技術領域的領先地位,將持續成為這一轉型的核心參與者,通過突破性解決方案確保未來空軍的作戰優勢與安全性。
人工智能(AI)正引發全球各行業的革命性變革,防務領域亦不例外。隨著全球安全威脅日益復雜化與數字化,各國正重新思考如何保障邊境安全、解析情報并執行任務。從增強態勢感知到高性價比解決方案,AI正為更智能、更高效、更安全的防務系統開辟道路。
至2028年,全球軍事AI支出預計將突破300億美元。歐洲正加速防務AI投資布局,為具備技術響應能力的企業創造重要機遇。
防務領域正經歷由AI技術進步驅動的結構性變革,重塑軍事行動的規劃、執行與評估方式。以下歐盟支持的項目彰顯AI如何應對戰略防務優先事項(據最新行業洞察):
"國防人工智能"(AI4DEF)項目聚焦運用AI提升態勢感知、優化決策能力,并強化跨域(含無人機任務與聯合情報監視偵察/ISR分析)規劃效能。通過AI整合,防務系統可實現海量數據實時處理,驅動快速精準決策。該項目凸顯歐洲將AI嵌入陸、空、網、天多域作戰的實踐路徑。
"基于非常規加速器的可靠/高能效AI系統架構"(ARCHYTAS)項目優先開發可擴展的節能AI基礎設施,集成神經形態計算與光電加速器等前沿技術,兼顧性能與可持續性目標。此項目反映歐洲現代防務系統對技術創新與環境責任的雙重關注。
"光電圖像識別評估共享數據庫"(STORE)計劃旨在構建AI算法支撐的安防成像數據庫,實現戰術級實時分析。該計劃增強地面作戰態勢感知能力,確保關鍵任務成像系統符合嚴苛網絡安全標準——這對保護當今技術驅動沖突環境中的國家利益至關重要。
歐洲國家正通過"歐洲防務基金"(EDF)等倡議追求更高防務自主權與創新能力。該基金資助AI、先進計算與互操作性解決方案的跨境研發。AI4DEF、ARCHYTAS與STORE等項目印證了歐洲強化防務韌性、降低對外部技術依賴的決心。
隨著歐洲各國加大推進軍事能力現代化,北美企業引入AI解決方案并與歐洲協作正加速形成。然而,歐洲市場的進入面臨監管復雜性、文化差異與本地化銷售策略需求等挑戰。
AI4DEF、ARCHYTAS與STORE等防務AI進展標志著行業變革機遇。通過提升態勢感知、優化決策與強化網絡安全,AI正助力防務機構高效運作。對企業而言,此刻是將專業能力引入、共塑防務創新未來的最佳時機。
參考來源:eurodev
人工智能(AI)正在徹底革新現代軍事戰略,成為自核武器問世以來最具顛覆性的力量。AI驅動技術已不再是科幻概念,而是全球各國國防基礎設施的核心組成部分。從無需人工干預即可執行精準打擊的自主無人機,到實時分析海量數據以預測敵方動向的先進決策支持系統,AI從根本上改變了戰爭的籌劃與實施方式。這場變革標志著戰爭形態正從人力密集型作戰轉向由算法與機器學習定義勝負的戰場。
其焦點已轉向速度、精準度與預測能力——這些正是機器常超越人類的領域。軍事優勢日益與技術霸權掛鉤,美國、中國與俄羅斯等國家正大力投入AI研發以超越對手。這場軍備競賽不僅關乎火力,更涉及數據主導權與實時決策能力。隨著自主系統集群、網絡戰與AI增強型監控重新定義戰略優勢,戰場正加速數字化。在這個新時代,誰掌控了人工智能,誰就可能主導未來戰爭的形態——決策將在毫秒間完成,人類判斷與機器自主的界限將愈發模糊。
人工智能(AI)已非未來概念——它深植于當今國防體系,驅動多軍事領域的變革。
監視與偵察:AI正重新定義情報收集的速度與精度。現代國防系統高度依賴AI處理衛星、無人機及其他情報、監視與偵察(ISR)設備捕獲的海量數據。例如,美國國防部部署的"專家計劃"(Project Maven)作為旗艦級AI項目,旨在自動解析實時獲取的全動態視頻數據。據美國國會研究服務局2021年報告,該計劃顯著加速目標識別與戰場態勢感知,減少人力負荷并賦能快速精準的作戰決策。
決策支持系統:AI在軍事規劃中的應用已超越理論階段。當今軍隊正利用先進機器學習模型模擬復雜兵棋推演場景,預測不同戰略條件下的作戰結果。據報道,中國解放軍(PLA)將AI整合至其指揮、控制、通信、計算機、情報、監視與偵察(C4ISR)基礎設施。蘭德公司報告指出,此類AI驅動系統增強實時態勢感知能力,壓縮決策周期——為指揮官在快節奏、高風險作戰環境中提供關鍵優勢。
自主載具:AI在國防領域最顯著的體現莫過于無人自主系統的部署。從執行精準打擊的無人機(UAV),到參與后勤與偵察的海上無人艇及地面載具,自主技術正重塑作戰準則。典型案例包括美國海軍"海上獵人"(Sea Hunter)——該無人水面艦艇可自主航行巡邏數月無需船員。此類自主化轉型不僅降低人員風險,更增強軍事資產在對抗區域的持續存在與覆蓋能力。
本質上,AI已成為現代戰爭的核心賦能者,不僅塑造未來,更深度定義著全球防務能力的當下格局。
人工智能(AI)不再僅是輔助工具——它正快速成為現代及未來戰爭的戰略核心。此變革的核心在于"決策主導權":以比對手更迅速、更有效的方式感知、處理并行動的能力。通過融合數據分析、模式識別、實時態勢感知與自主執行,AI賦能軍隊以無與倫比的速度與精度制定優勢決策。在未來的作戰空間中,勝利或將不再僅依賴火力,而取決于實時智勝與反應壓制的能力。
新興戰場范式的啟示
集群作戰——大規模自主協同:想象數十甚至數百架無人機完美協同執行打擊、偵察或電子戰任務——AI使之成為可能。依托實時協同、障礙規避與動態任務分配的算法,自主無人機集群可飽和壓制并穿透傳統防御體系。DARPA的"進攻性集群戰術"(OFFSET)項目已在城市環境中測試此類場景,證明AI集群不僅能以數量壓制,更能以智能與敏捷性擊潰對手。這標志著戰術戰爭范式的結構性轉變。
預測性維護與后勤——維持優勢:在戰場之外,AI正革新戰備狀態。美國空軍"基于狀態的維護增強"(CBM+)項目利用AI預判裝備故障,通過分析傳感器數據預測飛機部件性能衰退,實現主動維修并最小化停機。其成果是:提升戰備水平、降低維護成本、構建更精悍敏捷的物流鏈——這對高強度持續作戰至關重要。
認知電子戰——制霸電磁頻譜:現代戰爭日益聚焦于無形的電磁頻譜域。AI使電子戰更快速、更具適應性。諾斯羅普·格魯曼公司的"SpectrumX"系統通過AI自主掃描、識別并實時干擾、欺騙或操控敵方信號。此類認知電子戰可在未發一彈的情況下癱瘓敵方通信與傳感器,賦予決定性信息與戰術優勢。
綜上,AI正在重寫交戰規則。它定義了一種新型戰爭優勢——以決策速度與質量而非火力規模決勝。從自主集群到預測性后勤與頻譜主導權,AI正成為戰爭藝術演進中的新制高點。
斯德哥爾摩國際和平研究所(SIPRI)指出,由國家安全、技術霸權與全球影響力的戰略需求驅動,全球范圍內針對人工智能(AI)等新興技術的軍事支出正急劇增長。僅2023年,主要地緣政治力量便大幅增加對AI賦能防務能力的投入,標志著現代戰爭格局的深層重構。
美國國防部(DoD)為AI與機器學習項目專項撥款超15億美元,覆蓋預測性維護、物流優化至下一代自主武器與監控系統的廣泛領域。五角大樓的國防創新單元(DIU)與聯合人工智能中心(JAIC)處于AI與戰備整合前沿,強調速度、可擴展性與戰場優勢。
中國將AI定義為核心技術。中國計劃于2030年前成為全球AI領導者,通過注資AI初創企業、高校實驗室與開發智能指揮系統、自主無人機及作戰算法適配的軍工企業推進這一目標。
俄羅斯雖資源有限,但在AI軍事技術領域進展迅猛。其正研發"天王星-9"無人地面戰車與AI制導導彈系統等自動化武器平臺,旨在增強戰場自主化并減少高危作戰中人員介入,體現俄方不對稱作戰學說與技術實驗策略。
布魯金斯學會近期報告警示AI領域"斯普特尼克時刻"逼近,強調全球大國日益將AI霸權視為國家安全與地緣影響力的決定性支柱。在這場新軍備競賽中,AI主導權或將定義未來物理與網絡沖突的戰略優勢——競賽目標不僅是更優的機器,更是算法、數據與自主性成為權力通貨的世界中決定性的制勝籌碼。
自主武器系統(AWS)是人工智能、戰爭與倫理交匯的核心議題之一。此類系統無需人類直接干預即可識別、瞄準并攻擊目標,引發深遠的道德、法律與安全關切,挑戰國際法與人類權利的基本原則。
責任歸屬困境:核心倫理難題圍繞問責展開:當AI系統導致非預期平民傷亡或違反交戰規則時,誰應擔責?是算法開發者、部署指揮官、制造商,還是國家?AI系統決策的不透明性使責任追溯幾無可能,進而侵蝕戰時行為法律框架。
誤識別風險加劇:與依賴情境判斷與同理心的人類士兵不同,AI僅基于可能存在缺陷、偏見或不足的數據運作,導致其可能誤判平民為戰斗人員——此類錯誤或引發致命后果。此風險違背國際人道法中的區分原則與比例原則,即要求作戰方區分軍事目標與非戰斗人員,并確保武力使用與軍事收益成比例。
全球治理分歧:緊迫性促使國際社會采取行動。《聯合國特定常規武器公約》(CCW)成為致命性自主武器合法性辯論的核心平臺。盡管逾30個國家(多為全球南方國家)以無差別殺戮與沖突升級風險為由呼吁預先禁止,美國、俄羅斯與中國等大國仍持保留態度,認為嚴格監管將阻礙技術創新并威脅國家安全。
人權觀察組織2022年報告強調,將生死決策權移交無實質人類控制的機器不僅違背倫理,更違反國際法規范。爭議持續,但事實清晰:若無有效治理,AWS的無序擴散將根本性改變戰爭形態——乃至人類的道德準則。
在數字時代,網絡威脅的速度與規模已超越傳統防御機制。人工智能(AI)成為網絡領域的關鍵力量倍增器,重塑軍事與民用領域的攻防策略。
防御維度:AI在威脅檢測與響應中表現卓越。其可快速分析網絡、系統與終端的海量數據,識別人類分析師可能忽略的異常與可疑行為。與傳統基于規則的系統不同,AI通過機器學習模型高精度檢測零日漏洞、勒索軟件模式及其他復雜入侵,使網絡安全團隊能夠先發制人地響應——常在攻擊升級為破壞前將其扼制。本質上,AI不僅增強態勢感知,更大幅縮短響應時間,這對當今高風險的網絡環境至關重要。
攻擊維度:AI正被武器化以開發自適應惡意軟件與自主攻擊系統。此類工具能根據動態防御機制調整自身行為。例如,AI驅動的惡意軟件可學習目標安全基礎設施的運作模式,實時調整策略以規避檢測——形成日益不對稱的軍備競賽。此類能力不僅加劇防御挑戰,更需構建強健的倫理框架與國際規范以防止濫用。
戰略規范構建:認識到AI在網絡空間的雙刃性,北約合作網絡防御卓越中心(CCDCOE)等機構已將AI視為下一代網絡戰略的基石。北約2021年《人工智能戰略》強調軍事創新中需采用負責任且可解釋的AI,指出其部署須符合國際法、民主價值與倫理原則,以維系盟友間的信任、問責與互操作性。
綜上,AI不僅是技術升級,更是戰略必需。隨著網絡戰日趨復雜且混合威脅激增,將AI整合至網絡安全行動對構建韌性、威懾力及維持戰略優勢至關重要。
人工智能(AI)與核指揮控制系統的融合呈現出機遇與風險并存的復雜雙重性,重塑戰略穩定性格局。
技術賦能維度:AI具備變革性潛力。先進機器學習算法可通過快速解析衛星圖像、雷達信號與電子數據流提升預警系統效能,增強國家精準快速識別來襲威脅的能力,降低誤警概率并減少核武器意外發射風險。此外,AI可辨識真實攻擊與常規軍事活動的模式差異,理論上為決策者在時限壓力下提供更可靠的情報支撐。
風險與脆弱性:此類能力亦伴隨前所未有的風險。對AI系統的依賴引入新脆弱性,尤其在數據誤判或信號欺騙場景中。AI系統雖高效,但其可靠性受限于數據處理質量與開發者設定的參數。在核指揮控制這一高度敏感領域,誤分類(如將衛星發射或導彈試驗誤判為敵對核打擊)可能引發災難性連鎖反應。對手或通過網絡攻擊向AI系統注入虛假數據或模擬敵方信號以誘使誤判,進一步加劇風險。
心理與組織挑戰:卡內基國際和平基金會報告指出的"自動化偏見"加劇了上述技術風險。該現象表現為人類操作者對自動化系統輸出過度信任,即便其存在缺陷。在高壓力、短時限情境下,指揮官可能未經充分核查即采納AI建議——尤其當系統被認為比人類判斷更客觀或強大時。此類過度依賴將削弱人工監督,增加核決策錯誤或倉促化的概率。
AI雖能提升核指揮控制的安全性與效率,卻也帶來不可逆后果的新型失效模式。核心挑戰在于以極度審慎的態度管理技術,確保人類決策的核心地位,并構建強健保障機制以防止自動化缺陷引發災難性錯誤。
人工智能不會取代戰爭中的核心人類判斷——至少不會完全取代。戰爭迷霧仍需要唯有人類心智可提供的直覺、道德與適應性。然而,AI將徹底增強人類決策,加速作戰節奏,擴展交戰范圍,并提升打擊精度。從自主無人機、預測性維護到實時威脅檢測與戰略模擬,AI正在重塑沖突形態。
隨著技術成熟,真正的軍事優勢將不再僅依賴傳統火力或兵力規模,而取決于數據霸權——即數據收集、解析與行動的速度。由AI驅動的模式識別與深度學習賦能的戰略前瞻能力,將使指揮官能夠預判敵方動向、優化后勤體系并以空前的敏捷性部署資源。智能自動化將減輕認知負荷,使人類操作者聚焦高風險決策,同時由機器以機器速度處理復雜任務。
但這一轉型伴隨雙重挑戰。一方面,軍隊需持續創新以維持對同樣重注AI的對手的技術優勢;另一方面,其必須應對快速演變的倫理格局——戰斗人員與非戰斗人員的界限、控制與自主的邊界、進攻與防御的分野正日益模糊。致命性自主武器的部署、算法偏見及意外升級風險并非假設性威脅,而是亟需嚴格治理與透明監管的緊迫議題。
未來戰爭不僅爆發于戰場,更將延伸至實驗室、數據中心與國際論壇。那些在釋放AI潛力與恪守原則性約束間取得平衡的國家,不僅將贏得戰略主導權,更將制定數字時代的交戰規則。如此,它們不僅將贏得戰爭——更將塑造未來和平的藍圖。
參考來源:Alok Nayak
"俄羅斯龐大的非戰略核武庫有助于抵消西方常規軍力優勢,并在戰區戰爭場景中提供強大的升級管理選項。"——美國情報界2025年度威脅評估報告
俄羅斯人工智能(AI)與自主武器系統的融合,可能預示著戰場戰術核武器使用風險的上升。AI武器系統通過計算機算法自主攻擊目標,無需人工操控。AI引入機器學習要素,可預測未來數據與流程的運用方式。戰場自主系統的出現使低層級單位與單兵能更快、更精準地實施遠程致命打擊。俄軍快速將AI整合至自主武器系統,加之其軍事領導層暗示放松核指揮權限,使得戰術核武器現身戰場成為可能。核指揮鏈的縮短增加了事故風險——自動化壓縮了識別與糾正機器錯誤的時間窗口。在俄羅斯放松核指揮權限的背景下,AI、戰場自主化與戰術核武器的三重融合構成作戰環境的破壞性威脅,也暗示美國陸軍應重啟核環境下決勝作戰的訓練與準備。
俄羅斯反復強調AI與軍事技術融合的重要性。普京總統宣稱"AI發展領導者將成為世界的主宰",使AI技術優勢成為俄與西方全球博弈的關鍵領域。俄烏戰爭期間,AI技術與俄武器系統的融合加速推進,典型案例包括開發采用機器視覺對抗電子戰的自主單向攻擊無人機。軍事技術與AI的融合產生獨特效應:抗信號干擾的無人武器、快速數據分揀帶來的響應速度提升、人類難以識別的模式偵測能力,這些均形成戰場優勢。隨著技術發展速度與俄羅斯核學說演變,AI融入俄核武器系統及其后果或將快速成為現實。
俄羅斯核指揮權的調整表明其核權限正向戰術指揮官下放,提升作戰環境中核武器使用風險。俄外交部副部長謝爾蓋·里亞布科夫向外交刊物表示,需對"主權與領土完整受威脅時使用核武器"的條令進行"概念性補充與修訂"。此類表態疊加俄白聯合戰術核武器演習,顯著提高俄戰術核武器實戰化可能性。
俄羅斯正著力將AI整合至戰略火箭軍作戰體系。戰略火箭軍司令謝爾蓋·卡拉卡耶夫稱:"2030年前部署的移動/固定戰略導彈綜合體的自動化安保系統將包含機器人系統并應用AI技術。"此舉引發事故風險與網絡攻擊漏洞等多重隱患。
AI系統介入核發射決策流程將導致決策周期縮短,增加誤判與快速升級風險。自主系統無法免疫錯誤——核武系統指揮控制中的人類判斷不可或缺,1983年"彼得羅夫事件"印證此點:蘇聯衛星誤報美國核導彈來襲,若非彼得羅夫中校憑直覺判定系統故障,或將引發災難性核反擊。人類判斷曾避免技術失誤的災難性后果,但在自動化決策流程中該機制可能被取代。
核打擊決策流程可通過OODA循環模型(觀察-定向-決策-行動)解析。在定向階段,AI篩選海量信息確定優先級。例如,AI系統可綜合多傳感器數據判定是否遭受攻擊。此類系統減少人工數據監控與情境分析,導致人類分析能力退化并放大決策偏見。AI系統同化決策者輸入的信息——若從俄領導層習得冒險與激進行為模式,將在未來決策中固化此類偏見。即便OODA循環保留人類判斷環節,AI整合仍將人類降級為"自動化管制系統的齒輪",加劇自動化偏見風險。
自動化偏見:當人類因算法持續成功而產生認知卸荷并完全信任機器時——即使無偏見者可能察覺機器報告錯誤信息。隨著AI深度整合,決策周期縮短不僅增加失誤風險,更可能導致人類無法識別錯誤(包括網絡攻擊引發的錯誤)。
AI增強型核指揮系統為黑客創造新型威脅向量與攻擊界面——此類系統"相比傳統軍事平臺更易受網絡攻擊"。篡改AI學習過程的完整性攻擊最為普遍。俄美雙方的第三方與對手可能利用這些漏洞,通過俄系統對美及其盟友發動核打擊,混淆責任歸屬并提供可否認性。總體而言,AI融入俄核武系統增加了意外、錯誤或被黑核打擊的可能性,要求美國陸軍提升核戰備水平。
通過陸軍技術轉移計劃(T2)加強與化學、生物、放射與核防御聯合項目執行辦公室(JPEO-CBRND)的協作,可增強美軍"在核污染環境中無礙作戰并決勝"的能力。JPEO-CBRND負責采購分發傳感器、專用設備與醫療技術,使輻射監測更精準并為士兵配備核污染環境作戰裝備,包括防護服與洗消設備。美軍需恢復單兵、班組及集體任務中的核防護訓練,并將模擬核污染條件納入駐地演訓與作戰訓練中心輪訓。
提升戰略、戰役與戰術層級的放射性響應演習頻次,通過反饋數據優化美軍核響應能力。當前美軍核響應訓練因部門與單位割裂影響整體效能。在核污染戰場成功作戰需每年至少開展一次"多梯隊訓練"。通過強化核污染環境作戰能力建設,可為應對對手AI、戰場自主化與戰術核武器融合引發的不可測后果做好決勝準備。
參考來源:madsci
美國及北約軍事規劃者可將從烏克蘭無人機戰爭中汲取關鍵經驗,以構建針對俄羅斯及同級對手的防御與威懾體系。
俄羅斯烏克蘭戰爭凸顯了敏捷跨域聯合目標鎖定周期在傳感器密集且透明度日益提升的戰場環境中的核心價值——快速鎖定敵方目標并保持決定性優勢。盡管俄軍在入侵首年實施動態殺傷鏈過程中遭遇困境,但其基于烏克蘭戰場的節奏與需求進行適應性調整,逐步改進并調整偵察打擊與火力循環體系,顯著提升了響應效能與適用性。這種軍事適應性及持續學習能力為美國及其北約盟友帶來了多維挑戰、戰略機遇與潛在風險。
俄羅斯烏克蘭戰爭的第一年暴露出其現有殺傷鏈的諸多缺陷與挑戰。這些挑戰同時存在于負責戰略與戰役縱深目標打擊的“偵察打擊回路”,以及其戰術層面對應體系“偵察火力回路”,主要源于以下六大因素:
首先,俄羅斯缺乏持久縱深情報、監視與偵察(ISR)能力,突出表現為天基對地觀測資產不足,以及可大規模部署的遠程目標捕獲無人機系統(UAS)稀缺。盡管擁有多種戰術無人機,但其數量不足以彌補高損耗率,也無法滿足多軸線戰場的全域作戰需求。同樣關鍵的是,俄羅斯老化且稀缺的遠程監視衛星群(僅包含三顆光學衛星與三顆合成孔徑雷達衛星)被證明難以滿足烏克蘭戰場的作戰節奏與需求,導致關鍵時效性問題。
其次,俄軍近實時情報數據分析與快速分發利用能力薄弱且流程繁瑣。不同戰線報告顯示,俄軍間接火力任務常出現長達四小時的延遲,而巡航導彈與彈道導彈打擊所需地理空間數據的采集、處理與最終應用間隔更久。盡管天基資產在“關鍵目標摧毀戰略行動”中支持了對基礎設施與軍事目標的戰略打擊,但效果參差不齊。
第三,精確打擊任務在規劃與能力選擇上協調失當。例如分析人士指出,俄軍雖彈藥庫存充足,但目標選定人員普遍存在優先級錯配問題——寶貴的“伊斯坎德爾-M”戰術彈道導彈被用于打擊小股部隊集結點,而針對大型機場的打擊編組僅包含少量巡航導彈。
第四,俄軍指揮、控制、通信、計算機、情報、監視與偵察(C4ISR)基礎設施存在嚴重缺陷,包括通信中斷與責任區劃分不清。此外,非專業步兵在爭議環境中運用C4I技術引導火力的訓練與經驗水平不足。各軍種C4I系統互操作性差且裝備不均衡加劇了這一問題——多數俄陸軍部隊要么無法獲取“百靈鳥”戰術C4I加固計算機,要么存在誤用現象。
圖:俄羅斯士兵準備“柳葉刀”巡飛彈藥。圖片來源:Zala Aero
第五,俄軍傳感器與打擊單元整合效能低下。初期俄軍巡飛彈藥與攻擊型無人機存量極少,導致2022全年及2023年部分時段動態目標鎖定能力受限。2022年2月僅有少量“獵戶座”中空長航時戰斗無人機從克里米亞出動執行任務,但隨著烏防空系統升級(至少擊落六架)逐漸退居二線,“柳葉刀-3”巡飛彈藥也極為罕見。
最后,烏軍向機動分散化轉型顯著削弱了俄殺傷鏈效能。
隨著2023年初戰場態勢惡化,俄羅斯通過向地面部隊大規模部署中短程無人機系統(含商用型號)啟動殺傷鏈適應性調整,以提升態勢感知與目標探測能力。“海鷹-10/30”、“扎拉”、“埃勒倫3S”與“超視距”固定翼無人機開始密集進入烏克蘭空域,致使烏軍常面臨多架俄軍無人機通過互鎖目標回路實施協同偵察。這些無人機通常由軸線指揮官下屬炮兵旅無人機連操作,為戰術火炮與遠程火力提供目標定位,常利用近程防空(SHORAD)漏洞深入敵軍前沿后方。
自2023年下半年起,俄軍使用“伊斯坎德爾-M”戰術彈道導彈與蘇-34戰斗機和“龍卷風-S”火箭炮發射的D-30SN滑翔炸彈,對烏軍戰役縱深高價值目標(如機場、S-300與“愛國者”防空系統、“海馬斯”火箭炮)實施精確打擊的頻率穩步上升。在戰術層面,配備陀螺穩定激光指示器的“海鷹-30”無人機為“亡命徒”240毫米(射程9公里)與“紅土地”152毫米激光制導炮彈及新型Kh-38ML激光制導空對地巡航導彈提供靜止/移動目標照射。
“伊斯坎德爾”打擊頻次與響應速度的提升,可能暗示俄軍正將建制化“伊斯坎德爾-M”營級單位配屬至集團軍炮兵旅(傳統上僅編入集團軍群),使戰術層級指揮官獲得遠程精確打擊選項。
圖:一架Zala ISR無人機正在觀察對烏克蘭一座橋梁的伊斯坎德爾-M戰術彈道導彈襲擊。圖片來源:Zala Aero
在整場沖突中,俄羅斯持續優化全軍數據共享與處理機制,具體措施包括建立集成化指揮中心——將來自無人機、前沿觀察員、信號情報與電子戰的實時ISR數據整合為統一作戰態勢圖。在此背景下,商用技術(如基于安卓系統的通用態勢感知軟件、智能手機與星鏈衛星終端)的廣泛采用,為聯合部隊提供了多設備冗余連接,從而提升跨軍種目標鎖定能力。俄羅斯還致力于將人工智能(AI)整合至指揮控制體系與打擊平臺,以強化決策支持與高階目標鎖定效能。
最具戰略意義的適應性調整之一是大規模將“扎拉柳葉刀-3”巡飛彈藥與武裝化第一視角(FPV)無人機納入偵察火力回路。這些低特征值系統將傳感器與效應器融合為單一平臺,可實時精確動態打擊目標,執行反炮兵、反裝甲至反人員等多類任務。“柳葉刀-3”還與具備信號中繼能力的“扎拉”ISR無人機協同使用,打擊敵前沿后方約70公里的高價值目標。如圖1所示,2024年1月以來已公開記錄近1500次“柳葉刀-3”打擊(占2023年1月以來總量的65%)。這些可擴展、高性價比的平臺為俄軍提供了響應迅速、建制化、超視距的精確打擊能力,與其傳統火力形成互補,并催生出小型專業化“獵殺”無人機作戰小組。
圖1 -俄羅斯柳葉刀在烏克蘭的使用情況
俄羅斯國防工業正加速轉型以支撐戰場快速演進。盡管面臨西方制裁,其精確制導彈藥與無人機產量持續攀升,部分制造商甚至將廢棄商場改造為生產中心。與此同時,國家主導與民間志愿相結合的模式每月向前線輸送數萬架第一視角(FPV)無人機。俄當局在喀山阿拉布加建立大型工廠,目標每年生產多達1萬架“天竺葵”單向攻擊無人機。此外,俄政府官員近期聲明及莫斯科陸軍裝備展主題均凸顯“速度、精度、規模”三位一體發展理念,明確將無人機、機器人系統與人工智能應用列為研發重點與未來能力建設優先方向。
總體而言,這些進展標志著俄羅斯殺傷鏈與聯合作戰整合能力持續提升。但各部隊適應程度差異顯著,不同目標鎖定回路的重疊導致互操作性與沖突消解難題,可能影響火力任務的分配效率與響應速度。
軍事規劃者可從以下方面汲取關鍵經驗,以彌合能力缺口并強化對俄及同級對手的防御威懾:
參考來源:Federico Borsari
設想一個未來:人工智能(AI)以空前的速度、精度與洞察力賦能北約部隊。這場變革的核心正是盟軍轉型司令部——推動北約釋放AI集體安全潛能的引擎。該司令部正推進多項舉措,將AI融入軍事行動、創新、教育與能力發展,呼應北約2030年實現數字化轉型、數據驅動與多域作戰能力的目標。
盟軍轉型司令部AI工作的核心理念簡明有力:數據即戰略資源。正如優質食材成就佳肴,高質量、結構化數據是AI高效、可靠、負責任運行的基礎。缺乏可訪問、可共享、易理解的數據,AI工具將無法釋放全部潛能。
為實現這一愿景,該司令部主導提升北約數據管理與應用效能的行動,包括實施數據開發計劃。該計劃聚合北約作戰與轉型領導者,聚焦將現實需求轉化為實用案例、推動負責任數據共享、確保北約工具系統使用統一數字語言。
通過這一框架,盟軍轉型司令部著力培養數據與AI人才隊伍,支持標準化建設以確保數據可信度與跨系統適用性。這種"數據優先"策略是AI能力融入北約體系的關鍵基礎。在此之上,司令部正將前瞻概念轉化為支撐聯盟行動與決策的實用工具。
盟軍轉型司令部對北約數字化轉型最顯著的貢獻在于推進實戰相關的AI解決方案與原型系統。這些項目驗證了AI如何加速決策、提升作戰效能、強化態勢感知。
典型案例是AI FELIX(人工智能前端學習信息執行系統)。該數字助手旨在減少重復性文書工作,優化北約機構知識管理。其最初應用于"戰備委員會"——負責接收、登記、審核所有正式來函的北約總部核心部門。AI FELIX通過每日自動分析數百份文件、標注關鍵信息并分發給相應團隊,將處理時間縮減80%。
基于數萬份文檔訓練,AI FELIX融合機器學習與規則系統,在元數據標注與文件分類上超越人工效率。除自動化外,它還完成北約檔案庫全量回溯標注,顯著提升內部檢索工具效能。該工具已擴展至多個北約司令部,預計服務超2萬用戶,通過自動化常規任務解放人力專注核心職責。
更進一步的AIDA(人工智能數字助手)為北約知識庫引入對話界面。用戶可通過自然語言交互獲取附溯源引文的語境化答案。在保密網絡運行的AIDA采用檢索增強生成技術(RAG),依托數十萬份多密級文件確保回答準確可溯。超越聊天機器人范疇,AIDA代表北約人員數字輔助的進化方向:未來將支持文件起草、數據查詢、系統集成與多智能體協作。每位參謀或可配備AI助手團隊,根據個人偏好執行研究、簡報生成、反饋協調等任務,實現從基礎自動化到智能支持的躍升。
另一新興能力AI CLAIRE(快速開發內容鏈接與人工智能)專注語義搜索與智能內容導航。該工具通過理解查詢意圖(非簡單關鍵詞匹配),幫助北約標準與條令管理者從海量開源與內部資料中提取相關信息,加速關鍵知識獲取,優化動態文件體系的更新維護。
為增強北約預見、理解與應對新興威脅的能力,盟軍轉型司令部推進跨域AI應用。**政治-軍事輔助決策(PM-ADM)**計劃在數據攝取、分析、知識建模與智能代理等多層面部署AI。
PM-ADM系統全天候運行,持續處理傳統指揮控制系統與開源數據。通過自然語言處理解析結構化/非結構化信息,并對照北約戰略知識模型(以本體論構建的聯盟關鍵概念關系圖譜)。當識別可能影響戰略優先級的新數據時,系統自動將其整合至知識庫并建立關聯。
數據攝入后,系統基于**網絡本體語言(OWL)**等標準進行語義推理,生成新洞見與模式識別。這些推斷納入知識庫,支撐高級查詢工具與驗證框架。系統內智能代理可識別認知空白并提出填補方案。
分析結果輸入各類可視化工具,助力戰略洞察與人類認知。PM-ADM最終目標在于捕捉低層級指標,通過語境化分析揭示北約利益風險,實現更早期、更明智的干預以遏制事態升級。
在戰略競爭中獲得"認知優勢"(比對手更快思考、決策與行動的能力)至關重要。盟軍轉型司令部主導的情報與ISR(情報監視偵察)功能服務能力項目,正在革新北約開源情報(OSINT)與圖像情報(IMINT)的采集處理方式。
該計劃整合人員、流程、工具與數據,支撐北約全情報周期(從采集到分發)。其目標是為規劃分析團隊提供無縫銜接的集成體驗,實現情報輸入與決策流程直連。
全面部署后,系統將提供預測分析、自然語言處理、關系圖譜、變化檢測、圖像目標識別等AI工具,加速情報工作流的同時提升決策洞見深度與精度。最終目標是幫助北約保持認知優勢,并將態勢感知擴展至信息環境領域。
在當今互聯互通且充滿對抗的世界,理解與應對信息流動至關重要。北約**信息環境評估(IEA)**能力通過監測公共信息空間中友方、中立與對抗方的信息活動,支撐戰略傳播的"理解"功能。
IEA實時持續評估信息環境,識別關鍵社會群體、行為模式與影響路徑。這種深度受眾理解助力任務行動中的快速循證決策。該項目整合敘事分析、情感分析、社交網絡分析與建模仿真等先進方法,AI技術在自動化海量數據處理、新興議題識別、信息傳播預測等方面發揮核心作用。
通過人機協作,北約力求領先對抗性敘事,促進真實信息傳播,確保戰略響應明智有效,最終捍衛聯盟內部信任、團結與韌性。
兵棋推演作為檢驗戰略、測試方案、提升決策的傳統方法,正在盟軍轉型司令部獲得AI賦能。該司令部探索如何通過生成式AI與大語言模型提升推演真實性、效率與場景多樣性。
近期實驗表明,AI可生成精細想定、模擬敵我行為策略、輔助艱難決策,甚至在推演中提供實時評估。例如生成式AI工具在戰略級兵推中模擬紅藍隊策略,幫助參演者動態探索復雜決策空間,獲得快速定制化反饋。
所有AI兵推應用均遵循《北約負責任使用AI原則》,確保人類監督、透明度與可靠性貫穿始終。
國防領域AI應用不僅關乎技術部署,更需人才儲備。盟軍轉型司令部著力培養北約機構的AI素養,創建專項培訓計劃,將AI主題融入演習與課程。
典型舉措包括面向司令部人員的大語言模型(LLM)系列培訓,重點破除技術神秘感,建立負責任使用AI的信心。司令部新設數據科學與AI團隊,通過TIDE Sprint會議與專家網絡推進北約實踐社區建設,確保AI轉型"以人為本"。
作為北約AI戰略方向的核心塑造者,盟軍轉型司令部與創新、混合與網絡事務助理秘書長聯合主持數據與AI審查委員會(DARB)。該治理機構監督聯盟AI負責任應用,推動《北約AI戰略(修訂版)》落地,強調優質數據、嚴格測試評估框架、防范AI對抗性使用等原則。
戰略要求加速實用AI案例開發、支持國際標準建設、深化與盟國、工業界和學界合作。盟軍轉型司令部正通過北大西洋防務創新加速器(DIANA)、國家測試中心與學術伙伴等多渠道推進相關工作。
國防AI時代已至,盟軍轉型司令部正引領北約轉型。通過推進負責任創新、培育數字素養人才、擴展具有作戰影響力的AI能力,該司令部正在塑造聯盟防務未來。
集體安全的未來將由智能技術定義——盟軍轉型司令部正為此鋪路。通過其工作,司令部為聯盟配備應對新興挑戰所需的工具、人才與信任基石,以自信姿態把握前方機遇。
參考來源:北約