亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep Learning in Computer Vision: Methods, Interpretation, Causation, and Fairness Deep learning models have succeeded at a variety of human intelligence tasks and are already being used at commercial scale. These models largely rely on standard gradient descent optimization of function parameterized by , which maps an input to an output . The optimization procedure minimizes the loss (difference) between the model output and actual output . As an example, in the cancer detection setting, is an MRI image, and is the presence or absence of cancer. Three key ingredients hint at the reason behind deep learning’s power: (1) deep architectures that are adept at breaking down complex functions into a composition of simpler abstract parts; (2) standard gradient descent methods that can attain local minima on a nonconvex Loss function that are close enough to the global minima; and (3) learning algorithms that can be executed on parallel computing hardware (e.g., graphics processing units), thus making the optimization viable over hundreds of millions of observations . Computer vision tasks, where the input is a high-dimensional image or video, are particularly suited to deep learning application. Recent advances in deep architectures (i.e., inception modules, attention networks, adversarial networks and DeepRL) have opened up completely new applications that were previously unexplored. However, the breakneck progress to replace human tasks with deep learning comes with caveats. These deep models tend to evade interpretation, lack causal relationships between input and output , and may inadvertently mimic not just human actions but also human biases and stereotypes. In this tutorial, we provide an intuitive explanation of deep learning methods in computer vision as well as limitations in practice.

付費5元查看完整內容

相關內容

 (Carnegie Mellon University)坐落在賓夕法尼亞州的匹茲堡,是一所享譽世界的私立頂級研究型大學,學校面積不大,學科門類不多,但在其所設立的幾乎所有專業都居于世界領先水平。卡內基梅隆大學享譽全國的認知心理學、管理和公共關系學、寫作和修辭學、應用歷史學、哲學和生物科學專業。它的計算機、機器人科學、理學、美術及工業管理都是舉世公認的一流專業。

機器學習可解釋性,Interpretability and Explainability in Machine Learning

  • Overview As machine learning models are increasingly being employed to aid decision makers in high-stakes settings such as healthcare and criminal justice, it is important to ensure that the decision makers (end users) correctly understand and consequently trust the functionality of these models. This graduate level course aims to familiarize students with the recent advances in the emerging field of interpretable and explainable ML. In this course, we will review seminal position papers of the field, understand the notion of model interpretability and explainability, discuss in detail different classes of interpretable models (e.g., prototype based approaches, sparse linear models, rule based techniques, generalized additive models), post-hoc explanations (black-box explanations including counterfactual explanations and saliency maps), and explore the connections between interpretability and causality, debugging, and fairness. The course will also emphasize on various applications which can immensely benefit from model interpretability including criminal justice and healthcare.
付費5元查看完整內容

In recent years, the biggest advances in major Computer Vision tasks, such as object recognition, handwritten-digit identification, facial recognition, and many others., have all come through the use of Convolutional Neural Networks (CNNs). Similarly, in the domain of Natural Language Processing, Recurrent Neural Networks (RNNs), and Long Short Term Memory networks (LSTMs) in particular, have been crucial to some of the biggest breakthroughs in performance for tasks such as machine translation, part-of-speech tagging, sentiment analysis, and many others. These individual advances have greatly benefited tasks even at the intersection of NLP and Computer Vision, and inspired by this success, we studied some existing neural image captioning models that have proven to work well. In this work, we study some existing captioning models that provide near state-of-the-art performances, and try to enhance one such model. We also present a simple image captioning model that makes use of a CNN, an LSTM, and the beam search1 algorithm, and study its performance based on various qualitative and quantitative metrics.

During the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to learn complex objects and patterns providing that they can be trained on a massive size visual database with ground-truth labels. With a proper training, this unique ability makes them the primary tool for various engineering applications for 2D signals such as images and video frames. Yet, this may not be a viable option in numerous applications over 1D signals especially when the training data is scarce or application-specific. To address this issue, 1D CNNs have recently been proposed and immediately achieved the state-of-the-art performance levels in several applications such as personalized biomedical data classification and early diagnosis, structural health monitoring, anomaly detection and identification in power electronics and motor-fault detection. Another major advantage is that a real-time and low-cost hardware implementation is feasible due to the simple and compact configuration of 1D CNNs that perform only 1D convolutions (scalar multiplications and additions). This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field. Their state-of-the-art performance is highlighted concluding with their unique properties. The benchmark datasets and the principal 1D CNN software used in those applications are also publically shared in a dedicated website.

In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.

Interaction and collaboration between humans and intelligent machines has become increasingly important as machine learning methods move into real-world applications that involve end users. While much prior work lies at the intersection of natural language and vision, such as image captioning or image generation from text descriptions, less focus has been placed on the use of language to guide or improve the performance of a learned visual processing algorithm. In this paper, we explore methods to flexibly guide a trained convolutional neural network through user input to improve its performance during inference. We do so by inserting a layer that acts as a spatio-semantic guide into the network. This guide is trained to modify the network's activations, either directly via an energy minimization scheme or indirectly through a recurrent model that translates human language queries to interaction weights. Learning the verbal interaction is fully automatic and does not require manual text annotations. We evaluate the method on two datasets, showing that guiding a pre-trained network can improve performance, and provide extensive insights into the interaction between the guide and the CNN.

In recent years, deep neural networks have yielded state-of-the-art performance on several tasks. Although some recent works have focused on combining deep learning with recommendation, we highlight three issues of existing works. First, most works perform deep content feature learning and resort to matrix factorization, which cannot effectively model the highly complex user-item interaction function. Second, due to the difficulty on training deep neural networks, existing models utilize a shallow architecture, and thus limit the expressive potential of deep learning. Third, neural network models are easy to overfit on the implicit setting, because negative interactions are not taken into account. To tackle these issues, we present a generic recommender framework called Neural Collaborative Autoencoder (NCAE) to perform collaborative filtering, which works well for both explicit feedback and implicit feedback. NCAE can effectively capture the relationship between interactions via a non-linear matrix factorization process. To optimize the deep architecture of NCAE, we develop a three-stage pre-training mechanism that combines supervised and unsupervised feature learning. Moreover, to prevent overfitting on the implicit setting, we propose an error reweighting module and a sparsity-aware data-augmentation strategy. Extensive experiments on three real-world datasets demonstrate that NCAE can significantly advance the state-of-the-art.

This paper presents a method of learning qualitatively interpretable models in object detection using popular two-stage region-based ConvNet detection systems (i.e., R-CNN). R-CNN consists of a region proposal network and a RoI (Region-of-Interest) prediction network.By interpretable models, we focus on weakly-supervised extractive rationale generation, that is learning to unfold latent discriminative part configurations of object instances automatically and simultaneously in detection without using any supervision for part configurations. We utilize a top-down hierarchical and compositional grammar model embedded in a directed acyclic AND-OR Graph (AOG) to explore and unfold the space of latent part configurations of RoIs. We propose an AOGParsing operator to substitute the RoIPooling operator widely used in R-CNN, so the proposed method is applicable to many state-of-the-art ConvNet based detection systems. The AOGParsing operator aims to harness both the explainable rigor of top-down hierarchical and compositional grammar models and the discriminative power of bottom-up deep neural networks through end-to-end training. In detection, a bounding box is interpreted by the best parse tree derived from the AOG on-the-fly, which is treated as the extractive rationale generated for interpreting detection. In learning, we propose a folding-unfolding method to train the AOG and ConvNet end-to-end. In experiments, we build on top of the R-FCN and test the proposed method on the PASCAL VOC 2007 and 2012 datasets with performance comparable to state-of-the-art methods.

北京阿比特科技有限公司