所謂的殺手機器人已經到來,由人工智能支持的自主武器將成為未來戰爭的一個突出特征。在國際競爭者開發這些系統的背景下,在國際和多國公司的關注下,國家安全委員會關于人工智能的最后報告判斷,這些類型的無人駕駛武器可以而且應該以符合國際人道主義法律的方式使用,適用人類授權的使用條件和適當的設計和測試。人工智能支持的自主性及其軍事應用帶來了這些技術的基本風險,它們在無人武器中的使用進一步挑戰了軍隊在國際人道主義法和正義戰爭理論框架內尋求合法使用。因此,倫理學提供了優越的概念載體,以任命和授權人類授權者和使用者,并從質量上確定什么是 "適當的 "設計和測試。國防部的 "人工智能準備部隊運動 "所確立的七個人工智能工作者原型中的每一個都應該應用與角色相關的、與人工智能有關的道德規范,以充分實現《最后報告》中所確立的條件,并保留和支持控制暴力壟斷所必需的人性。對道德教育的需求單獨和集體地滲透到每個原型中,美國防部必須認識到公共/私人伙伴關系的價值,以充分考慮這些條件。
人工智能(AI)在國防領域的使用帶來了重大的倫理問題和風險。隨著人工智能系統的開發和部署,澳國防部將需要解決這些問題,以維護澳大利亞國防軍的聲譽,維護澳大利亞的國內和國際法律義務,并支持國際人工智能制度的發展。
這份報告《案例研究:國防中的倫理人工智能方法應用于戰術指揮和控制系統》是總理與內閣部(PM&C)、澳國防部和澳大利亞國立大學(ANU)3A研究所之間的科技(S&T)合作的產物。它使用《國防中的倫理人工智能方法》[1]來探討設想中的人工智能戰術指揮和控制(C2)系統的倫理風險,該系統整合了各種自主功能,以協助單個人類操作員同時管理多個無人駕駛車輛。
使用 "國防中的倫理人工智能方法 "對這一設想的C2系統進行分析,為三個利益相關者群體提供了關鍵的發現:澳國防部;人工智能技術開發者,以及那些尋求使用或迭代 "國防中的倫理人工智能方法 "的人。
對于澳國防部,該報告確定了關鍵的政策差距,并建議在以下方面采取行動。
對人工智能所做的決定和使用人工智能所做的決定制定一個問責框架
對操作員、指揮和系統開發人員的教育和培訓
管理支撐許多人工智能應用的數據,包括其收集、轉換、存儲和使用。
如果不采取行動,這些差距使澳國防部容易受到重大的聲譽和業務損害。
對人工智能技術開發者的其他關鍵發現涉及到有效性、整合、授權途徑、信心和復原力等主題。總的來說,這些發現鼓勵開發者考慮最有效的系統或算法(例如,在速度或準確性方面),是否一定是為決策者提供幫助的最佳選擇。在某些情況下,與規范性決策更一致的效率較低的算法可能更合適。此外,顯然需要研究哪些信息是做出好的判斷所必需的(特別是在問題復雜、背景重要的情況下);以及應該如何快速傳達這些信息。通過考慮作為分析的一部分而開發的七種假設的道德風險情景,可以進一步探討這些關鍵的發現。
對于那些尋求應用或迭代《國防倫理人工智能方法》的人來說,報告建議開發更多的工具,以幫助從業者確定對其特定需求具有最大相關性和效用的領域;以及一套全面的定義,以幫助應用該方法。
在過去的幾年里,人工智能(AI)的采用非常迅速,其使用也很廣泛。公共和私人部門的組織正在將人工智能用于廣泛的應用。在國防部門,對人工智能對國家安全的潛在影響的認識正在通過對后勤、半自動和自主武器、ISR(情報、監視和偵察)、指揮和控制以及網絡和信息行動的大量投資得到加強。畢竟,人工智能將戰爭的性質從信息化的方式轉變為智能化的戰爭方式。像美國和中國這樣的國家已經在其現有的防御框架中實施了一些形式的智能化戰爭。印度現在正以其新興和顛覆性的技術進步,向強大的軍民融合過渡。這篇背景文章探討了可能通過人工智能及其應用進行的智能化戰爭的所有方面,以及人工智能為國防帶來的挑戰和機遇。
印度的人工智能在軍事領域的實施處于起步階段;然而,其商業化的建立正以其在醫療保健、農業、教育、智能城市和基礎設施以及智能移動和交通等各個領域的不同應用而發展壯大。NITI Aayog在2018年發布了關于人工智能的國家戰略,主要關注這些領域。2021年,它進一步提出了一份關于負責任的人工智能第一部分和第二部分的報告,其中討論了印度人工智能的發展、采用和人工智能生態系統的培育。它的重點是促進研究、勞動力的技能培訓和再培訓,促進采用人工智能解決方案和發展準則。該報告還提出了對負責任的人工智能管理的問責制、安全、隱私和數據安全的關注。Niti Aayog的人工智能卓越研究中心(COREs)將作為國際轉型人工智能中心(ICTAIs)的技術供給者,旨在為社會領域創造基于人工智能的應用。
印度正在帶頭進行人工智能開發和采購,以加強其軍事基礎設施。印度人工智能軍事能力的一些例子包括用于ISR行動的人工智能機器人RoboSen,用于后勤支持的小型化便攜式行走機器人,具有認知能力的機器人,用于維護和維修部件,像黑黃蜂這樣的微型無人機,智能輪椅,以及CAIR的網絡流量分析(NETRA)系統,用于實時監控互聯網流量。印度的無人機能力包括Botlab Dynamics公司的蜂群無人機,HAL和NRT公司的空中發射靈活資產蜂群(ALFA-S),蜂群無人機,DRDO的Rustom 1。 印度海軍還計劃在關鍵任務領域整合基于人工智能的技術,并將INS Valsura作為大數據領域的卓越中心和關于人工智能和大數據分析的最先進實驗室。最近,2022年7月10日,在UDAAN(數字化、自動化、人工智能和應用網絡單位)的支持下,IAF在新德里的空軍站啟動了人工智能(AI)卓越中心。該中心配備了大數據和人工智能平臺,用于處理分析的所有方面,包括機器學習、NLP、神經網絡和深度學習。IIT-Hyderabad已經建立了一個關于自主導航和數據采集系統(TiHAN)的技術創新中心。DRDO的移動自主機器人系統(MARS)UGV和基于Arjun MK 1A戰斗坦克的UGV是正在籌備中的無人駕駛地面車輛,它們將配備120毫米火炮和本土地理信息系統(INDIGIS)。 印度國防部最近在GenNext人工智能解決方案的活動中展示了在過去三年中采取的人工智能舉措。為了促進國防部門的增長和發展,展示了iDEX初創企業技術,今年開始了第六屆國防初創企業挑戰。
想象力和對物理原理不斷發展的理解是未來技術能力的唯一界限,當美國陸軍將自己轉變為一支能夠在多域作戰(MDO)中占主導地位的部隊時,技術在建立和保持對敵手的優勢方面的作用就會增加。美國的政府機構包含了一些組織,負責資助、研究、開發并在新技術增長時將其納入部隊。本專著描述了目前正在開發的能力,這些能力將作為下一代概念的基礎,目前只存在于科幻小說中,但現實中卻有可能實現。它概述了這些進展中的技術所提供的潛在機會,以及它們如何能夠融入所有領域的未來作戰環境。
隨著美國國防部(DoD)從大規模戰斗行動概念向多域作戰(MDO)和聯合全域作戰過渡,對跨領域技術整合的重視程度繼續提高。公共和私營部門的研究和開發組織已經從關注具體的能力轉向提供基本概念的創新,正如陸軍優先研究領域中所概述的那樣(見圖1)。雖然這些優先事項是陸軍特有的,但國防部的其他部門也在為技術創新投入大量資源。
圖 1. 美陸軍優先研究領域。美國陸軍,“2019 年陸軍現代化戰略:投資未來”。
2019年正式成立的美國太空部隊(USSF),在其預算撥款中包括89億美元用于發展天基系統技術。 作為領導將新技術納入空間領域當前和未來擬議戰爭概念的軍事機構,USSF占據了一個不斷發展以滿足作戰環境變化的角色。在短期內,其余領域的更多能力將依賴于空間領域的資產,并推動對技術能力和效率的要求呈指數級增長。美國防部或整個美國政府的任何作戰組織都沒有智力或財政能力來單獨管理這一巨大的任務。與私營企業的緊密合作提供了美國所需的優勢,以保持對其對手的相對優勢。
民用技術的軍事應用和軍用技術的民用應用通過連接兩個平行的研究軌道和匯集關鍵資源如突破、設施和資金來加速發展進程。美國的幾家私營公司已經有專門的部門與政府合作,使雙方受益。作為洛克希德-馬丁公司的一部分,臭鼬工廠負責開發標志性的軍用飛機,如F-117夜鷹和SR-71黑鳥,而雷神技術實驗室創造了愛國者導彈,至今仍是國家防空計劃的基石。私營企業和軍方官員之間的持續合作也改善了技術預測,使規劃者有能力建立起納入仍在開發管道中的概念的途徑,甚至在它們準備投入使用之前。
在本專著中,對未來軍事規劃者來說,最后也是最關鍵的難題是如何在中期和長期將預測能力整合到作戰方法中。等到概念經歷了研究、開發、測試、原型設計和規模生產的完整周期后再考慮其效果,會使美國部隊落后于曲線,并處于持續的反應狀態,特別是在與俄羅斯和中國這樣的全球技術大國競爭時。未來的鑄造過程必須是連續的和迭代的。適應性強的計劃,具有圍繞發展中的突然延遲或進展進行調整的靈活性,比依賴線性進展的概念保持優勢。將 "鞭打 "事件的可能性傳達給高級領導人和政治家,以緩和期望,并減少那些不熟悉技術的細微差別的人的摩擦。
美國國防機構如何利用并迅速整合技術進步,以在多域作戰框架內獲得并保持競爭優勢?
負責開發下一代全域聯合作戰概念的戰地級規劃人員需要采用一個反復的、持續的規劃過程,考慮到理論上可能的、但目前還沒有的、與所有領域相互依賴的技術,以集中資源分配和從目前到未來作戰環境的未來預測路徑。
本專著包括四個不同的研究和思考階段,大致遵循軍隊設計方法學的概念。因此,第一部分試圖了解創新技術的現狀,從而了解軌道和軌道外競爭的技術作戰環境。發展存在于整個美國戰爭機器從概念到原型生產的連續過程中,一些進步來自非軍事應用,如通信、金融和體育產業。第二,研究哪些非保密技術有待于相對迫切的實施。即使在起步階段,新概念的簡單應用也會在多領域的戰場上帶來作戰優勢,而來自真實世界的反饋和數據支持進一步的完善。
在已知的物理學和應用科學的限制下,對現在和可能的空間進行了略微緩和但雄心勃勃的介紹,為未來三十年設定了目標桿。計算能力、材料科學和效率的線性增長阻礙了這些崇高目標的實現。然而,如果能力的增長保持過去幾十年的指數增長(見圖2),本專著中所探討的所有概念都是可以掌握的。最后,本研究以一個簡短的未來戰爭的虛構場景作為結束,該場景展示了戰略和作戰能力在戰術領域的整合,加強了它們與未來戰士在MDO的五個現有領域以及未來可能存在的地外領域的相關性。該方案提出了一個可能的理論終結狀態,以在10到15年的規劃范圍內建立一個作戰方法。然而,這很可能只是物理學和想象力極限競賽中的一個快照。
圖2. 隨著時間的推移,技術能力呈指數增長。
本專著主要關注軌道和軌道外的競爭,包括對所探討的能力有重大影響的地面節點和系統。最終的勝利或失敗,即使是在未來的沖突中,也將極大地影響地面人口,即交戰國的公民。他們將掙扎著在戰爭的附帶影響下生存,同時也會受到氣候變化、人口過剩、食物和水匱乏的日益嚴重的影響。
本文探討了人工智能(AI)如何可能使美國軍隊以更符合倫理的方式執行其作戰任務,從而更好地遵守國際人道主義法(IHL)的倫理意圖,并強調它可能帶來的挑戰。它將通過研究軍事目標選擇的兩個關鍵特征來完成這一任務:區分和相稱性。區分和相稱性是國際人道主義法承認的四項基本戰爭原則中的兩項,包括《海牙公約》、《日內瓦公約》及其附加議定書,以及紅十字會編纂的習慣法。 對這兩項原則的仔細研究突出了可預見性的概念在戰爭倫理中的作用。可預見性是正義戰爭理論中經常提到的與保護非戰斗人員有關的關鍵倫理考慮。邁克爾-沃爾澤的奠基之作《正義與非正義的戰爭》認為,在戰爭中,不可預見的邪惡可能是可以接受的,但從倫理上講,戰士們必須在戰爭中盡量減少所有可預見的邪惡。雖然可預見性沒有被標為基本原則,但它是一個經常被忽視的特征,對主要的四項原則的倫理決策產生了重大影響。
審查包括簡要回顧區分的倫理基礎,相稱性,以及兩者如何取決于可預見性。然后,它評估了當前的國際人道主義法,并確定了人工智能可以提供更多的合規性的潛在機會,以及潛在風險的特征。審查將主要集中在戰爭/戰斗期間的倫理決定和行動(戰時法),而不是可能導致戰爭的戰略決定(戰時法)。在執行對人工智能可能給軍事目標帶來的潛力和隱患的評估之前,關鍵是要正確定義人工智能,并審查其與國家安全的日益相關性。
人工智能是一個復雜的話題,既具有爭議性,又經常被誤解。著名物理學家斯蒂芬-霍金警告說,人工智能可能是 "我們文明史上最糟糕的事件",除非其發展得到適當控制。 甚至企業家埃隆-馬斯克,他自己的公司正在創新自動駕駛汽車,也警告說"......人工智能比核彈危險得多",必須受到監管。相反,麻省理工學院計算機科學和人工智能實驗室的創始主任羅德尼-布魯克斯、哈佛大學心理學教授史蒂芬-平克,甚至Facebook創始人馬克-扎克伯格都將這些觀點描述為危言聳聽。
當人工智能被引入到國家安全和軍事行動中時,其強度和審查都會大大增加。馬斯克和霍金都簽署了一封致聯合國的公開信,敦促禁止人工智能武器。 公眾對人工智能 "武器化 "的反彈的一個引人注目的例子發生在Maven項目上,原因是人們對倫理問題的看法。Maven項目是美國國防部(DOD)的一項舉措,旨在利用人工智能來評估來自遙控飛機的視頻,試圖更快、更準確地找到伊拉克和敘利亞的伊斯蘭國恐怖分子。國防部與包括谷歌在內的一些商業伙伴開始了這項努力。然而,在2018年,約有4000名谷歌員工認為該項目與谷歌的倫理規范相抵觸,這些倫理規范是基于 "不作惡 "的非官方格言。然后,這些員工簽署了一份請愿書,要求"......谷歌或其承包商將永遠不會建立戰爭技術"。 此后不久,谷歌退出了該項目。這些事件受到一些人的贊揚,也受到另一些人的批評,他們認為抗議是短視或幼稚的,因為不太倫理的美國競爭對手仍然會從谷歌的人工智能工作中受益。
曾在伊拉克和阿富汗服役的海軍陸戰隊員盧卡斯-昆斯(Lucas Kunce)為人工智能在軍事上的倫理應用提出了令人信服的愿景。他認為,對向軍隊提供先進技術的擔心是沒有根據的。他提供了一些小故事,描述了人工智能增強的工具如何阻止他的團隊殺死一個他們認為向他們投擲手榴彈的平民,而他只是拿著一只鞋。他還描述了在一次交戰中,他的一名海軍陸戰隊員射殺了一名坐在車里的年輕女孩,他的部隊認為這是一個車載簡易爆炸裝置。正是這種觀點準確地將軍隊描述為試圖完成其當選領導層賦予他們的任務的同胞。它還指出,職業軍人不是一群不分青紅皂白的殺手,如三十年戰爭期間蹂躪歐洲的掠奪者,甚至是越南時代助長美萊大屠殺的美國重兵。相反,他們是負責為國家管理暴力的專業人士。正是這種被進一步編入國際人道主義法的特點,應該能緩解人們對人工智能和軍隊的結合將導致未來出現天網、終結者和其他類型的殺人機器人的擔憂。
美國缺乏一套專門的人工智能(AI)戰爭的理論。這導致了在戰爭的作戰層面上缺乏對人工智能影響的討論。人工智能的定義通常采用技術視角,不考慮對作戰藝術的影響。提議的作戰藝術的新要素 "抓手(Grip)"解釋了人工智能和人類在兩個方面的基本關系:自主性和角色交換。“抓手”為人工智能戰爭的理論奠定了基礎,除了揭示改變任務指揮理論的必要性外,還提出了作戰的假設。美國空軍陸戰隊的發展以及由此產生的戰爭作戰水平(和作戰藝術)在歷史上有類似的案例,說明關鍵假設如何影響戰場的可視化。去除“人在回路中”的人工智能戰爭的假設,揭示了需要一種新的作戰藝術元素來安排部隊的時間、空間和目的,此外,美國陸軍任務指揮理論需要調整,以使指揮官能夠在各種形式的控制之間移動。
“機器人和人工智能可以從根本上改變戰爭的性質......誰先到達那里,誰就能主宰戰場。”- 美國陸軍部長馬克-埃斯佩爾博士,2018年
預計人工智能(AI)將極大地改變21世紀的戰爭特征。人工智能的潛在應用只受到想象力和公共政策的限制。人工智能擁有縮短決策周期的潛力,超過了人類的理論極限。人工智能也有望執行人類、機器和混合編隊的指揮和控制功能。人工智能在自主武器系統(AWS)中的潛力同樣是無限的:分布式制造、蜂群和小型化的先進傳感器為未來的指揮官創造了大量的配置變化。與圍繞人工智能的技術、倫理和概念問題相關的無數問題,為如何將這項技術整合到戰爭的戰術層面上蒙上了陰影。現代軍隊幾個世紀以來一直在為正確整合進化(和革命)的技術進步而奮斗。美國內戰期間的鐵路技術對 "鐵路頭 "軍隊和格蘭特將軍在維克斯堡戰役中的勝利都有貢獻。25年后,法國人忽視了普魯士的鐵路試驗,給第三帝國帶來了危險,同時也沒能把握住小口徑步槍的優勢。卡爾-馮-克勞塞維茨在《論戰爭》中指出,每個時代都有自己的戰爭和先入為主的觀念。本專著將探討當前的先入為主的觀念和人工智能在戰爭的操作層面的出現。
對作戰層面的討論側重于作戰藝術,以及指揮官和他們的參謀人員如何通過整合目的、方式和手段,以及在時間、空間和目的上安排部隊來發展戰役。在作戰藝術中缺乏以人工智能為主題的討論,增加了不適當地部署裝備和以不充分的理論進行戰斗的風險;實質上是在邦聯的火車上與追兵作戰。美國的政策文件和技術路線圖主要集中在能力發展和道德影響上,而沒有描述一個有凝聚力的人工智能戰爭的理論。但美國和中國在自主行動方面的實驗趨于一致;這引起了沖突的可能性,其特點是越來越多的被授權的人工智能和AWS沒有得到實際理論框架的支持。這個問題導致了幾個問題。美國軍隊的人工智能戰爭理論是什么?大國競爭者的人工智能戰爭理論是什么?有哪些關于顛覆性技術的歷史案例?理論應該如何改變以解釋顛覆性技術?
本專著旨在回答上述問題。它還提出了兩個概念,以使指揮官能夠在戰場上可視化和運用人工智能;一個被暫時稱為 "抓手"的作戰藝術的新元素和一個任務指揮理論的延伸。該論點將分三個主要部分進行闡述。第一節(理論)將證明人工智能需要一個認知工具來在時間、空間和目的上安排部隊,方法是:綜合美國的人工智能戰爭理論,描述中國的人工智能戰爭理論,以及揭示當前文獻中的“抓手”理論。第二節(歷史)是對1973年為應對技術轉變而從主動防御演變而來的空地戰(ALB)的案例研究。第二節將重點討論戰場維度的思想、任務指揮理論的演變以及相關的作戰藝術的正式出現。第三節(新興理論)提出了作戰藝術的新要素,作為一種認知工具,幫助指揮官和參謀部將21世紀的戰場可視化。第三節將把以前的章節整合成一個有凝聚力的模型,讓指揮官和參謀部在時間、空間和目的方面可視化他們與AI和AWS的關系。第三節還將提供一個任務指揮理論的建議擴展,以說明人機互動的情況。
人工智能的復雜性導致了正式的戰爭理論的缺乏;然而,在美國的政策和發展文件中存在著一個初步的美國人工智能戰爭理論。人工智能戰爭理論必須解釋人類和人工智能之間的關系,這樣才能完整。通過作戰藝術和任務指揮的視角來看待人工智能,揭示了自主性和角色互換的兩個頻譜,通過不同的組合創造了人工智能戰爭理論的維度。這些維度,或者說掌握的形式,代表了作戰藝術的一個新元素。同樣,需要將任務指揮理論擴展到一個過程-產出模型中,以實現掌握形式之間的移動。
綜合美國目前的人工智能政策和AWS的發展路線圖,提供了一幅戰略領導人如何看待人工智能的圖景,允許發展一個暫定的戰爭理論。由于缺乏關于武器化人工智能的歷史數據,政策和發展路線圖是必需的,因此本專著中提出的理論是由提煉出來的概念產生的。由于中國的工業和技術基礎的規模,中國被選為對抗模式,預計在10到15年內,中國將超越俄羅斯成為美國最大的戰略競爭對手。
圖文并茂的案例研究方法將被用來分析主動防御和空地戰之間的過渡。該案例研究將整合技術、政策和戰爭理論,以喚起人們對多域作戰(MDO)和人工智能在21世紀戰爭中作用的疑問。第二節的批判性分析側重于理論的發展,而不是其應用。第二節的詳細程度是有限制的,因為它仍然是一個更大(和有限)整體的一部分,因此重點應繼續揭示戰場可視化和認知輔助工具之間的聯系。第三節通過作戰藝術的新元素和任務指揮理論的調整來回答每一節中發現的問題,從而將前幾節連接起來。人工智能缺乏歷史,考慮到人們不能直接分析以前的沖突,以獲得教訓或原則。在這種情況下,任務指揮理論提供了一種間接的方法來理解使人類能夠集中式和分布式指揮和控制功能的機制,以及為什么人工智能缺乏相應的機制會抑制我們感知機會的能力。第三節將把美國現行政策和路線圖中的幾個抓手成分匯總到任務指揮理論提供的框架中。
本專著存在于美國陸軍多域作戰概念的框架內,其理解是解決方案是聯合性質的,因為 "陸軍不能單獨解決問題,概念發展必須在整個聯合部隊中保持一致,清晰的語言很重要。"本專著不能被理解為對MDO中提出的問題的單一解決方案,而是一種幫助實現戰斗力聚合的方法。
關于人工智能的討論充滿了倫理、法律和道德方面的考慮,本專著不會涉及這些方面。本專論的假設是,人工智能的軍事用途在政治上仍然是可行的,而且 "戰略前提 "允許該技術的軍事應用走向成熟。由于運用的變化幾乎是無限的,人工智能的戰術實施將不會被詳細討論,而重點是在作戰層面上的概念整合。一般能力將被限制在與作戰藝術和作戰過程有關的具體趨勢上。
2022年6月15日,英國國防部在倫敦科技周人工智能峰會上發布了《國防人工智能戰略》,旨在“雄心勃勃、安全和負責任地”使用人工智能的戰略和相關政策。本戰略支持創建新的國防人工智能中心(DAIC),以提供前沿技術樞紐,支撐英軍使用和創新相關技術。本戰略概述了以下內容:一是在國防中使用人工智能的新倫理原則;二是人工智能在國防部加強安全和現代化的地位和應用;三是考慮通過人工智能研究、開發和實驗,通過新概念和尖端技術徹底改變武裝技術能力,并有效、高效、可信地向戰場交付最新裝備。該戰略將將成為英國人工智能戰略的關鍵要素,并加強國防在政府層面通過科學和技術獲取戰略優勢的核心地位。
圖 英國國防部發布《國防人工智能戰略》
(本文根據原文編譯整理,僅供交流參考,觀點不代表本機構立場。)
英國國防部人工智能戰略的愿景是:以英國規模為標準,成為世界上最有效、最高效、最可信和最具影響的國防組織:
有效——提供戰場制勝能力和支持,以及英國與盟友關于人工智能生態系統合作的能力;
高效——通過創新使用技術交付能力,進行作戰并實現生產力效應;
可信——基于人工智能系統的安全性和可靠性受到公眾、盟友和人民的信任,根據英國核心價值觀合法合規地使用人工智能;
影響——積極參與合作和引領人工智能技術的全球發展和管理趨勢;
二**、背景和必要性******
英國國防部《綜合評估(2021)》強調指出,國家在人工智能領域的卓越表現是確保英國在2030年前成為“科技超級大國”的核心。英國國防部《國家人工智能戰略(2021年)》指出,人工智能在改寫整個行業的規則、推動經濟大幅增長和改變生活的所有領域方面具有巨大潛力。英國國防部《綜合作戰概念 (2020年) 》描述了無處不在的信息和快速的技術變革如何改變了戰爭的性質。在軍事作戰的各個領域,沖突正變得愈發復雜。新技術產生大量數據,解鎖新的威脅和漏洞,并通過如蜂群無人機、高速武器和先進網絡攻擊等下一代先進能力擴大潛在攻擊的規模。
人工智能技術以及其影響可能會極大地縮短決策時間,使人類理解負擔加重,而且這些在現代戰場中需要快速做出反應。正如《國防司令部文件(2021)》所指出的,“未來沖突的勝負可能取決于所采用人工智能解決方案的速度和效率”。因此信息作戰變得越來越重要。簡而言之,當代國防正在發生一場根本性的劇變,與人工智能相關的戰略競爭正在加劇,因此必須迅速、主動和全面應對。
本戰略闡述了英國將如何應對這一重大戰略挑戰,其應該引起英國國防部的重視,并參與部隊發展和國防轉型,英國國防部需要明確其機構與人工智能相關的要素并采取相應行動,以在后續執行和交付方面發揮關鍵作用。
三、發展途徑
**一是英國國防部需要轉變為“人工智能就緒”的組織。**具體措施是:1)推動文化、技能和政策變革,培訓領導人,提高人員技能,并加強國防人工智能和自主部門的組織能力;2)創建國防人工智能技能框架和新的人工智能職業發展和晉升路徑;3)將數據視為關鍵戰略資產進行管理和應用,建設新的數字主干網絡和國防人工智能中心。
**二是在速度和規模上采用和利用人工智能,以獲得防御優勢。**具體措施是:1)將人工智能視為能力戰略和部隊發展過程中戰略優勢的關鍵來源;2)短期路線采用成熟的數據科學、機器學習和先進的計算統計技術提升效果和生產力,長期路線進行尖端人工智能技術研發;3)采用多學科多技術將人類認知、創造力和責任與機器速度分析能力相結合以評估人工智能系統的脆弱性和威脅;4)與盟友和伙伴密切合作開發創新能力解決方案以應對共同的挑戰。
**三是推動和支持英國國防和安全人工智能生態系統。**具體措施是:1)通過英國工業和學術人工智能的雄厚基礎以及政府的支持建立信心并明確要求;2)視人工智能生態系統為戰略資產,消除行業壁壘,建立更具活力和一體化的伙伴關系;3)促進行業聯系建立新的國防和國家安全人工智能網絡,促進人才交流和共創,鼓勵業界投資國防相關的人工智能研發,并簡化國防數據和資產的獲取。4)促進中小企業,使監管方法現代化,支持業務增長并最大限度地利用國防人工智能相關知識產權促進相關技術商業化。
**四是塑造全球人工智能發展,以促進安全、穩定和民主價值觀。**具體措施是:1)按照英國的目標和價值觀塑造人工智能的發展,促進倫理方法,并影響符合民主價值觀的全球規范和標準;2)促進安全與穩定,確保英國的技術進步得到適當保護,同時探索建立信心和將軍事人工智能使用風險降至最低的機制;3)考慮可能出現的極端甚至事關生存的風險,并積極與盟友和合作伙伴接觸,制定未來的安全政策,尋求建立對話,以降低戰略錯誤、誤解和誤判的風險。
四、優先效果
通過采用人工智能技術實現本戰略目標,使英國武裝部隊實現現代化,并迅速從工業時代的聯合部隊過渡到敏捷信息時代的綜合部隊,國防部將受益于效率和生產率的提高,其期望的優先效果如下:
決策優勢:通過更充足、更分散的決策制定和基于威脅的機器快速響應,提高作戰節奏和靈活性。
效能:通過智能自主提高靈活性、效能和可用性。
解鎖新能力:通過開發新的作戰方式確保作戰優勢,增強軍事效果,保護人民免受傷害。
武裝部隊:減輕部隊負擔,并將人類決策集中在基于獨創性、背景思維和判斷力的高價值職能上。
五、戰略綜述總結****
**六、**結束語
人工智能必須成為未來必不可少的技術,其也促使著英國國防部改變對現代技術的看法,調整其技術方向和戰略需求,全面擁抱世界領先的人工智能解決方案和能力,推進其國防業務中觀念、文化、規劃和交付方面的持久變化,并將其作為國防戰略融入國防領域,以確保英國軍隊成為敏捷信息時代的綜合部隊。
編譯:船の心
END
世界軍事電子領域2021年度十大進展
毫無疑問,今天圍繞人工智能(AI)的最復雜的治理挑戰涉及國防和安全。CIGI正在促進戰略制定:人工智能對軍事防御和安全的影響項目將這一領域的主要專家與來自國防部的40多名公務員和加拿大武裝部隊的人員聚集在一起,討論人工智能對國家安全和軍事領域的力量倍增效應。
這一努力依賴于一系列的四次研討會,以產生關于數據驅動技術如何引發巨大的技術重組的前瞻性思考,這將對加拿大的國防規劃產生深遠影響。具體來說,這些研討會集中在數據治理和政策(道德、云計算、數據準備和互操作性);決策(可信賴性、人機一體化、生物技術和問責制);模擬工具(培訓、兵棋推演、人機合作、機器人、自主和可信的人工智能);以及信息時代的加拿大情報(將人工智能用于情報)。CIGI還主辦了一個研究生研討會,以激勵整個加拿大在全球公共政策、計算機科學和安全等領域學習的新興學者。
本文探討了在人工智能(AI)和機器學習背景下的軍事特定能力的發展。在加拿大國防政策的基礎上,本文概述了人工智能的軍事應用和管理下一代軍事行動所需的資源,包括多邊參與和技術治理。
維持先進軍事能力的前景現在與人工智能的武器化直接聯系在一起。作為一項通用技術,人工智能代表著一種力量的倍增器,有能力重塑戰爭規則。事實上,在核彈頭仍然是一種單一的技術應用的情況下,人工智能有能力支持許多不同類型的武器和系統。正如北大西洋公約組織(NATO)的指導意見所指出的,人工智能和其他 "智能 "技術現在對加拿大及其盟國的未來安全至關重要。
新技術在改變戰爭的性質方面有著悠久的歷史。從馬匹和盔甲的使用到航空母艦和戰斗機的引進,人工智能和機器人只是代表了軍事技術發展的最新階段。常規武器與人工智能和機器學習的融合,必將重塑決策的性質和軍事戰略轉型中的武力應用。
即使當代人工智能系統的能力被限制在機器學習算法的狹窄范圍內,這種限制可能不會持續太久。與神經科學、量子計算和生物技術相重疊的發現領域正在迅速發展,代表了 "智能機器 "進化的未知領域。在這些新的研究領域中的科學和技術發現給加拿大的國防帶來了巨大的風險,但同時也代表著巨大的機遇。
顯而易見的是,新興技術已經成為高度緊張的地緣政治競爭的基礎,它與一系列商業產業和技術平臺相重疊。中國、俄羅斯、美國和其他國家和非國家行為者正在積極追求人工智能和其他前沿技術的軍事應用。競爭的領域包括云技術、高超音速和新導彈技術、空間應用、量子和生物技術以及人類增強。
盡管技術創新一直塑造著國家間沖突的性質,但新興和顛覆性技術(EDT)的規模和速度是前所未有的。加拿大的國防政策反映了這種擔憂,它呼吁使加拿大武裝部隊(CAF)適應不斷變化的地緣政治環境。加拿大國防規劃已著手擴大和發展加拿大武裝部隊,在新的軍事平臺整合中納入下一代偵察機、遙控系統和天基設施。
基于對不斷變化的技術環境的廣泛評估,加拿大國防部(DND)認識到,這個新時代的特點是全球力量平衡的變化。這包括在快速發展的創新經濟中大國競爭性質的變化。就像石油和鋼鐵為工業時代設定條件一樣,人工智能和機器學習現在也可能為數字時代設定條件。
這種規模的破壞是由技術和制度變化的融合所驅動的,這些變化可以以新的和不可預測的方式觸發復雜的反饋回路。在這個新的環境中,人工智能技術將迫使世界各國軍隊投射力量的能力倍增。確定軍事人工智能發展中的護欄對于避免未來危機至關重要。應用減少風險的措施來識別和減輕軍事人工智能可能帶來的一系列風險將是關鍵。事實上,在這些能力完全嵌入世界上目前和未來的軍隊之前,治理人工智能可能會更容易。
從整體上看,這種轉變預示著從初級機器到數據驅動技術和精密電子的巨大轉變。這種物理、數字和生物技術的加速融合代表了一場巨大技術革命的早期階段。在全球范圍內管理這些新興和顛覆性的技術,對于減少未來沖突的風險至關重要。
從人工智能和機器人到電池存儲、分布式賬本技術(DLT)和物聯網(IoT),新興和顛覆性技術(EDT)現在正在激起一個商業創新的新時代。這一巨大的技術變革景觀正在醞釀一場社會和經濟變革,對中央銀行的發展具有巨大影響。正如北約最近的一份報告所指出的(北約新興和顛覆性技術咨詢小組2020),這些技術包括:
→ 人工智能和機器學習。人工智能/機器學習的發展及其對創新的潛在影響。這包括神經形態計算、生成式對抗網絡,以及人工智能從已經收集或尚未收集的數據中揭示出意想不到的見解的能力。
→ 量子技術。正在進行的從量子過程研究中獲得的知識轉化為量子技術的應用,包括量子計算、量子傳感、量子密碼系統,以及在量子尺度上對材料的操縱和開發。
→ 數據安全。用于保障和損害通信、數據交易和數據存儲安全的算法和系統的設計,包括量子證明加密方法、區塊鏈和分布式賬本架構,以及更廣泛的網絡安全領域。
→ 計算功能的硬件。微型化、電力采集和能源儲存方面的進展,包括在全球范圍內提供數字化關鍵基礎設施所需的物理系統(物聯網)和機器人的廣泛使用及其對全球系統和流程的持續影響。
→ 生物和合成材料。從原子/分子層面的材料設計、合成和操作到中觀和宏觀尺度的創新,支持生物工程、化學工程、基因層面的操作、增材制造和AI介導的生成設計。
正如蒸汽機和印刷術激發了工業革命一樣,人工智能和機器人技術現在也在軍事技術的性質和全球力量平衡方面引發了巨大變革。人工智能的興起并非沒有歷史先例,但伴隨著人工智能的變化表明,需要對國防規劃進行更精確的調整,以適應一個數據驅動的時代。
在大國競爭和多極體系的背景下,人工智能已經成為競爭的一個特別焦點。中國、俄羅斯、美國和其他許多國家都在積極追求人工智能能力,并把重點放在國防和安全方面。例如,中國希望到2030年在人工智能方面領先世界,并期望通過利用大量的豐富數據,擴大其在人工智能產業化方面的領先優勢(Lucas和Feng,2017年)。
事實上,數據和數據驅動的技術現在占據了全球經濟的制高點。整個全球數據經濟的競爭已經與大國競爭密不可分(Mearsheimer 2021)。盡管美國和中國的經濟深深地相互依存,但中國在整個歐亞大陸不斷擴大的投資將很快使其成為世界貿易的中心。
技術優勢仍然是北約國家的關鍵支柱,但中國正在迅速趕超。即使美國在人工智能發現方面建立了強大的領先優勢,中國也越來越有可能在人工智能驅動的應用產業化方面占據主導地位。中國不僅有先進的商業能力,而且還有一個連貫的國家戰略。中國的技術部門正在達到專業知識、人才和資本的臨界質量,正在重新調整全球經濟的指揮高度(Lucas and Waters 2018)(見圖1)。
中國產業部署的大部分技術創新都是 "漸進式 "的,而不是 "顛覆式 "的,但現在這種情況正在改變。將新興市場聚集在其軌道上,中國前所未有的經濟擴張現在對世界經濟產生了引力(The Economist 2018)。標志性項目,價值數萬億美元的 "一帶一路 "倡議(世界銀行2018年)為圍繞電動汽車、電信、機器人、半導體、鐵路基礎設施、海洋工程以及最終的人工智能的廣泛戰略轉變提供了一個全球平臺(McBride和Chatzky 2019年)。
毫不奇怪,中國已經是國際專利申請的世界領導者(世界知識產權組織2020)。隨著自主機器(Etzioni和Etzioni 2017)、可再生能源基礎設施、量子通信(?iljak 2020)、增強型腦機接口(Putze等人2020)和天基武器(Etherington 2020)的出現,重新思考加拿大國家安全,特別是加拿大國防的性質的壓力正在增加。鑒于技術創新的步伐不斷加快,以及亞洲作為世界貿易中心的崛起(Huiyao 2019),來自國外的技術的影響可能是巨大的。
圖1:按購買力平價計算的國內生產總值預測(以萬億美元計)
人工智能的概念已被廣泛討論,但該術語的精確定義仍然是一個移動的目標。與其說人工智能是一項具體的技術或特定的創新,不如說它是一個材料的集合。事實上,即使人工智能技術已經成為廣泛的主流商業應用的基礎,包括網絡搜索、醫療診斷、算法交易、工廠自動化、共享汽車和自動駕駛汽車,人工智能仍然是一個理想的目標。
盡管人工智能領域的研究始于20世紀40年代,但隨著機器學習和計算機處理能力的改進,過去十年對人工智能興趣的爆炸性增長已經加速。人工智能的持續進步被比喻為在人腦中發現的多尺度學習和推理能力。當與大數據和云計算相結合時,預計人工智能將通過將 "智能 "人工智能和機器學習系統與第五代(5G)電信網絡(即物聯網)上的大量聯網設備連接起來,使數字技術 "認知化"。
作為人工智能的一個子集,機器學習代表了人工智能的最突出的應用(見圖2)。機器學習使用統計技術,使機器能夠在沒有明確指令的情況下 "學習",推動許多應用和服務,改善一系列分析和物理任務的自動化。通過使用數據自動提高性能,這個過程被稱為 "訓練 "一個 "模型"。使用一種算法來提高特定任務的性能,機器學習系統分析大量的訓練數據集,以便做人類自然而然的事情:通過實例學習。
今天,機器學習的最常見應用是深度學習。作為更廣泛的機器學習家族的一部分,深度學習利用人工神經網絡層來復制人類智能。深度學習架構,如深度神經網絡、遞歸神經網絡和卷積神經網絡,支持一系列廣泛的研究領域,包括計算機視覺、語音識別、機器翻譯、自然語言處理和藥物設計。
圖2:人工智能的層級
安全人工智能位于新興和顛覆性技術(EDT)星座的中心,包括機器人學、基因組學、電池存儲、區塊鏈、3D打印、量子計算和5G電信。在研究層面,美國仍然是人工智能的全球領導者。目前,國家科學基金會每年在人工智能研究方面的投資超過1億美元(國家科學基金會2018年)。國防高級研究計劃局(DARPA)最近宣布投資20億美元用于一項名為AI Next的計劃,其目標是推進上下文和適應性推理(DARPA 2018)。
與過去的原子武器或隱形飛機的技術發展不同,沒有國家會壟斷軍事人工智能。研究人員和領先的商業企業之間廣泛的全球合作意味著人工智能和機器學習的進步可能會在全球范圍內擴散。事實上,人工智能發展的大多數技術進步是由工業界而不是政府推動的。除了市場主導的技術公司,世界各地廣泛的網絡集群正在孵化新一代的商業創新(Li and Pauwels 2018)。因此,許多未來的軍事應用將可能是為商業產業開發的技術的改編。
幸運的是,加拿大一直是人工智能研究前沿的領導者,并繼續通過2017年推出的泛加拿大人工智能戰略下的幾個項目培育一個強大的人工智能生態系統。加拿大政府積極參與人工智能咨詢委員會和各種國際伙伴關系,包括2020年啟動的全球人工智能伙伴關系;人工智能國防伙伴關系,其第二次對話在2021年舉行;以及重疊人工智能驅動的安全和規劃的多邊協議(五眼,北約)。事實上,加拿大的國防政策,"強大、安全、參與"(SSE),反映了加拿大政府對增加年度國防開支的承諾,重點是技術。
目前的聯邦預算包括對人工智能發展的實質性承諾,承諾在10年內投入4.438億美元(Silcoff 2021)。在政府2021年的預算中,1.85億美元將支持人工智能研究的商業化;1.622億美元將用于在全國范圍內招聘頂尖的學術人才;4800萬美元將用于加拿大高級研究所;五年內4000萬美元將旨在加強埃德蒙頓、多倫多和蒙特利爾的國家人工智能研究所的研究人員的計算能力;五年內860萬美元將幫助推進人工智能相關標準的發展和采用(加拿大政府2021年,148)。
人工智能是一個影響廣泛的商業和軍事技術的模糊領域。像電力或化石燃料一樣,人工智能的廣泛應用意味著人工智能和其他通用技術有能力重新配置現代軍隊的步伐和組織(Bresnahan和Trajtenberg 1995)。從整體上看,人工智能代表了國家安全性質的結構性轉變。出于這個原因,SSE設想了一個未來的軍事態勢,更加注重開發、獲取和整合先進的變革性技術,包括網絡和自主系統。
即使加拿大在傳統聯盟(北美防空司令部、北約和五眼聯盟)中的持續作用仍然是國家安全的基礎,EDT正在從根本上改變沖突的性質。正如格雷格-菲夫(2021年)所觀察到的,人工智能作為戰爭工具的崛起與升級加拿大國家安全架構,特別是加拿大情報部門的日益增長的需求相重疊。技術變革和信息爆炸的復合周期,新的技能組合和新的數據分析戰略對國防規劃的演變變得至關重要。
在數字時代,戰爭正日益成為基于知識的戰爭。隨著沖突進入信息領域,軍事規劃開始重新聚焦于信息/虛假信息行動、網絡行動、情報行動和政治或經濟影響行動。事實上,這種混合戰爭作為一種戰爭工具由來已久,其目的是利用宣傳、破壞、欺騙和其他非動能軍事行動,從內部破壞對手(Bilal 2021)。
網絡仍然是潛在對手、國家代理人、犯罪組織和非國家行為者的一個關鍵目標。這包括對通信、情報和敏感信息的嵌入式監視和偵察。正如Amy Zegart(2021年)所解釋的那樣,技術正在通過極大地擴展數據和信息的獲取,使情報的性質民主化。事實上,今天驅動戰略情報的大部分信息實際上是開放源碼情報(OSINT)或在公共領域。
現代軍隊正變得嚴重依賴安全、及時和準確的數據。隨著數據的急劇膨脹,消化它變得不可能。這種數據爆炸正在推動對新的分析模式和新型網絡工具的需求。在數字時代,安全和情報人員需要新的平臺、新的工具和跨領域工作的新OSINT機構。在這方面,人工智能可能特別有幫助。
隨著數據的重要性增加,在廣闊的數字領域的對抗性競爭也在增加。人工智能和機器學習可以通過篩選巨大的數據庫來極大地提高加拿大的國家情報能力。人工智能不是銀彈。人工智能系統不能產生意義或提供因果分析。然而,人工智能和機器學習可以極大地增強人類在管理數據和數據驅動的分析方面的情報能力。
隨著決策者為數據驅動的世界調整其安全態勢,人工智能有望改變軍事沖突的既定模式。DND/CAF面臨的關鍵挑戰之一是數據驅動的網絡重塑指揮和控制系統的速度(Thatcher 2020)。集中式系統的優勢在于其協調人類活動的效率。在指揮系統中,人員和傳感器推動威脅檢測,將信息向決策堆棧上移,以便決策者可以做出適當的反應。數字技術深刻地加速了這個過程。
人工智能在軍事領域的應用可能被證明對傳統的指揮和控制系統具有挑戰性。例如,在美國,五角大樓的第一位首席軟件官最近辭職,以抗議技術轉型的緩慢步伐。在離開國防部職位后的一次采訪中,尼古拉-沙伊蘭告訴《金融時報》,美國未能對技術變革和其他威脅作出反應,使國家的未來面臨風險(Manson 2021)。
除了變化的速度緩慢,軍事指揮和控制系統的集中性意味著單點故障提供了脆弱的攻擊點。指揮機關和自動或人類控制者往往容易受到利用不良或欺騙性信息的對抗性技術的影響,甚至自上而下的決策在適應復雜的突發挑戰方面也會很緩慢。
神經形態計算、生成式對抗網絡(GANs)、人工智能決策支持、數據分析和情報分析方面的新創新在增強軍事行動的結構和進程方面可能會產生巨大影響。機器學習算法的快速發展已經在商業和軍事領域引發了一波投資熱潮。
超越對損耗和動能攻擊的傳統關注,轉向基于加速和適應的新方法,數據驅動的技術可能是促成國家安全性質徹底轉變的關鍵。人工智能不是一種單一的技術。相反,它是一類可以在一系列軍事和商業應用中整合的技術。這些技術不斷演變的基礎是數據。
數字技術現在由數據推動,并將繼續推動創造越來越多的數據驅動的技術--特別是人工智能。數據是訓練人工智能和先進機器學習算法的基礎。數據既是大規模運行的數字系統產生的 "操作廢氣",也是機器對數據輸入作出反應的過程,它現在推動了機器的 "自主性"。
數據驅動的技術支撐著現代社會的核心社會和經濟功能,涵蓋了基礎設施、能源、醫療保健、金融、貿易、運輸和國防。隨著5G網絡的全球推廣,預計在高度健全的全球信息網絡中創建、收集、處理和存儲的數據將出現爆炸性增長。根據市場研究公司IDC的數據,目前全球數據正以每年61%的速度增長(Patrizio 2018)。預計到2025年,數據將達到175 zettabytes(一萬億吉字節),改變數字經濟的性質和規模(同上)。
出于這個原因,DND/CAF將數據提升到國家資產的水平是明智的。這對經濟增長和加拿大國防都至關重要。將數據作為國家資產加以保護和利用,將意味著重新思考目前構成當代數據架構的大型集中式數字基礎設施。可以肯定的是,網絡時代的數據安全應該是分散的和聯合的,以避免集中式系統的脆弱性。
關于技術破壞的傳統預測往往會犯一個錯誤,即假設這種規模的系統變化只是以一對一的方式取代舊技術。在現實中,這種規模的顛覆往往會不成比例地取代舊的系統,使其具有巨大的新的架構、界限和能力(Arbib和Seba 2020)。
正在進行的人工智能武器化正在助長一場全球軍備競賽,有望重塑加拿大國防戰略的輪廓。事實上,世界上許多國家在人員系統自動化、設備維護、監視系統以及無人機和機器人的部署方面已經遠遠領先(斯坦利和平與安全中心、聯合國裁軍事務廳和史汀生中心2019)。從美國到俄羅斯到以色列再到中國,軍事研究人員正在將人工智能嵌入網絡安全舉措和支持遠程手術、戰斗模擬和數據處理的機器人系統。
以先進的物流、半自動車隊、智能供應鏈管理和預測性維護系統的形式將人工智能應用于軍事行動代表了人工智能的近期應用(Perry 2021)。然而,能夠在陸地、海洋、空中、太空和網絡領域針對個人(無論是否需要人類干預)的自主武器的演變代表了軍事沖突的可能未來(見圖3)。事實上,近100個國家的軍隊目前擁有某種程度的武裝或非武裝無人機能力(Gettinger 2019)。
圖3:全球無人機激增
商業無人機技術在采礦、農業和能源領域的縱橫捭闔,正在助長無人機技術的廣泛擴散。正如最近亞美尼亞和阿塞拜疆之間的沖突所表明的那樣,一群相對便宜的自主和半自主無人機可以被利用來壓倒傳統的軍事系統,使一系列當代平臺變得過時(Shaikh和Rumbaugh 2020)。輕型、可重復使用的武裝無人機,如土耳其的Songar(Uyan?k 2021)可以配備一系列有效載荷,包括迫擊炮、手榴彈和輕機槍。最近對沙特阿拉伯的Abqaiq石油加工設施(Rapier 2019)和俄羅斯的Khmeimim空軍基地(Hambling 2018)的攻擊反映了軍事無人機在不同戰場環境中的應用越來越多。
致命自主武器系統(LAWS)被定義為可以在沒有人類授權的情況下選擇和攻擊目標的武器,它被設計為在獨立識別目標之前在指定的行動區域內長期徘徊。多個無人機或機器人可以并行運作,以克服對手的防御或摧毀一個特定目標。開發人員傾向于將致命性武器系統分為三大類,即觀察、定位、決定和行動(OODA)循環(見圖4)。這些類別包括。"循環中的人"、"循環中的人 "和 "循環外的人"。這種區分也被框定為 "半自主"、"受監督的自主 "和 "完全自主 "的技術系統。不幸的是,受監督的致命性自主武器系統和完全自主的致命性自主武器系統之間的區別,可能只是一個軟件補丁或一個監管程序。
圖4:OODA環
隨著致命性自主武器系統和其他數據驅動的技術變得更便宜和更廣泛,它們可能會給廣泛的國家和非國家行為者提供平臺和工具,以新的和破壞性的方式利用人工智能和機器學習。除了收緊OODA循環外,軍事人員將需要了解人工智能在加速OODA循環方面的影響,以確定在特定情況下哪種模式最合適。
鑒于EDT的范圍和規模,認為我們可以簡單地保持從上個世紀繼承的系統和做法是錯誤的。正如英國查塔姆研究所2018年的一份報告所警告的那樣,美國、英國和其他核武器系統正變得越來越容易受到網絡攻擊(Unal and Lewis 2018)。這些擔憂是有根據的。人工智能和EDT的擴散一起,幾乎肯定會通過利用人工智能和自主系統的規模效應,為小國和非國家行為者帶來好處。
對于許多北約國家來說,網絡平臺已經成為多領域行動的關鍵--海、空、陸、網絡和空間。大規模的網絡使得在復雜環境中可視化和協調大量資源成為可能。在5G電信和云計算的基礎上,信息系統現在可以有效地收集、傳輸和處理大量的戰場數據,提供實時數據分析。
連接設備正在成為協調空襲、駕駛無人機、消化戰斗空間的實時視頻和管理高度復雜的供應鏈的關鍵。在英國,國防數據框架提供了一個結構,以解決軍事組織與數據驅動的企業需求相一致的挑戰(Ministry of Defence 2021)。從戰略到通信到后勤到情報,數字平臺現在是協調復雜軍事行動的基礎。數據現在是所有作戰領域的命脈。
在一個數字化的戰斗空間中,每個士兵、平臺和資源現在都是一個復雜軍事網絡中的節點。從20世紀90年代以網絡為中心的美國軍事行動開始,數字技術已經成為先進武器、戰術和戰略的基礎。從戰場態勢感知和自主無人機到精確制導彈藥和機器驅動的心理行動,網絡正在使戰爭進入網絡時代。
在集中式機構對工業時代至關重要的地方,平臺和網絡正在成為數字時代的關鍵。人工智能本質上是一種 "自下而上 "的技術,依靠不斷 "喂養 "大量的數據來支持機器學習作為 "學習引擎"。隨著數字生態系統的激增,網絡平臺和它們所依賴的數據管理系統成為管理不斷擴大的資源和人員的關鍵。
與金融部門一樣,DND應該尋求區塊鏈等DLT,以加速加拿大軍隊的數字化轉型。通過在分散的網絡中橫向分配數據,CAF區塊鏈可以幫助減少官僚化系統固有的限制和脆弱性。DLT提供了一個高度分散的驗證系統,可以確保所有的通信和數據傳輸免受對手的攻擊,同時消除集中式節點的潛在故障。
人工智能在軍事規劃中的應用正在迅速推進,許多國家在部署無人機和機器人方面已經取得了很大進展。事實上,無人機技術的全球擴散正在順利進行中。
世界各地的軍隊正在加速開發或采購攻擊型無人機(見圖5)。俄羅斯的 "閃電"(BulgarianMilitary.com 2021)、西班牙的Rapaz8以及英國、9美國10和以色列11的各種無人機項目共同代表了軍事技術新時代的早期階段。與工業時代的軍事技術不同,無人機可以以低成本獲得,并需要相對較少的技術技能。
無人機群技術涉及微型/迷你無人機/無人駕駛飛行器或無人機群,利用基于共享信息的自主決策。事實上,當代軍用無人機已經可以被設計成在沒有人參與的情況下定位、識別和攻擊目標。利用蜂群技術,數以百計的非武裝無人機可以從現場收集信息,同時用各種武器(即火器、火炮和/或彈藥)引導數以千計的無人機。
正如簡短的視頻 "Slaugherbots "所展示的那樣,完全自主的武器將使瞄準和殺死獨特的個人變得非常容易和便宜。在面部識別和決策算法的基礎上,國家和非國家行為者都可以廣泛使用致命性武器。數以千計的相對便宜的無人機配備了爆炸性的彈頭,有可能壓倒防空系統,攻擊基礎設施、城市、軍事基地等等。
圖5:無人機對比
無人機群壓倒加拿大軍事設施的威脅,以及對關鍵基礎設施的網絡攻擊或在衛星傳感器檢測到威脅時自動發射的高超音速導彈,代表了一個令人不安但越來越可能的未來。從復雜性科學和對昆蟲的研究中產生的,使用無人機來支持 "集群情報 "代表了一個加速戰爭節奏的新工具集。
為了應對這種不斷變化的環境,DARPA提出了 "馬賽克戰爭"的概念。馬賽克戰爭的中心思想是,模塊化系統可以成為應對高度網絡化環境的廉價、靈活和高度可擴展的工具。就像馬賽克中的瓷片一樣,單個作戰平臺可以被設計成高度可配置的。編隊利用分散的代理在 "殺戮網 "上進行重新配置。殺戮網的目標是避免 "單體系統 "的結構僵化。
與傳統戰爭中需要的復雜棋局不同,馬賽克戰爭利用數字網絡,利用模塊的靈活性和增強的決策(時間壓縮)加快動態響應時間。像自然界中的復雜系統一樣,殺傷性網絡使用算法來消除單點故障,通過模塊化設計加速反應時間。
從主導地位(預測)轉向加速反應(適應),"馬賽克戰爭 "旨在支持混合軍事單位,利用 "決策棧 "上下的橫向網絡。人工智能、無人機、傳感器、數據和人員結合在一起,為地面上的作戰指揮官提供支持,使小型編隊能以更快的速度獲得情報、資源和后勤資產。
像 "馬賽克戰爭 "這樣的模塊化系統表明,未來的戰爭將越來越多地利用現在驅動戰爭游戲和模擬的計算、數據分析和算法。推動高度流動、游戲化和不可預測的環境,未來的人工智能系統可以將戰爭加速到一個隨著結果范圍的擴大而變得極其密集的計算速度和節奏。
DARPA最近的AlphaDogfight(2019-2020年)為這一新現實提供了一個窗口。使用復雜的F-16飛行模擬器讓計算機與有經驗的人類飛行員對決,試驗的目的是為DARPA的空戰進化計劃推進人工智能開發者。毫不奇怪,F-16人工智能代理通過積極和精確的機動性擊敗了人類飛行員,而人類飛行員根本無法與之相提并論,五局為零。
人工智能的武器化也在激起對抗人工智能系統的新戰略和方法。正如網絡行動(無論是間諜活動還是攻擊)可以指示計算機網絡或機器以它們不打算的方式運行,對手也可以對人工智能系統使用同樣的策略。這個過程被稱為對抗性機器學習,旨在找出機器學習模型的弱點并加以利用。攻擊可能發生在開發或部署階段,包括通過提供欺騙性輸入(例如,"毒化"數據)或針對模型本身來誤導模型。
這些方法在國家安全環境中特別危險,因為在許多情況下,它們是微妙的,人類無法察覺。此外,具有挑戰性的是,對手不一定需要對目標模型的具體知識或直接訪問其訓練數據來影響它。隨著人工智能系統變得更加普遍,更多的人可以接觸到,對手的吸引力和攻擊機會將增加。
攻擊者可能試圖修改訓練數據或測試數據。這是通過創造對抗性樣本來實現的,這些樣本被故意 "擾亂 "或改變并提供給模型,從而導致錯誤。例如,通過改變洗衣機圖像的分辨率,研究人員能夠欺騙一個模型,將機器分類為 "安全 "或 "擴音器"(Kurakin, Goodfellow and Bengio 2017)。對人的眼睛來說,對抗性圖像看起來幾乎是一樣的。
在國家安全方面,對手可能會試圖使用同樣的技術來暗示武器系統實際上是一個社區中心。如果這是在孤立的情況下發生的,那么這個問題很可能被識別和解決。如果對手的樣本被長期大規模使用,這可能成為一個重大的挑戰,并影響對情報收集系統的信任。
此外,一些對手可能并不精確--或有技能--并可能試圖迫使一個模型對整個類別而不是特定類別進行錯誤分類。由于我們在國家安全環境中越來越依賴計算機圖像,并不總是能夠實時或在有爭議的空間進行驗證,因此在這種攻擊中出現誤判的風險是很大的。
高后果的人工智能系統并不是對抗性攻擊的唯一目標。受對抗性樣本影響的人工智能系統可以包括生物識別,其中假的生物特征可以被利用來冒充合法用戶,語音識別中攻擊者添加低量級的噪音來混淆系統(Zelasko等人,2021)和計算機安全(包括在網絡數據包中混淆惡意軟件代碼)。
由于DND/CAF尋求通過部署人工智能系統來提高效率--如軍艦上的語音助手(McLeod 2019)--必須在部署前評估對抗性使用的風險并制定對策。
除了改變輸入,另一種攻擊方法可用于逆向工程模型以獲取訓練數據(Heaven 2021)。由于機器學習模型對訓練數據的表現比新的輸入更好,對手可以識別目標模型預測的差異,并與包括個人身份信息在內的已知數據相匹配(Shokri等人,2017)。隨著機器學習即服務變得越來越多--而且在許多情況下,被用作開發更復雜的能力的基礎--DND將需要仔細審查國家安全系統的數據泄漏風險。這甚至適用于看似無害的系統,如語音助手。
人工智能系統的弱點的例子很多(Hadfield-Menell等人,2017)。這些例子包括吸塵器將收集到的灰塵彈回它剛打掃過的地方,以便它能收集更多的灰塵,或者數字游戲中的賽艇在原地循環以收集分數,而不是追求贏得比賽的主要目的。雖然這些例子沒有生命危險,但同樣的技術--被稱為獎勵黑客(當一個模型被指示使其目標函數最大化,但卻以非故意的方式進行)--可以被用于更嚴重的效果。
從旨在用固定的訓練數據解決 "單步決策問題 "的機器學習過渡到解決 "順序決策問題 "和更廣泛的數據集的深度機器學習,將使對抗性攻擊更難發現。這種威脅是如此之大,以至于美國情報高級研究項目活動正在資助一個項目,以檢測木馬人工智能對已完成系統的攻擊。令人擔憂的是,政府可能會在不知情的情況下操作一個產生 "正確 "行為的人工智能系統,直到出現 "觸發 "的情況。例如,在部署過程中,對手可能會攻擊一個系統,并在更晚的時候才導致災難性的故障發生。這些類型的攻擊可能會影響到圖像、文本、音頻和游戲的人工智能系統。
正如對抗性樣本可以用來愚弄人工智能系統一樣,它們可以被納入訓練過程中,以使它們對攻擊更加強大。通過對最重要的國家安全人工智能系統進行清潔和對抗性數據的訓練--要么給它們貼上這樣的標簽,要么指示一個模型將它們分離出來--更大的防御是可能的。但是,復雜的對手很可能會自行躲避這種防御方法,而使用額外的戰術進行深度防御將是必要的。
GANs有各種各樣的用例,從創建深度假說到癌癥預后(Kim, Oh and Ahn 2018)。它們也可用于防御對抗性攻擊(Short, Le Pay and Ghandi 2019),使用一個生成器來創建對抗性樣本,并使用一個判別器來確定它是真的還是假的。一個額外的好處是,使用GANs作為防御,實際上也可能通過規范數據和防止 "過度擬合 "來提高原始模型的性能(IBM云教育2021)。
對抗性攻擊和防御模型進行基準測試--如使用GANs--是一種全面的對策,可以對AI系統進行比較。這種方法為制定和滿足安全標準提供了一個量化的衡量標準,并允許評估人工智能系統的能力和限制。
作為這個測試和評估過程的一部分,博弈論可能有助于建立對手的行為模型,以確定可能的防御策略。由于人工智能系統無法在傳統的信息安全意義上進行 "修補",因此在部署前應仔細分析針對國家安全人工智能系統的對抗性攻擊的風險,并定期進行審查。此外,訓練有素的模型--特別是那些關于機密數據和最敏感應用的模型--應該得到仔細保護。
數據驅動的戰爭的速度和范圍表明,我們正在進入一個新的時代,其中致命性武器系統的潛力--無論是否有人類參與--都可能極大地改變全球力量平衡。從殺手級無人機和人機合作到增強的軍事決策(殺手2020),人工智能技術將使世界各國軍隊投射力量的能力大大增加。正在進行的人工智能武器化也與空間武器化相重疊(《經濟學人》2019年),因為低地球軌道(LEO)日益成為軍事監視、遙感、通信、數據處理(Turner 2021)和彈道武器(Sevastopulo和Hille 2021)的操作環境。
人工智能與低地軌道和致命性自主武器系統的興起,代表了全球安全性質的一個關鍵轉折點。為此,世界各地的學術研究人員、技術企業家和公民都對人工智能的軍事化所帶來的危險表示擔憂。正如他們正確地指出的那樣,在規范負責任地開發和使用人工智能的規范和法律方面缺乏國際共識,有可能造成未來的危機。
除了我們在科幻小說中經常看到的對人工智能的夸張描述,重要的是建立適當的制衡機制,以限制人工智能技術可能提供的權力集中。關于管理人工智能和其他數字技術的共同國際規則和條例將塑造未來幾十年的戰爭和沖突的輪廓。在軍事人工智能的發展中制定護欄,對于減少未來沖突的可能性至關重要。
加拿大和其他北約國家積極參與這一討論可能是未來全球和平與安全的關鍵。在發動戰爭的條件(jus ad bellum)和戰爭中的人工智能行為(jus in bello)方面,規范人工智能使用的戰爭法仍有待確定。鑒于美國和中國之間不斷擴大的競爭,需要制定關于致命性自主武器系統的使用及其擴散的條約是再及時不過了。
正如北約所觀察到的,加拿大及其盟國應尋求促進、參與和建立合作機會,以支持開發和應用人工智能和其他EDT的廣泛、全面的架構(北約新興和顛覆性技術咨詢小組2020)。盡管面臨著艱巨的挑戰,全球治理在規范軍事人工智能方面可以發揮重要作用。盡管對人工智能及其武器化有不同的看法,但過去的談判可以作為未來條約的基礎,特別是在定義戰爭規則方面。這包括關于常規武器、核軍備控制、生物和化學武器、地雷、外層空間和平民保護的條約(見圖6)。
到目前為止,《聯合國特定常規武器公約》(CCW)已經監督了一個討論應對自主武器帶來的人道主義和國際安全挑戰的進程。已經提出了一系列監管致命性自主武器系統的潛在方案,包括《特定常規武器公約》下的一項國際條約,一個不具約束力的行為準則,宣布各國承諾負責任地開發和使用致命性自主武器系統。在聯合國之外,2013年發起了 "停止殺手機器人 "運動,目標是完全禁止致命性自主武器系統。
聯合國秘書長安東尼奧-古特雷斯強調了人工智能和其他數字技術的風險和機遇(聯合國2020),并呼吁禁止致命性自主武器系統(古特雷斯2021)。不幸的是,聯合國成員國,特別是聯合國安理會的觀點存在分歧,一些國家認為監管是民族國家的專屬權限,而另一些國家則側重于更多部門的做法。除了人工智能的武器化,在圍繞人權、算法偏見、監控(公共和私人)以及國家支持的或國家支持的網絡攻擊等問題上也存在廣泛的分歧。
對于世界上的主要軍事大國來說,缺乏互信仍然是追求人工智能集體軍備控制協議的一個重大障礙。即使相當多的國家支持提供新的具有法律約束力的條約,禁止開發和使用致命性自主武器,但世界上大多數主要軍事大國都認為人工智能的武器化具有重大價值。鑒于這些分歧,致命性自主武器系統的多邊管理將需要建立信任措施,作為打開政治僵局的軍控進程的手段。
走向平凡的監管 也許制定管理人工智能的政策和監管制度的最具挑戰性的方面是難以準確地確定這些制度應該監管什么。與生物和化學武器不同,人工智能大多是軟件。事實上,人工智能是一個移動的目標:40年前被定義為人工智能的東西,今天只是傳統的軟件。
人工智能是一個模糊的技術領域,影響著廣泛的商業和軍事應用。例如,機器學習算法是搜索引擎(算法排名)、軍用無人機(機器人技術和決策)和網絡安全軟件(算法優化)的成分。但它們也支撐著平凡的行業,甚至兒童玩具(語義分析、視覺分析和機器人技術)、金融軟件和社交媒體網絡(趨勢分析和預測分析)。
與屬于這些平凡的監管領域的產品和流程一樣,人工智能技術不是被設計成最終實體,而是被設計成在廣泛的產品、服務和系統中使用的成分或組件。例如,一個 "殺手機器人 "不是一種特定技術的結果。相反,它是人工智能 "成分 "重新組合的結果,其中許多成分也被用來檢測癌癥或增加駕駛者的安全。
雖然人們傾向于使用一個專門的不擴散鏡頭來監管人工智能,但雙重用途的挑戰仍然存在。與核擴散或轉基因病原體不同,人工智能不是一種特定的技術。相反,它更類似于一個材料或軟件成分的集合。與大多數二元的核不擴散鏡頭相比,可以在食品監管中找到更相關(盡管不那么令人興奮)的監管模式的靈感,特別是食品安全和材料標準(Araya和Nieto-Gómez 2020)。
鑒于對人工智能進行全面監管存在重大的概念和政治障礙,治理仍然是一項艱巨的挑戰。一方面,如果我們把人工智能理解為一系列復制人類活動的技術實踐,那么就根本沒有一個單一的領域可以監管。相反,人工智能的治理幾乎重疊了每一種使用計算來執行任務的產品或服務。另一方面,如果我們將人工智能理解為大幅改變人民和國家之間權力平衡的基礎,那么我們就會面臨重大挑戰。
幸運的是,這并不是民族國家第一次面臨影響全球安全的新技術。在第二次世界大戰之后,世界上最強大的國家--美國、英國、蘇聯、中國、法國、德國和日本--對核武器、化學制劑和生物戰的全球治理進行監督。當時和現在一樣,世界必須采取集體行動來治理人工智能。
與冷戰時期一樣,包括定期對話、科學合作和分享學術成果在內的建立信任措施可以幫助減少地緣政治的緊張。為管理軍事人工智能帶來的風險制定一個共同的詞匯,可以為隨著時間的推移制定更有力的人工智能多邊條約提供基礎。
在這方面,經濟合作與發展組織(OECD)已經公布了其關于人工智能的建議,作為一套政府間標準,于2020年2月啟動了人工智能政策觀察站。加拿大和法國政府還與經合組織一起領導了一個全球人工智能伙伴關系(GPAI),旨在成為一個人工智能政策的國際論壇。GPAI的成員專注于以 "人權、包容、多樣性、創新和經濟增長原則 "為基礎的負責任的人工智能發展。
除了GPAI,一些歐洲國家已經呼吁歐盟成員開始一個關于負責任地使用新技術的戰略進程--特別是人工智能。美國已經邀請盟國討論人工智能的道德使用問題(JAIC公共事務2020)。北約已經啟動了一個進程,鼓勵成員國就一系列道德原則和具有軍事用途的電子技術關鍵領域的國際軍備控制議程達成一致(Christie 2020;NATO 2020)。認識到EDT對全球安全的深遠影響,北約于2019年12月推出了EDT路線圖(北約科技組織2020)。
從整體上看,二十一世紀需要進行正式監管。從長遠來看,這很可能包括尋求與禁止生物武器、化學武器和殺傷人員地雷一樣的人工智能條約。然而,鑒于人工智能的創新速度和世界超級大國之間日益擴大的分歧,就人工智能的全球治理進行談判的機會之窗可能正在關閉。
圖6:人工智能的全球治理
即使在工業時代即將結束的時候,技術創新也在加速進行(Araya 2020)。自從大約80年前誕生以來,人工智能已經從一個神秘的學術領域發展成為社會和經濟轉型的強大驅動力。人工智能在戰爭中的整合被一些軍事分析家描述為一個不斷發展的 "戰場奇點"(Kania 2017)。在 "技術奇點"(Schulze-Makuch 2020)的概念基礎上,人們越來越多地猜測,人工智能和機器人將超越人類的能力,有效地應對算法驅動的戰爭。
人工智能和其他EDT的演變正在將先進的數據、算法和計算能力匯集起來,以 "認知 "軍事技術。在這種新環境下,現代軍隊正變得嚴重依賴提供安全、及時和準確數據的網絡。數據已經成為數字系統的 "作戰用氣 "和驅動 "智能機器 "的原料。隨著數據重要性的增加,在廣闊的數字領域的對抗性競爭也在增加。事實上,數據的真正價值在于其推動創新的數量和質量。
正如北約關于EDT的年度報告(北約新興和顛覆性技術咨詢小組2020)明確指出,要想跟上技術變革的步伐,就必須在技術的開發、實驗和應用方面保持靈活性和快速迭代。整個CAF的創新能力必須是一個更廣泛的創新生態系統的一部分,該系統有效地整合了公共和私人生態系統的研究和實施。這包括與加拿大工業界合作利用雙重用途的GPT的明確目標,以便利用已經存在的技術。
這種多領域的合作在歷史上被定義為國家創新體系(NSI)(OECD 1997)。事實上,NSI政策和規劃可以采取多種形式,從松散的協調到高度整合的伙伴關系。在美國(Atkinson 2020)、中國(Song 2013)和歐洲(Wirkierman, Ciarli and Savona 2018)應用的各種NSI規劃模式表明,在最大化政府-產業-研究伙伴關系方面可以找到大量的經濟和社會回報。政府應通過稅收優惠、采購和研究資金以及戰略規劃,努力建設加拿大的技術能力。但它不能單獨行動。
國家創新必然取決于機構參與者在一個共享的生態系統中進行合作。出于這個原因,一個協調的加拿大國家統計局將需要在推動長期創新的過程中,人們和機構之間的技術和信息的相互流動。鑒于EDT的許多創新是由工業界主導的,推進公私伙伴關系對加拿大軍隊的發展至關重要。對于國防部/加拿大空軍來說,要推進適合數字時代的軍隊,政府、工業界和學術界將需要以更綜合的方式進行合作。
建立一個強大的加拿大創新生態系統將意味著更廣泛的公私合作和持續的知識和資源的再培訓、培訓和孵化。盡管開發尖端人工智能需要人力資本投資,但大多數人工智能應用現在可以通過開源許可獲得,即使核心學習算法可以在公共平臺和整個學術生態系統中獲得。這種 "開放一切 "環境的影響是對封閉的等級制度和深思熟慮的官方機構的實質性挑戰。
政府程序和規劃將需要適應加速的創新生命周期,以配合EDT積極的淘汰周期。除了與網絡技術相關的巨大的不對稱安全風險外,向數據驅動型軍隊的轉變將需要大量關注數據安全和數據治理。與進行傳統的國家間沖突所需的大量成本和規劃不同,網絡攻擊的破壞性影響可以由僅有一臺個人電腦的小團體對關鍵基礎設施發動。鑒于未來不斷增加的挑戰,大型官僚機構(公司、政府、學術和軍事)的設計變化是不可避免的。
除了對新的和不同的知識、資源和專長的需求,加拿大政府和加拿大軍方將需要平衡硬實力和不斷變化的地緣政治格局的需求。在美國占主導地位的時代之外,二十一世紀正被一個以技術民族主義和后布雷頓森林體系為特征的多極體系所塑造。面對一個快速發展的數字時代,國際合作將是確保和平與安全的關鍵。信息共享、專家會議和多邊對話可以幫助世界各民族國家及其軍隊更好地了解彼此的能力和意圖。作為一個全球中等國家,加拿大可以成為推動這一努力的主要伙伴。
國際治理創新中心(CIGI)是一個獨立的、無黨派的智囊團,其經同行評議的研究和可信的分析影響著政策制定者的創新。其全球多學科研究人員網絡和戰略伙伴關系為數字時代提供政策解決方案,目標只有一個:改善各地人民的生活。CIGI總部設在加拿大滑鐵盧,得到了加拿大政府、安大略省政府和創始人吉姆-巴爾西利的支持。