在未來的空戰中,無人協同系統的整合將是一個潛在的巨大力量倍增器。其成功的關鍵因素將是編隊情報、協調任務規劃和跨平臺任務管理。因此,構思下一代機載武器系統的任務需要一個整體的系統方法,考慮不同的航空飛行器、其航空電子任務系統和針對未來威脅的整體作戰概念。為了盡早驗證可能的解決方案概念并評估其作戰性能,在過去幾年中,在空中客車防務與航天公司未來項目中開發了一個動態多智能體戰斗仿真。除了比實時更快的工程功能外,該仿真還可以進行實時人機對話實驗,以促進工程師、操作員和客戶之間的合作。本文介紹了動態任務仿真方法,以及在未來戰斗航空系統(FCAS)研究中應用此工具所得到的啟示,在此期間,我們清楚地認識到什么是未來應用的一個關鍵挑戰。實施一個強大的高層規劃算法,為復雜的空中行動生成臨時任務計劃,同時考慮反應性的低層智能體行為、人類操作員和在線用戶輸入。
每一代新的戰斗機都可以通過一個或多個技術飛躍來定義,這些技術飛躍使其與上一代的設計有很大區別。毫無疑問,自從大約15年前第一架第五代戰斗機投入使用以來,幾乎所有的設計學科都有了顯著的進步。不同的飛機制造商,包括空客,已經宣布他們目前正在構思或研究第六代戰斗機[1] [3]。與目前最先進的飛機相比,這些項目很可能在各個領域都有改進,如飛行性能、全方面和全模式隱身、低概率攔截雷達和通信或武器裝備。但問題仍然存在:什么將是這一代的決定性因素,一個真正改變未來戰斗空間的因素?
一個常見的假設是,未來的戰斗空間將是 "高度網絡化 "的,即所有參與的實體都可以交換他們的態勢視圖,并以近乎實時的方式創建一個共享的戰術畫面。一方面,這使得多個平臺在空間和時間上可靠同步達到了以前不可能達到的程度。許多算法,特別是發射器定位或目標測距的算法,如果能從多個位置產生測量結果,會產生明顯更好的效果。另一方面,高質量數據的可靠交換通過分配以前由單一平臺執行的任務,使戰術更加靈活。對作戰飛機的主要應用可能是所謂的合作交戰概念(CEC),這已經是美國海軍針對反介入/區域拒止(A2/AD)環境的海軍綜合火控-反空(NIFC-CA)理論的一部分[4],但其他應用也是可能的,例如合作電子攻擊。所提到的概念主要適用于任務期間單一情況的短期范圍,例如偵察或攻擊薩母基地、空對空(A2A)作戰等。然而,就整個任務而言,還有一個方面需要提及。鑒于所有參與實體之間的可靠通信,規劃算法可以交換任務計劃變更的建議,并根據其目標和當前的戰術情況自動接受或拒絕。這在一個或多個不可預見的事件使原來的任務計劃無效的情況下特別有用,盡管所有預先計算的余量。與其估計一個替代計劃是否可行,并通過語音通信與所有其他實體保持一致(考慮到船員在某些任務階段的高工作負荷和參與實體的數量,這是一項具有挑戰性和耗時的任務),一個跨平臺的任務管理系統可以快速計算出當前任務計劃的替代方案,并評估是否仍然可以滿足諸如開放走廊等時間限制。然后,一組替代方案被提交給機組人員,以支持他們決定是否以及如何繼續執行任務。
將上述想法與現在可用的機載計算能力結合起來,由于最近在硬件和軟件方面的進步,可以得出結論,未來一代戰斗機將很有可能在強大的航空電子系統和快速可靠數據交換的基礎上,采用卓越的戰術概念進行作戰。然而,這還不是我們正在尋找的明確游戲改變者--甚至現有的第五代戰斗機已經應用了一些提到的概念,例如,在NIFC-CA背景下的F-35[4]。因此,下一步不僅要改進飛機的航電系統,而且要在完全網絡化環境的前提下連貫地優化航電、戰術和平臺設計。這種方法允許思考這樣的概念:如果得到網絡內互補實體的支持,并非每個平臺都需要擁有完整的傳感器套件和完整的決策能力。因此,不同的平臺可以針對其特殊任務進行高度優化,從而與 "單一平臺做所有事情 "的方法相比,減少了設計過程中需要的權衡數量。很明顯,一個專門的傳感器平臺不需要或只需要非常有限的武器裝備,因此現在可用的空間可以用來建造更好的傳感器或更大的燃料箱。這已經可以使該平臺專門從事的任務性能得到顯著提高,但有一樣東西可以去掉,它的影響最大:飛行員。在這一點上,必須明確指出,目前沒有任何算法或人工智能能夠接近受過訓練的機組人員態勢感知和決策能力。這就是為什么在不久的將來,人類飛行員在執行戰斗任務時將始終是必要的。然而,如果飛行員(或更準確地說,決策者)被提供了指揮無人駕駛同伴的所有必要信息,那么就不需要在同一個平臺上了。因此,我們提出了一個概念,即一個或多個載人平臺由多個無人駕駛和專門的戰斗飛行器(UAV)支持。在下文中,我們將把至少一個載人平臺和一個或多個由載人平臺指揮的專用無人機組成的小組稱為包。我們聲稱,由于以下原因,無人平臺將作為有人平臺的力量倍增器發揮作用:
無人機是可擴展的,而空勤人員是不可擴展的。因此,無人機可以執行高風險的任務,并允許采用只用載人平臺無法接受的戰術。
無人機更便宜(即使不考慮機組人員的價值),因為它們可以在性能相同的情況下比載人平臺建造得更小。這意味著,在相同的成本下,更多的平臺可以執行任務,更多的平臺會導致更高的任務成功率。首先,因為有更多的冗余,其次,如果有更多的資產參與其中,一些任務可以更好地完成,例如發射器的定位。
不同的無人機和載人平臺可以任意組合。在任務開始前,可以根據需要組成包。在任務期間,在某些限制條件下,也可以重新組合軟件包,例如,如果交戰規則禁止不受控制的飛行,則指揮平臺之間的最大距離。這使得任務規劃和執行有了更大的靈活性,預計也能保持較低的運行成本和材料損耗("只使用你需要的東西")。
像往常一樣,沒有免費的午餐這回事。在我們的案例中,所有上述優勢對飛機設計師來說都是有代價的。不是按照一組技術要求優化單一設計的性能,而是必須設計多個平臺及其子系統,使其在各種任務和組合配置中最大限度地提高整個系統的性能。在本文的其余部分,我們將介紹FCAS原型實驗室(FPL),這是一個在FCAS背景下開發的模擬環境,用于解決這一高度復雜的問題。在第2章中概述了它在概念設計和跨學科技術原型開發中的作用后,我們將在第3章中介紹底層動態多智能體任務仿真的概念和架構。在第4章中,我們將介紹選定項目的結果,以概述該工具的多功能性。本文最后將介紹可能是未來最大的挑戰之一,不僅對模擬,而且對一般的無人系統的引進。實施一個強大的高層規劃算法,為復雜的空中行動生成臨時任務計劃,同時考慮反應性的低層智能體行為、人類操作員和在線用戶輸入。
FPL的核心是一個動態多智能體任務仿真,可以在一臺計算機上運行,也可以分布在多臺機器上,并使用不同的附加硬件組件。為了方便兵棋推演的進行,對人機界面技術進行原型測試,或用于一般的演示目的,模擬中的所有載人機載資產都可以選擇由硬件駕駛艙控制。如果沒有人類操作員參與,模擬必須能夠比實時運行更快。這對于在可能需要數小時的大規模任務中進行有效的開發和權衡分析尤為必要。為了以客觀和公正的方式評估概念和技術,每個模擬任務的過程都是由預先定義的系統屬性、物理效應的模擬和可配置的智能體行為和合作演變而來。不存在任何腳本事件,每一次新的模擬運行的結果都是完全開放的。藍軍和紅軍是在相同的假設下,以可比的抽象水平進行模擬。以下各章概述了如何在FPL中動態地模擬當前和未來機載系統的任務。介紹了我們的仿真結構,在對這類系統進行建模時最重要的設計權衡,以及行為建模的高層次規劃/低層次控制方法。
FPL的仿真架構由三個邏輯部分組成:應用、仿真控制和通信中間件。該架構的一個核心特征是,模擬被分割成幾個應用程序。每個應用程序運行不同的模型,例如,有一個應用程序用于模擬自己的(藍色)航空器、敵方(紅色)航空器、綜合防空系統(IADS)以及更多的模型,如下所示。所有的應用程序共享相同的標準化接口,并且可以任意組合。這種模塊化允許只運行某個任務或項目所需的部分模型。所有的應用程序都是獨立的可執行文件,可以在同一臺計算機上以并行進程運行,也可以分布在幾臺機器上。通過交換編譯后的二進制文件,來自不同公司的模型的整合是可能的,而不會暴露詳細的基本功能。一般來說,不同公司之間的快速和容易的合作是FPL架構的一個主要驅動力。為此,提供了一個基礎應用類,它提供了所有與仿真有關的功能,如仿真控制狀態機、通信中間件接口和通用庫,例如用于不同坐標系的地理空間計算。通過簡單地實現一個新的基礎應用實例,新的模型可以被添加到仿真框架中。所有應用程序的執行都由一個中央仿真控制實例控制。它提供了一個圖形化的用戶界面,可以根據需要啟動、停止和加速模擬。在執行過程中,所有應用程序的運行時間被監控,仿真時間被動態地調整到最慢的模型。這使得分布式的比實時更快的模擬具有自適應的模擬時間加速。應用程序之間的通信是通過數據分配服務(DDS)標準[2]實現的。它使用發布-訂閱模式在網絡中實現了可靠和可擴展的數據交換。兩個不同的分區用于廣播仿真數據(如實體狀態、仿真控制命令等)和多播命令和控制數據(如通過BUS系統或數據鏈路實際發送的數據)。DDS標準的開放源碼實施被用來進一步方便與外部伙伴的合作。
圖1提供了我們的模擬架構的概況,包括大多數任務所需的應用程序。如前所述,這個架構并不固定,幾乎任何應用都可以根據需要刪除或交換。如黑色虛線箭頭所示,通過DDS中間件在仿真控制處注冊一個基本的應用實現,可以集成新的模型。藍色/紅色背景的方框描述了己方/敵方系統,混合顏色的方框可供雙方使用。仿真基礎設施組件的顏色為灰色,用戶界面的顏色為橙色。黑色箭頭表示模擬過程中的通信,灰色箭頭代表模擬運行前后的數據交換。
對于兵棋推演環節,不同的應用程序分布在FPL的多個房間內運行,以模仿真實的空中作業程序。在設置好一個場景后,藍方和紅方的操作人員使用任務配置工具,在不同的房間里計劃他們的任務。空中行動指揮官留在這些房間里,而飛行員則分成兩個房間,每個房間有兩個駕駛艙來執行任務。藍方和紅方空軍應用的任何飛機都可以從駕駛艙中控制,因此飛行員可以接管不同的角色,并相互對抗或作為一個團隊對抗計算機控制的部隊。所有房間都配備了語音通信模擬。任務結束后,各小組在簡報室一起評估任務,可以從記錄的模擬數據中回放。一個額外的房間配備了多個連接到模擬網絡的PC,可以選擇用于特定項目的任務,例如硬件在環實驗。
為FPL選擇正確的建模范式事實上并不簡單,因為它涵蓋了操作分析工具(通常是隨機的)以及工程模擬(通常是確定性的或混合的)的各個方面。這個決定的影響可以用一個例子來說明,即如何確定一架飛機是否被導彈擊中。在隨機模型中,這個決定是基于可配置的概率,例如,被擊中的概率(導彈)和回避動作成功的概率(飛機)以及一個隨機數。為了使最終的任務結果對單一的隨機數不那么敏感,在實踐中經常用不同的隨機種子進行多次模擬運行。按照確定性的方法,導彈的飛出是根據導彈的發射方向、制導規律和固定的性能參數如推力、最大加速度等來模擬的。飛機在規避機動過程中的軌跡也是基于其初始狀態、空氣動力學、反應時間等。例如,當彈頭引爆時,如果導彈和飛機之間的距離低于某個閾值,那么飛機就會被認為被殺死。在一個確定性的模型中,在導彈發射時已經知道飛機是否會被擊中。確定性模型中必要的簡化通常是通過引入固定參數來完成的,比如導彈例子中的距離閾值。混合模型允許使用隨機數進行這種簡化,例如,作為失誤距離的函數的殺傷概率。
為了有效地測試和分析大規模的空中作業,在單臺機器上有幾十種藍色和紅色資產運行的情況下,模擬運行的速度至少要比實時快10倍(平均)。這對所用算法的時間離散性和運行時的復雜性提出了重大限制。為了保持快速原型設計能力,為新項目設置仿真或開發/集成新組件所需的時間應保持在較低水平。太過復雜的模型會帶來更多的限制,而不是顯著提高結果的質量。在這些方面,(更多的)隨機模型在運行時間和開發時間上都有優勢,更快。然而,在我們的案例中,有兩個主要因素限制了隨機模型的使用,使之達到最低限度。首先,模擬只有在給出他們的戰術和演習成功與否的確切原因時才會被操作者接受。此外,隨機模型是由數據驅動的,但對于未來自己和/或敵人的系統來說,所需的數據往往無法獲得。對于已經服役多年并在測試或實際作戰中多次射中的導彈,有可能估計其殺傷概率。然而,僅僅為未來的導彈增加這一概率是非常危險的,特別是因為隨機模型對這些參數非常敏感。從我們的觀點來看,通過將所有系統建模為基于技術系統參數的通用物理模型,可以實現對未來系統更健全的推斷。第一步,通過模擬已知技術和性能參數的現有系統,對模型本身進行驗證。對于未來的系統,技術參數會根據預期的技術進步、領域專家知識和他們的工具進行推斷。堅持最初的例子,未來戰斗機的回避機動性能的推斷,例如,基于從CAD和流體動力學模型計算出的更高的升力系數,或基于更高的導彈接近警告器的分辨率和靈敏度。
客觀評價未來概念在模擬中的表現的一個關鍵方面是環境和威脅的建模。必須考慮到,系統的方法在紅方和藍方都是有優勢的。現代國際防空系統的危險來自于結合不同的系統,從非常短的距離到遠距離。所有這些系統都有它們的長處和短處,但它們被組織起來,使個別的短處被其他系統所補償,并使整個系統的性能最大化。因此,第一個困難是必須對大量的系統進行模擬,并且必須確定這些系統的個別優勢和劣勢。通用物理模型的方法可用于這兩個方面。在通用防空系統模型被開發和驗證后,它可以迅速將新的系統整合到模擬中。根據模擬的物理效果,可以估計敵方系統的作戰優勢和弱點或未來可能的威脅概念。另一方面,使用通用模型的困難在于,必須將真實系統的功能映射到通用模型中,以便保留所有重要的單個系統屬性。這不可避免地導致了相當復雜和詳細的通用模型。我們將以地基雷達組件為例,概述我們平衡復雜性和保真度的方法。如圖2所示,IADS模擬中的一個實體由不同的組件組成。這些組件可以任意組合,以快速配置新系統。從功能角度看,地面雷達組件由控制器、探測模型和目標跟蹤器組成。根據實體的當前任務,控制器選擇所需的雷達模式,例如,360°搜索的監視或戰斗搜索,如果一個特定的部門必須優先考慮。為了對付干擾或地面雜波,可以使用不同的波形。根據雷達的類型,如機械或電子轉向的一維或二維,控制器有不同的可能性來適應搜索模式。在為一個波束位置選擇了波形的類型和數量后,探測模型根據目標、地面雜波、地形陰影、大氣衰減和電子對抗措施等方面的雷達截面模型,產生測量結果。測量誤差是由取決于隨機模型的信噪比引起的。由此產生的測量結果然后由目標跟蹤器處理,它執行測量-跟蹤關聯和跟蹤過濾。
這種詳細模型產生的另一個困難是必須估計的參數總數。在這一點上也要注意,模擬中的所有數據都是不受限制的。這一方面是由于大多數項目的限制,但另一方面,它在日常工作中也有實際優勢。我們必須牢記,模擬是用于概念驗證,而不是用于詳細的系統設計,所以在這個早期階段使用機密的威脅數據會對基礎設施和開發過程造成重大限制,而不會給結果帶來重大價值。基于此,所有的威脅數據都必須根據公開的來源或來自內部項目和外部合作伙伴的非限制性數據進行估算。這再次導致了大量的數據,而這些數據的詳細程度往往是非常不同的,或者是不一致的,例如,由于對限制性數據的去分類。隨著我們模型的不斷發展和多年來獲得的工程專業知識,我們有可能為不同的當前和推斷的未來威脅系統估計出一致的參數。這主要是在一個自下而上的迭代過程中完成的。根據現有的技術和性能參數,對缺失的模型參數進行估計以適應組件的性能。然后對單一系統的不同組件之間的行為和相互作用進行調整,以達到理想的系統性能。最后,在不同的情況下測試IADS內這些系統的協調,以使整個系統的性能最大化。
本科學報告記錄了高超音速導彈和高超音速射彈的關鍵方面和挑戰的非保密分析和文獻審查。具體而言,介紹了高超音速武器的性質和演變,討論了當前和未來探測和跟蹤這些導彈和射彈的傳感器系統能力,用于制定及時行動方案的先進信息融合系統,攔截方法,以及擊敗高超音速和高速度威脅的效應器技術。高超音速導彈和高超音速射彈的其他戰略方面,如成本和維持方面的考慮,也得到了審查和介紹。為了說明問題,提供了有關高超音速導彈情況的例子,假設其路徑是沿著加拿大的海岸線啟動的。該研究旨在為有關高超音速導彈的新威脅的決策提供信息,并提出潛在的研究和開發活動/倡議,以促進加拿大武裝部隊對高超音速武器能力的了解和專業知識。
這項工作沿著加拿大國防政策的精髓 "強大、安全、參與"(SSE)提供了實際積極防御的證據。它支持北美航空航天防御司令部(NORAD)"北美防御 "方法的演變,全面研究彈道導彈以外的新的高超音速武器威脅的基本原理,對其及時探測和識別,快速防御行動規劃和決策,以有效擊敗其預期的惡意目的,以保護加拿大和盟國的人民和資產。這項工作,除了告知這些新的威脅外,還提供了加拿大國防研究與發展(DRDC)科技(S&T)活動/倡議的建議,以提高在這些復雜的科學和工程(S&E)領域的專業知識和能力,從而增加與盟國合作的價值。
本科學報告是一份非保密的分析和文獻綜述,涉及新的/未來的(巡航或滑翔)高超音速導彈/火箭和高超音速射彈(帶或不帶推進器)的主要方面和挑戰,假定未來傳感器系統能力、融合和決策系統、可能的攔截方法,以及影響或轉移這種導彈/射彈預期效果的可能性。以下概述了文件的結構。
第2節涵蓋了新的高能武器飛行的地球大氣層,它們的可能特征(無論是新的導彈、火箭和射彈)能夠在低空機動,射程和效應器的類型(動能、高能炸藥、核彈頭或非核電磁脈沖[EMP]),姿態控制和導航,尋的頭技術,引信機制的類型(動能、延遲、遠程、多普勒、電磁、壓力,等等。 ),機身和推進器:無推進器,如滑翔機或射彈,傳統推進方式(高技術準備水平,[TRLs]),以及非傳統推進方式(低TRLs),如核推進。
第3節提供了有關場景的例子,假設沿著加拿大的海岸線啟動,這是世界上最長的海岸線(244,781公里),或來自北方的路徑,使其難以及時發現和跟蹤巡航導彈,以及各種導彈彈頭的預期效果,例如,核、非核EMP和動能。
第4節介紹了潛在的/新穎的傳感器系統(結合雷達和來自空間、空中和地面的紅外[IR]/紫外[UV]多光譜傳感器),以探測和跟蹤此類導彈/彈丸。建議的架構可以利用諸如低地球軌道(LEO)衛星群和其他雙重用途技術。
第5節推測了先進的信息融合系統的預期性能,以制定及時的行動方案,超越高超音速和超高速威脅所帶來的極短預警時間。這為研究認知傳感器到射手的環路(StSL)[9,10],或更廣泛的,包括非動能效應,認知傳感器到效應器的環路(StEL)[11]提供了機會。
第6節確定了擊敗高超音速和超高速威脅的幾種效應器,它們的優勢和劣勢,以及它們的組合以達到預期效果。
第7節考慮了戰略方面的問題,如成本和維持方面的考慮,因為與攻擊相比,防御的成本通常較高,并提供了每次嘗試的攔截手段的預測成本與敵對力量武器的預測成本的例子。
第8節利用從訓練演習和模擬中得出的超視距攔截趨勢。使用估計的傳感器探測的及時性和準確性,制定行動方案的時間,攔截器到最近的攔截點的時間,考慮到敵對力量武器向目標的飛行進程,評估對敵對力量武器的損害,直至攔截的可能性或攔截成功率。
第9節提出了一些活動,以推進本報告核心部分提到的一些主題,并提出了一個結論的總結,討論了總體觀察結果及其對決策者的意義。
附件A提供了關于地球大氣層的有用信息,如各層、空氣密度和溫度與海拔高度的關系。
附件B比較了相關技術準備程度的定義。
無人駕駛航空系統和其他相關技術的發展,包括人工智能、數據和云網絡、自主控制系統和系統/武器/傳感器的小型化和網絡化,以及增加昂貴的載人平臺艦隊數量的需要,推動了許多武裝部隊和工業界積極嘗試有人無人機編隊(MUM-T)。除非任務目標或載人平臺的生存需要,否則在有人平臺之外部署無人駕駛、"低成本 "和 "可損耗 "但不 "可拋棄 "的戰斗飛行器,可以最大限度地發揮其作為力量倍增器的價值,在高度競爭的空域提高殺傷力和生存能力。盡管自主技術和人工智能的引入正在徹底改變全域作戰,但新的自主平臺和武器系統的交戰規則正在通過嚴格的倫理考慮和評估來發展,其中人在環路上繼續發揮重要作用。本文希望對MUM-T方案和活動做一個整體的、非詳盡的分析。
天堡(Skyborg)是美國空軍 "先鋒 "計劃中迅速投入使用的三個技術項目之一,它是一個架構套件,旨在為自主可損耗的機身設計,根據該服務,它將能夠以足夠的節奏進行姿態、生產和維持多任務飛行,以挫敗對手在有爭議和高度爭議的環境中采取快速、決定性行動的企圖。天堡自主核心系統或ACS于2019年首次曝光,由Leidos公司開發,已在2021年的多月測試活動中得到驗證,在此期間,它被成功整合到兩個不同的無人平臺上,即Kratos UTAP-22 Mako和通用原子-航空航天系統公司的MQ-20,證明了政府擁有的自主核心的可移植性,使其在未來整合到不同平臺上。一個關鍵的活動里程碑是參加了 "橙旗21-2 "演習,這是美國在2021年6月進行的首要的大型部隊多領域測試活動,其中Skyborg ACS被集成到一個MQ-20中,成為在這種復雜活動中自主操作的無人車的首次飛行測試。由空軍研究實驗室(AFRL)進行,根據服務文件,Skyborg被組織成三個主要的努力方向(LOE)。LOE 1開發、演示和原型化由天堡自主架構和軟件組成的ACS,實現機器-機器和有人-無人的合作,同時也確保天堡自主任務系統套件的開放性、模塊化和可擴展性。ACS LOE還開發、演示和試制所需的硬件組件和開放架構標準,以便在系統集成實驗室和平臺上將模塊化傳感器、通信和其他有效載荷集成到Skyborg自主性和車輛架構中。LOE 2開發、演示和原型化新的低成本可移動飛行器的概念和技術,用于遠征的大規模生成,包括架次生成就業概念。LOE 3對可追蹤的、自主的、無人駕駛系統的操作概念和就業概念進行分析和實驗,并評估傳感器和任務系統的開放性、模塊化能力和整合。2021年8月,克拉托斯公司和通用原子公司都獲得了一份合同,以進一步支持將Skyborg分別集成到XQ-58A "女武神 "和MQ-20 "復仇者 "無人平臺,同時在大部隊演習中進行系統實驗。這些額外合同的目的是在資金允許的情況下,在2023年將Skyborg過渡到一個記錄方案。根據USAFRL的計劃,ACS還將從2022年開始在波音公司的隱形空中力量合作系統UCAV(無人駕駛戰斗飛行器)上進行實驗,該系統正在為澳大利亞國防部開發,如后所述。有趣的是,今年3月,AFRL授予藍色力量技術公司一份合同,開發一種支持對手空中訓練任務的無人駕駛飛行器,該飛行器將納入通過Skyborg努力開創的先進技術。2021年12月,空軍部長弗蘭克-肯德爾宣布,該軍種正在研究無人平臺與諾斯羅普-格魯曼公司的B-21 "突襲者 "遠程攻擊轟炸機和主要是下一代空中優勢(NGAD)先進飛機之間的MUM-T新概念方案,但也有可能與洛克希德-馬丁公司的F-22 "猛禽 "和F-35 "閃電II "聯合攻擊戰斗機合作。
圖:在通用原子公司的MQ-20上成功進行了測試,天堡自主核心系統(ACS)由自主架構和軟件組成,實現了機器-機器和有人-無人的合作。
圖:2021年8月,克拉托斯公司和通用原子公司都收到了一份合同,以進一步支持將天堡系統分別集成到XQ-58A "女武神"(此處描述)和MQ-20 "復仇者 "無人平臺上,同時在大部隊演習中進行系統試驗。
圖:去年11月的 "橙旗 "演習涉及F-35A "閃電 "II等飛機和兩架通用原子公司的MQ-20 "復仇者 "無人機,它們攜帶 "天堡 "自主核心系統進行了持續數小時的飛行測試。
美國海軍正在推行不同的高性能無人平臺計劃,以便在航空母艦上服役。在包括無人作戰系統的MUM-T工作中,2020年初,波音公司宣布,海軍作戰發展司令部在海軍作戰發展司令部的年度艦隊實驗中,由第三架飛機成功進行了兩架自主控制的EA-18G "咆哮者 "的演示。該實驗涉及到咆哮者在第三架咆哮者的控制下作為無人系統行動,以證明F/A-18超級大黃蜂和EA-18G咆哮者空勤人員從駕駛艙遠程控制戰斗機和攻擊平臺的有效性。該演示涉及四個架次的21項任務,為波音公司和海軍提供了分析所收集的數據并決定在哪里進行未來技術投資的機會。美國海軍繼續加速開發下一代空中優勢(NGAD)系統家族(FoS),以提供先進的、基于航母的力量投射能力,擴大其航空母艦的航程。當F/A-18E/F Block II飛機在2030年代開始達到使用年限時,NGAD FoS將取代這些飛機,并利用載人無人機組隊(MUM-T)來提供更強的殺傷力和生存能力。F/A-XX是NGAD FoS的攻擊戰斗機組件,根據該部隊的說法,它將成為MUM-T概念的 "四分衛",在戰斗空間的前沿指揮多個戰術平臺。F/A-XX在2021財年開始了概念完善階段,并且仍然按計劃進行。
2021年5月,澳大利亞政府宣布將對 "忠誠僚機"--高級發展計劃追加投資4.54億澳元。自2017年以來,根據澳大利亞皇家空軍(RAAF)計劃,澳大利亞國防部投資超過1.5億澳元,以支持澳大利亞皇家空軍和波音防務澳大利亞公司領導的當地工業團隊的合資企業,該企業設計、開發和生產了Loyal Wingman無人駕駛戰斗飛行器(UCAV),最近被命名為MQ-28A Ghost Bat。據澳大利亞政府稱,在短短四年內,該合資企業已經成功地制造和飛行了50年來的第一架澳大利亞制造的軍用作戰飛機,這可以使該計劃成為關鍵出口市場的重要競爭者。MQ-28A飛機于2020年5月亮相,2021年2月進行了首次飛行,距離項目啟動僅兩年零三個月。第二架飛機已經加入了飛行測試計劃,第三架飛機正準備在2022年晚些時候進行飛行測試。每架飛機的70%以上是在澳大利亞采購、設計和制造的。這項投資將看到該計劃擴大到更多的本地公司,以及國際合作伙伴和盟友,并在布里斯班附近的圖文巴(Toowoomba)建立一個生產設施,以及在今年加速開展側重于傳感器和任務系統能力的活動。除了用于概念演示的三架原型機外,這項投資將增加七架MQ28A,總共十架飛機,并將快速跟蹤 "幽靈蝙蝠 "在2024-2025年的服役情況。制造商所稱的空中力量組隊系統提供了類似戰斗機的性能,其機身長度為11.7米,能夠飛行超過3700公里。該UCAV有一個模塊化和可互換的機頭部分,可以容納集成傳感器包,以支持不同類型的任務,包括情報、監視和偵察、通信中繼以及動能和非動能打擊能力。據RAAF稱,該計劃是整合自主權和人工智能的探路者。
圖:澳大利亞國防部投資支持RAAF和波音防務澳大利亞公司領導的當地工業團隊的合資企業,該團隊設計、開發和生產了 "忠誠僚機"戰斗無人駕駛飛行器,最近被命名為MQ-28A幽靈蝙蝠。
圖:除了用于概念演示的三架 "忠誠僚機"原型機外,澳大利亞政府去年5月宣布的投資將增加7架MQ-28A,共10架飛機,并將加快 "幽靈蝙蝠 "在2024-2025年投入使用的步伐。
蚊子項目于2019年7月首次由英國皇家空軍快速能力辦公室和國防科技實驗室披露,該項目旨在開發和證明一種技術演示器,作為更廣泛的輕量級廉價新型作戰飛機(LANCA)計劃的一部分,根據公告,。該計劃旨在提供額外的能力,將無人平臺與F-35、"臺風 "和下一代 "暴風雪 "等戰斗機部署在一起,為有人駕駛的飛機提供更多的保護、生存能力和信息,甚至可以在未來提供一個無人駕駛的作戰航空 "艦隊"。有趣的是,2021年7月,英國皇家空軍空軍總司令邁克-威格斯頓爵士在空天力量協會的全球空軍首長會議上談到廣泛的未來戰斗航空系統(FCAS)時說,"與意大利和瑞典等國際盟友合作,我們正在采取一種革命性的方法。我們正在研究改變游戲規則的蜂群式無人機和無機組人員作戰飛機的混合編隊,以及像 "暴風雪 "這樣的下一代駕駛飛機,"這為與上述國家和其他國際盟友開展無機組人員作戰飛機和無人機的潛在共同計劃開辟了道路。
圖:2021年1月,由Spirit AeroSystems公司領導的一個工業團隊獲得了一份3000萬英鎊的合同,以快速設計和制造英國第一個無機組人員的戰斗航空系統的技術演示器,該系統是在 "蚊子 "三年全尺寸飛行測試計劃下的。
圖:"蚊子"將從機場、空客A400M "母艦 "或航空母艦上發射,計劃到2023年底在英國領空飛行。"蚊子"UCAV和Alvina蜂群無人機將支持新一代的 "暴風 "作戰空中平臺。
作為 "蚊子 "項目第二階段的一部分,2021年1月,由英國Spirit AeroSystems公司作為主承包商和機身設計者領導的工業團隊與諾斯羅普-格魯曼英國公司(人工智能、網絡、人機界面)和Intrepid Minds公司(航空電子和動力)一起獲得了一份3000萬英鎊的合同,在為期三年的全尺寸飛行測試計劃中快速設計和制造英國首個無機組人員作戰航空系統(UCAS)的技術演示機,作為目前F-35、臺風和下一代 "暴風 "平臺的補充。無人駕駛作戰飛機主要是為了增加軍方作戰航空部隊的數量,它被設計為與戰斗機一起高速飛行,配備導彈、監視和電子戰技術,以瞄準和擊落敵方飛機,并能抵御地對空導彈。蚊子 "將從機場、空客A400M "母艦 "或航空母艦上發射,計劃在2023年底前在英國領空飛行,但沒有說明實際的首次飛行是否會提前在外國天空進行。2021年,當時的英國國防參謀長尼克-卡特爵士將軍在一次國際戰略研究所的虛擬活動中說,到2030年,今天由8架臺風戰斗機組成的皇家空軍(RAF)戰術編隊將由2架臺風戰斗機、10架蚊式無機組人員戰斗機和100架阿爾維娜蜂群無機組人員飛行器組成,"因為這是產生大量的方式,你可以看到這在陸地和海洋領域也會上演。" 未來的皇家空軍預計將由暴風雪、F-35、蚊子、阿爾維納和保護者組成,其中80%將是無人駕駛或遙控平臺。2021年,空軍總司令邁克-維格斯頓爵士宣布,皇家空軍無人機測試中隊 "已經毫無疑問地證明了我們的阿爾維娜計劃下蜂群無人機的顛覆性和創新性效用"。在英國Alvina計劃的前兩個階段之后,2019年1月授予了第三階段250萬英鎊的合同,用于綜合概念評估活動,以探索協作運行的無人機群的技術可行性和軍事效用,2021年1月成功測試了涉及英國20架蜂群無人機的最大的協作性軍事重點評估。據報道,與正在為皇家空軍開發的 "蚊子 "分開,皇家海軍正在推進其名為 "維克斯 "的忠誠僚機。
法國、德國和西班牙,未來戰斗航空系統/未來戰斗系統(FCAS/SCAF)的伙伴國,以及它們各自的產業,正在開發遠程載具(RC)元件,它與可選擇駕駛的新一代戰斗機(NGF)和聯網的戰斗云(CC)一起構成下一代武器系統(NGWS)。RCs的開發是由空中客車防務和空間公司作為主體,法國MBDA公司、德國MBDA公司和西班牙SATNUS技術公司組成的合資公司Sener Aeroespacial、GMV和Tecnobit-Grupo Oesia公司進行的。該工業團隊正在開發一個蜂群和網絡化的飛行器系列,其尺寸從數百公斤的消耗性飛行器到數噸的更復雜和可重復使用的忠誠僚機類型。根據空中客車公司和MBDA之間的合作協議,前者專注于開發可重復使用的遙控飛行器,而后者則致力于開發消耗性的。正在開發的關鍵技術包括人工智能支持的合作算法、穩健和故障安全的數據通信、小型化傳感器、新的驅動技術、獨立于GPS的導航、可擴展的行動手段、低觀測性解決方案和蜂群技術。如果達索航空公司和空中客車公司將很快簽署各國已經達成的協議,遙控飛機技術演示器可能在2027-2028年飛行,但這將取決于發展路徑和時間。遙控飛機的初始作戰能力可以在2030年代達到,以初步補充第四代戰斗機,但這將取決于國家要求和對平臺及其任務套件的修改。FCAS的MUM-T作戰概念(CONOPS)和相關要求,定義了對遙控飛機機體和控制系統能力的要求,正在調查作為發展路徑的一部分,直到技術演示飛行階段。正如在2019年布爾歇航展和隨后的活動中所展示的那樣,RCs被設想為支持載人平臺的空對空和空對地任務,包括海軍領域,以及情報、監視和偵察(ISR)以及電子戰斗序列的繪制,還有干擾/欺騙、壓制和摧毀敵人的防空。MBDA正在利用其所有的經驗和技術,開發更深入的打擊武器系統,如 "風暴之影 "和 "金牛座",以及基于國家計劃的新系列 "長矛"、"智能滑翔機 "和 "智能巡洋艦 "的智能連接武器,以進一步發展這些概念的RCs,其發展取決于MUM-T平臺的選定類型。迄今為止,MBDA已經在2019年公布了其RC100和RC200遠程運載工具的概念,但最終的RC可能會有所不同,并且可以設想更大的一攬子解決方案,包括已經公布的用于攔截針對受保護平臺發射的空對空導彈的短程導彈。空中客車公司正在開發的更大的RC,在2019年提出了早期模擬,需要由運輸機(如A400M)進行空中發射,或從跑道起飛。目前還沒有提供關于忠誠的僚機型UCAV的信息。
圖:法國、德國和西班牙,FCAS/SCAF的伙伴國,以及它們各自的工業界,正在開發遠程載具(RC)元素,這些元素與可選擇駕駛的新一代戰斗機(NGF)和聯網的戰斗云(CC)一起構成了下一代武器系統(NGWS)。
圖:根據空客防務與航天公司和MBDA之間的合作協議,后者專注于開發消耗性遠程運載工具,而空客DS則專注于可重復使用的運載工具。
土耳其Baykar技術公司在2021年7月公布了其UCAV設計。據制造商稱,該平臺最初以土耳其語縮寫MIUS(無人駕駛作戰飛機系統)聞名,2022年3月改名為Kizilelma(土耳其語中的紅蘋果),預計將于2023年飛行。Baykar技術公司公布的概念和模型顯示,單渦輪風扇發動機驅動的CUAV具有隱形設計,其特點是三角翼和鴨翼配置,機身能夠容納一個武器艙。雖然沒有提供關于平臺尺寸的官方數據,但制造商提供了關于主要能力的信息。Kizilelma最大起飛重量為6,000公斤,不僅能夠從短的陸地跑道上起飛和降落,而且還能從甲板上的海軍平臺,如土耳其海軍未來的旗艦LHD Anadolu上起飛和降落,據稱它具有全自動起飛和降落的功能,以及包括主動電子掃描陣列雷達、先進的光電攝像機和電子戰系統在內的任務套件,以及視線內和視線外通信套件。Kizilelma的最大有效載荷容量為1500公斤,據稱能夠達到0.6馬赫的巡航速度和11550米的工作高度,續航時間為5小時,任務半徑為926公里,但沒有公布任務有效載荷。
圖:土耳其Baykar技術公司的UCAV Kizilelma(土耳其語中的紅蘋果),據制造商稱,預計將于2023年飛行。
Baykar技術公司公布的Kizilelma UCAV的概念和模型顯示了一個以單渦輪風扇發動機為動力的平臺,其隱身設計的特點是三角翼和鴨翼配置,其機身能夠容納一個武器艙。
自1987年成立以來,美國貿易委員會一直是美國力量投射的一個重要的授權組織。對作戰人員的成功支持來自于對其流程的不斷完善和優化,以最大限度地提高運輸效率。在過去30年的戰爭中,美國運輸委員會的表現驗證了其模式的有效性,但未來的戰爭可能需要重新評估美國運輸委員會支持未來戰斗的能力。
聯合全域作戰(JADO)是用來描述美國未來戰爭方式的總稱。雖然JADO仍處于概念發展階段,但它從根本上改變了各領域之間的整合水平以及在戰斗空間產生效果的速度。JADO的革命性變化是為了應對美國對手開發的日益強大和擴散的反介入/區域拒止(A2/AD)系統。A2/AD的威力在于其目標是使美國目前的戰爭方式的執行成本過高。這些變化和威脅的結合是美國國防部關注的源泉,它已經優化了自己,以支持目前形式的戰爭。本專著的目的是分析聯合服務界所設想的新的JADO概念,以及A2/AD對運輸業務的威脅,并確定USTRANSCOM必須尋求協調的挑戰,以便在未來的沖突中保持償付能力和可靠性。
不斷發展的聯合全域作戰(JADO)概念是美國未來戰爭方式的迷人發展,但其行動的性質和他們試圖擊敗的威脅使人質疑美國運輸司令部(USTRANSCOM)是否有適當的資源和組織來維持未來的行動。JADO遵循美國作戰理論的歷史進程,不斷發展各部門和各領域之間更多的整合力量。然而,JADO超越了單純的消除沖突、協調和整合。JADO尋求真正利用戰爭的時間性,為敵方部隊同時產生多個問題,并具有實時態勢感知能力,以識別并隨后從一個領域產生效果,從而利用固有的不對稱優勢。戰爭領域之間的整合將比美軍內部所見的更加緊密,而且行動的節奏將比目前的能力快得多。為了使JADO成為現實,必須進行技術投資并加以實現。除此之外,聯合部隊內的作戰理論將不得不被改寫,以反映在未來戰斗中釋放JADO潛力所必需的最佳實踐。所有這些都相當于一個革命性的舉措,專注于重塑美國的戰爭方式。所有領域的作戰單位將不得不調整他們的操作方法,以保持在該框架內的功能,并提供系統所需的效果。盡管許多文獻和討論都圍繞著作戰部隊將經歷和必須適應的變化,但為確保作戰部隊得到后勤支持而依賴的維持力量卻很少受到關注。
美國貿易委員會維持未來作戰行動的能力對美國的力量投射至關重要。這一任務的失敗將使美國的作戰能力失去效力。美軍所能帶來的戰斗力確實令人矚目,但這種力量只有在戰斗指揮官能夠將其移至對手的射程之內并在其就位后得以維持時才能使用。在美軍歷史上的絕大多數時間里,在北美和全球范圍內部署和維持作戰部隊的能力都取得了驚人的成功。這種成功在未來是不可能的,因為不祥的跡象表明,美國國防部的任務效率面臨著重大挑戰。反介入/區域拒止(A2/AD)的能力正在一些美國最強大的對手的軍隊中擴散開來。A2/AD試圖瞄準并破壞美國國防機構中對其功能效力至關重要的關鍵部分。 A2/AD對美國向國外投射力量的能力構成了嚴重威脅,而JADO是對這一挑戰的直接回應。從美國國防部的角度來看,它必須像聯合部隊的其他成員一樣,確保它對A2/AD的威脅保持彈性。
必須盡早發現美國貿易委員會模式中的潛在缺陷,以確定可行的解決方案,并在JADO技術的開發和實戰中留出時間采用這些解決方案。這一挑戰不是小任務。JADO的作戰概念是非常不穩定的,在其框架發展過程中,已經在多個方面發生了實質性變化。對JADO將成為什么缺乏清晰的認識的一個重要原因是聯合軍種之間對它應該演變成什么沒有共識。每個部門都設想了一個版本的JADO,并在概念上將聯合伙伴的活動納入其框架。雖然JADO的愿景并非完全不相容,但各軍種的概念之間確實存在實質性的差異。因此,每一種模式都會給美國運輸司令部帶來獨特的挑戰,因為它必須與任何選定的概念完美銜接,為作戰指揮官提供必要的運輸支持標準。美國貿易委員會作為一個功能性作戰司令部,在任何未來的美國戰爭中都要發揮作用。因此,對于聯合部隊的有效性來說,USTRANSCOM作為一個組織的整合和發展必須被納入JADO的發展過程。在一個全新的結構下運作時,假設后勤支持的有效性和可靠性會給聯合部隊帶來黑天鵝式的失敗風險。納西姆-塔勒布(Nassim Taleb)將黑天鵝描述為產生巨大影響且無法預料的事件。美國空軍司令部的重點資本投資和理論變革必須與聯合部隊的發展保持同步,以確保司令部隨時準備在他們選擇的時間和地點支持未來的作戰人員。
下面的調查旨在確定USTRANSCOM必須評估哪些作戰要求,以便在未來的JADO概念中保持有效并在與同行對手的戰斗中保持彈性。調查將從對有關該主題的相關文獻的回顧、有關美國貿易委員會模式和處置的證據供參考、對JADO的不同服務概念的簡要描述、對美國貿易委員會與JADO的兼容性和對A2/AD的脆弱性的分析,以及解決新出現的問題的建議等方面展開。JADO和A2/AD的結合給美國貿易委員會帶來了一個與其當前運作框架和近期歷史相異的未來運作環境。由于其作為聯合部隊的分配和部署過程所有者(DPO)的不可或缺的作用,至關重要的是根據聯合部隊的擬議變化來評估USTR的部隊態勢和行動理論,以確定該組織必須如何共同發展。
空中力量已經從一個世紀的技術創新和進步中受益。新技術的出現繼續挑戰著空中力量中經常持有的常識。無人機系統(UAS)就是這樣一種不斷發展的空中力量技術。這項技術為澳大利亞國防軍(ADF)帶來了巨大的機遇。雖然澳大利亞國防軍在特定的角色上取得了一些無人機系統的進展,但澳大利亞皇家空軍(RAAF)還沒有在其所有的空中力量貢獻中采用這種技術來達到軍事效果。
《空中力量手冊》(空天力量中心[ASPC],2022年)定義了七種空中力量的貢獻:力量生成、空軍基地行動、空中指揮和控制、反空、空中機動、空中情報和ISR(情報、監視和偵察)以及空中打擊。一些先進的盟國已經在空中情報、ISR和空中打擊方面采用了發達的無人系統。這些系統包括美國空軍(USAF)的MQ-1捕食者、MQ-9死神和RQ-4全球鷹。甚至反空--載人空戰--也在發展無人系統的路上;RAAF與波音公司合作開展了 "忠誠的翼人 "項目(戴維斯,2019c),現在正式命名為MQ-28A幽靈蝙蝠(達頓,2022)。
但空中機動性如何?ADF還沒有接受關于未來ADF空中機動性自主性的真正對話。未來自主空中機動性思維停滯不前的一個更可能的原因是,在(到目前為止)有效的空運理論的支持下,載人系統幾十年來取得了高度可靠和經證實的作戰成功。因此,這里有一個克勞塞維茨式的平行關系:戰爭性質的一個持久因素是對機動性的需要,但今天皇家空軍所面臨的是戰爭性質的一個階梯式變化,一個對機動性來說過于重要的技術機會,不容忽視。
本文確定了在澳大利亞國防軍空中機動中采用無人機系統的滯后性,并探討了澳大利亞國防軍在未來使用無人機系統的機會。通過這樣做,本文旨在提高對ADF無人駕駛空中機動性潛力的集體認識,并為ADF部隊結構企業的軍事和商業貢獻者提供一個廣泛的參考來源。本文首先研究了無人機系統適應的驅動因素,或指標。這些驅動因素包括澳大利亞的戰略利益、區域軍事現代化、安全和生存能力、降低成本和技術可用性。然后,本文介紹并分析了三種核心空中機動性活動中每一種的無人機系統發展的具體機會和例子。為此,本文簡要討論了澳大利亞國防軍目前的機隊,然后探討了一些不斷發展的無人駕駛空中機動性技術和概念,澳大利亞國防軍可能會考慮在下一代空中機動性機隊中使用。最后,本文提出了無人機系統空中機動性發展可能面臨的一些挑戰,以幫助未來的研究和探索。
證據表明,需要一個靈活的、跨服務(和跨文化)、跨行業的方法來設計、開發和使用未來的空中機動部隊。傳統的澳大利亞皇家空軍中重載平臺和陸軍輕中載平臺的分叉模式可能會讓位于大型和小型載人和自主系統的混合艦隊。聯合部隊設計者之間的集體方法--跨單一軍種總部的真正合作--對于皇家空軍的固定翼空中機動團體和陸軍的旋轉翼團體之間的合作至關重要。也許更重要的是,在這個領域需要與工業界合作。商業行業在自主車輛領域發揮著相當大的作用,政府和私人研究和開發組織也是如此。現有的和新的伙伴關系的跨服役杠桿對于利用未來自主的ADF空中機動性的機會是至關重要的。
人工智能(AI)應用于武器系統是過去10年研究的一個主要趨勢。這些舉措旨在提高武器的準確性,執行非主動的瞄準手段,幫助導航和制導與控制(例如,在全球定位系統被拒絕的情況下),并減少與傳統的基于物理學的方法相比的整體計算資源,以便在更小、更實惠的武器系統上實現智能瞄準。這項研究還包括將作戰人員的戰斗空間擴展到無人駕駛飛行器,并使用蜂群方法與有人和無人平臺進行合作。
我們首先概述了人工智能的描述和歷史,并概述了人工智能在武器系統中的原理、技術和應用。這包括對監督自主系統;制導、導航和控制;行為和路徑規劃;傳感器和信息融合;智能戰略和規劃;兵棋推演建模;以及認知電子戰的研究和計劃的回顧。
然后,對將人工智能應用于武器系統的系統和項目進行了調查。雖然重點是基于美國的系統和項目,但也包括一個關于俄羅斯和中國相關系統的小節。最后,我們對將人工智能用于武器系統的倫理考慮進行了簡要評論。
機器學習(ML)和人工智能研究的最新進展揭示了人工智能在實現創新、增加機器的效用以及增強人類能力和經驗方面的力量和潛力。人工智能技術的顛覆性和其影響的深度還沒有被廣大公眾完全掌握。考慮到新時代的新興技術威脅,展示關鍵和相關的人工智能研究和最先進的技術是很重要的,這些技術不僅為武器系統提供了比傳統武器系統更多的自主權,而且大大增加了它們的殺傷力和戰斗生存能力。最終,人工智能在開發改變游戲規則的技術方面帶來了巨大的戰略機遇,這將確保國家安全、繁榮和技術領先地位。
美國軍方在創造先進的常規武器技術方面取得了巨大的進步,這些技術支持了士兵在戰場上的任務并增強了他們的能力。這些常規武器技術大多是自動化系統,在計劃、執行和完成一項任務或使命時依靠一套預先編程的規則。然而,在中國和俄羅斯等國家新開發的武器的前沿陣地上,人工智能支持的戰爭和高超音速武器給美國武裝部隊帶來了新一代的質量挑戰。下一代戰斗的步伐要求為戰略決策進行時間緊迫和大量的戰斗信息處理,這使得美國的許多常規武器系統只能執行低風險的任務,并在核領域之外處于威懾力減弱的態勢。
必須承認,人是昂貴的訓練資產。在戰場上增加更多的人員并不是推進最先進的戰爭的優雅或廉價的解決方案。相反,用支持人工智能的智能硬件來增強人在回路中的系統,可以在戰區提供更多的眼睛和耳朵,并通過使人工智能系統執行一些簡單和常規的任務來釋放人類的決策。
此外,無人駕駛作戰飛機系統(UCAS)是一種成熟的具有成本效益的系統解決方案,用于執行情報、監視和偵察(ISR)任務和遠程空襲。然而,自動化能力仍然受到人類在環形操作、評估和接觸的限制。雖然在任何可預見的未來都沒有打算消除武器化人工智能系統中的人類元素,但人類的能力仍然構成這些系統協同潛力的上限。但是,一個由人工智能驅動的智能武器系統的新生態系統將迎來新的戰爭形式和戰略。
人工智能國家安全委員會在其2021年的報告中提出,美國國防部(DoD)的軍事企業在整合人工智能技術方面落后于商業部門,并敦促在2025年前為整個國防部廣泛整合人工智能奠定基礎[1]。
幾個世紀以來,哲學家們一直在考慮以某種形式人工復制人類智能的某個方面的概念。1869年,威廉-杰農創造了第一臺基于布爾邏輯實現邏輯計算的機器。該機器能夠比人類更快地計算布爾代數和維恩圖。隨著這種邏輯計算機器的發展,人們很自然地質疑機器是否可以通過邏輯推理來為人類解決問題并做出決定。圖1-1中的時間軸顯示了人工智能的歷史和演變,并在本節中進行了詳細說明[2]。
在理論計算機科學的一些最早的工作中,英國數學家阿蘭-圖靈(Alan Turing)思考了機器是否能像人類一樣智能地行為和解決問題的問題。他在他的圖靈測試中提出,如果一臺機器能模糊地模仿人類這樣的智能生物,那么這臺機器就是智能的。這一理論測試成為一種指導性的形式主義,在這種形式主義中,當前的機器被測試其模仿人類智能概念的能力或潛力。作為測試的見證,Loebner獎是一個圖靈測試競賽,其任務是根據圖靈提出的基本問題來評估機器智能研究的現狀。
1928年,約翰-馮-諾伊曼證明了Minimax算法的基本定理,該算法旨在提供一種在零和博弈過程中使最大可能損失最小的策略。
圖1-1. AI歷史年表
在第二次世界大戰的高峰期,阿蘭-圖靈和他的團隊開發了一種機器算法,可以破譯德國的英格瑪信息密碼。他的算法的成功,推動了將復雜任務委托給機器的進一步努力,是機器計算的基礎,也是ML發展的先導。
1943年,McCulloch和Pitts開創了神經網絡(NN)的最早概念--McCulloch-Pitts的形式網絡理論--這在1949年馮-紐曼在伊利諾伊大學的四次演講中得到了體現[3]。
大約在同一時間,約翰-麥卡錫,一位計算機科學家,在1955年創造了 "人工智能 "來指代機器智能;計算機科學家艾倫-紐維爾;以及赫伯特-A-西蒙,一位經濟學家和政治學家,開創了第一個旨在自動推理的真正程序(稱為邏輯理論家)。隨著這一突破性的努力,對智能機器的探索開始了,為人工智能作為計算機科學的一個新的學術研究領域鋪平了道路。
1957年,一位名叫弗蘭克-羅森布拉特博士的心理學家開發了一個名為 "感知器 "的簡化數學模型,描述了我們大腦中的神經元如何運作。這一成就被強調為 "Perceptron收斂定理"。
同年,理查德-貝爾曼開發了動態編程,用于解決一類最佳控制問題。他還介紹了離散隨機最優控制問題的馬爾科夫決策過程表述,這為現在所稱的 "強化學習 "奠定了重要基礎。
在這些發展之后,另一位名叫阿瑟-塞繆爾的人工智能先驅利用他早先在ML方面的開創性工作,成功地開發了第一個檢查者算法。他實現了現在被稱為 "Alpha-Beta修剪 "的早期版本,這是一種搜索樹方法,通過Minimax算法減少評估節點的數量。1959年,一位名叫威廉-貝爾森(William Belson)的統計學家開發了一種名為決策樹的非參數、監督學習方法的早期版本。
在20世紀60年代,人工智能研究的重點是解決數學和優化問題。1960年,羅納德-霍華德提出了馬爾科夫決策過程的策略迭代方法,建立了一些與強化學習有關的最早的工作。
到1968年,著名的路徑搜索算法A-star是由計算機科學家尼爾斯-尼爾森提出的。60年代末,機器人建模、控制和機器視覺方面取得了進展,導致在1972年開發了第一個名為WABOT-1的 "智能 "擬人機器人,并整合了肢體操縱、視覺和語音系統。
Harry Klopf的 "適應性系統的異質理論 "的復興對適應性系統的試錯范式的發展有很大影響。1977年,Ian Witten提出了最早的強化學習系統之一,使用了時間差法。理查德-薩頓和安德魯-巴托設計了一種強化學習算法,稱為演員批評法。
由于70年代中期到80年代末計算機的計算能力限制,人工智能研究在有大量數據處理要求的應用中發現了困難,如視覺學習或優化問題。同時,數學研究 "證明 "了(單層)感知器不能學習某些模式。此外,1973年發表的一份Lighthill報告對人工智能的潛力非常悲觀,這導致人工智能研究的資金被削減。結果,資金短缺導致人工智能的研究經歷了一個被稱為 "人工智能冬天 "的時期。
到了80年代中后期,繼1986年多層感知器的發展之后,在NNs方面也做出了重要的理論貢獻。這些貢獻是David Rumelhart在1986年開發的遞歸神經網絡(RNNs),John Denker等人在1987年開發的貝葉斯網絡,以及Yann LeCun在1989年開發的卷積神經網絡(CNNs)。
此外,Chris Watkins在1989年開發了另一種重要的強化學習方法,稱為 "Q-Learning"。1992年,在IBM的Thomas J. Watson研究中心,Gerald Tesauro通過自我強化學習為雙陸棋游戲訓練了TD Gammon程序。1997年,IBM的 "深藍 "計算機使用粗暴的、基于搜索的算法擊敗了國際象棋世界冠軍加里-卡斯帕羅夫,使其成為第一個在國際象棋中戰勝頂級職業選手的程序。
在90年代末和21世紀初,在ML中看到的大部分進展是由計算機處理、存儲和分布式計算方面的指數級進展所推動的。2007年,需要大量計算資源的保證最優玩法在跳棋中得到了解決。在過去的20年里,圖形處理單元用于通用計算的激增導致了今天人工智能應用的進一步進展,特別是在2012年和2014年,不同的NN拓撲結構,如殘差網絡和生成式對抗網絡的發展。
2015年,ImageNet競賽,一個為約400萬張圖像的ImageNet圖像集開發分類器的公開競賽,有一個冠軍,其錯誤率被認為低于一個人。2016年,DeepMind的AlphaGo程序在擊敗當時被認為是最優秀的圍棋選手李世石后,成為最佳AlphaGo選手。繼AlphaGo的學習能力之后,AlphaZero在2017年擴展了AlphaGo,成為國際象棋和Shogi的最佳棋手。
2019年,美國國防部高級研究計劃局(DARPA)推出了AlphaDogfight,這是基于人工智能的空戰算法在模擬的F-16狗斗中與經過頂級訓練的飛行員進行的一系列三輪競賽。第一輪和第二輪比賽中,人工智能程序相互競爭。第三輪將人工智能勝利者的飛行員提煉出來,與美國空軍武器學校的優秀畢業生進行競爭。蒼鷺系統的人工智能飛行員不僅在競爭激烈的人工智能空中戰斗人員中獲勝,而且在與訓練有素的人類F-16飛行員的較量中取得了令人難以置信的五次勝利。
OpenAI在2020年5月推出了一個名為GP3的 "自然語言處理 "模型,它生成的寫作內容與人類無異。其最新版本可以從簡單的描述性語言生成編程語言代碼[4]。人工智能的歷史繼續向前發展,特別是對國防部的武器系統應用。本報告的其余部分將調查與武器系統有關的當代人工智能技術和系統。
根據Barr和Feigenbaum的說法,人工智能被定義為 "計算機科學中與設計智能計算機系統有關的部分,即表現出我們與人類行為中的智能有關的特征的系統--理解語言、學習、推理、解決問題等等"[5]。
Stuart Russel和Peter Norvig在他們的《人工智能:一種現代方法》一書中對人工智能的最新定義是:"設計和建造能夠從環境中接收感知并采取影響環境的行動的智能體" [6]。
Pei Wang優雅地將智能定義為 "在知識和資源不足的情況下的適應"[7]。雖然該定義沒有說明適應的目的(如目標),但它揭示了為達到這種智能需要完成的工作。
如果要以人類為中心定義人工智能,即執行人類智能水平的任務,那么人工智能需要感知、推理、知識構建、推理、決策和計劃、學習、交流,以及有效移動和操縱環境的能力。
人工智能的科學目標是回答哪些關于知識表示、學習、規則系統、搜索等的想法可以解釋各種類型和水平的真實智能。工程目標是為不同的應用領域開發人工智能技術,以解決現實世界的問題。
在人工智能的科學基礎上,我們發現來自不同科學領域的可識別概念--哲學、邏輯/數學、計算、心理學和認知科學、生物學和神經科學以及進化。在尋求發現和更好地理解人工智能是什么或將是什么的過程中,來自這些不同知識領域的貢獻已經被證明是不可避免和不可或缺的了。許多研究人工智能的領域都在同時構建人類認知如何運作的模型,并在它們之間采用有用的概念。例如,NN,一個源于生物學的概念,試圖在簡化的人工神經元的基礎上建立人工系統,這個概念導致了一個簡單的抽象知識結構的表示,足以解決大型計算問題集。
人工智能大致分為三個主要層級--人工狹義智能(ANI)、人工通用智能(AGI)和人工超級智能(ASI)。圖1-2說明了這三個層級中的各種分組,本節將更多地討論這些分組。
ANI是對一個執行狹窄或單一任務的人工智能系統的描述。它可以包括各種方法來獲得結果,如傳統的ML(以圖像分類為例)或目標檢測(包括ML和基于規則的系統)。給定一組規則或約束,它的目標是提供一組代表狹義任務的輸出。ANI不會擴展或學習新的認知,也不會自我學習新的操作模式。數據挖掘、大多數專家系統和針對某一應用的預測功能(例如,垃圾郵件檢測和面部識別)都被認為是ANI的形式。ANI還包括 "有限記憶人工智能"--用于自動駕駛汽車的系統類型,使用過去的經驗(訓練),并學習做決定,隨著時間的推移而改進。
AGI是一種更強大的智能形式,因為它被更多類似人類智能的特征所增強,例如自主學習的能力和解釋情緒和語音語調的能力。這使得與AGI相關的智能與人類的智能水平相當。AGI的一些關鍵核心能力如下:
ASI是一種超越最聰明的人類頭腦的智能模型。實現ASI的方法仍在概念化中,但將是那些超越AGI并需要某種自我意識的系統。這些系統最好能代表所有人類的認知能力,甚至更多。
ML是機器從數據中學習的能力,目的是做出準確的預測。它大致分為四類學習,提供了豐富的專用和通用的技術家族。
在這種形式的學習中,訓練數據使用包含的輸入和標記的或預定的輸出數據。如果有缺失的輸入或輸出條目,它們會被預處理,以便將一個輸入正確地映射到其真正的對應輸出。通過從正確生成的訓練數據集中學習,系統學會了將不在原始數據集中的輸入與預測的輸出(標簽或值)聯系起來。這種類型的訓練解決的典型問題是回歸和分類[8]。
這種形式的學習中,系統直接從未標記的數據中發現有趣的或隱藏的結構[9]。無監督學習被用于聚類分析、降維或估計可能產生輸入數據的密度[8]。
當數據集包含有標記的和無標記的數據時,這種學習形式的系統利用無標記的數據來更好地捕捉潛在的數據分布,并獲得一個更好的預測,如果它只從標記的數據中訓練的話。這種學習形式適用于訓練數據集中的標注數據遠遠少于未標注數據的情況[8]。
在這種學習模式中,系統使用獎勵/懲罰機制進行訓練,這樣它所選擇和執行的行動,當行動可取時,會使系統得到獎勵,當行動不可取時,會受到懲罰。強化學習問題涉及學習如何做(如何將情況映射到行動上)以最大化數字獎勵信號[9]。
人工智能有可能應用于武器系統生態系統的許多方面。它被用來控制系統,從而實現自主性和提高性能,以在具有挑戰性的環境中選擇指導、導航和控制方面的問題。同樣,人工智能可用于解決任務和路徑規劃中的挑戰性問題,從而實現更高水平的復雜任務目標和操作要求。人工智能也被用于電子戰領域的支持、反制,甚至是反制措施。它還可能被用于來自不同系統層次和領域的信息融合,以泄露抽象的高價值戰場情報,并提供關鍵線索和快節奏的決策,從而在現代戰爭中創造寶貴的戰術優勢。
報告的這一部分將強調最先進的人工智能方法在適用于自主和武器系統的各種人工智能問題領域的使用。它是根據以下問題領域來組織的。
自主性
感知中的人工智能
制導、導航和控制中的人工智能
任務和路徑規劃
智能戰略
對手建模
認知型電子戰
第一章 引言
1.1問題陳述
1.2常規武器系統
1.3 AI簡史
1.4什么是AI?
1.4.1 ANI
1.4.2 AGI
1.4.3 ASI
1.5 ML
1.5.1監督學習
1.5.2無監督學習
1.5.3半監督學習
1.5.4強化學習
第二章 最先進的方法
2.1學習人工智能范例
2.1.1深度學習
2.1.2強化學習
2.2隨機優化和搜索算法
2.2.1隨機優化
2.2.2圖形搜索算法
2.3新興人工智能范例
2.3.1神經符號AI
2.3.2 NE
第三章 人工智能在武器系統中的應用
3.1自主性
3.1.1定義、級別和框架
3.1.2自主系統的功能組件
3.2感知中的人工智能
3.2.1圖像分割
3.2.2目標檢測、分類和場景理解
3.2.3傳感器融合
3.3制導、導航和控制中的人工智能
3.3.1 GN&C系統
3.3.2常規控制理論方法
3.3.3智能控制
3.3.4本地化和導航
3.3.5系統識別
3.4任務和路徑規劃
3.4.1GAs
3.4.2群體智能
3.5智能策略
3.6對手建模和兵棋推演
3.7認知電子戰
3.7.1電子支持措施
3.7.2 ECMs
3 .7.3 ECCMs
第四章 將人工智能應用于武器系統的系統和程序
4.1天線系統
4.1.1下一代空中優勢計劃
4.1.2 Shield AI Hivemind
4.1.3 Shield AI V-Bat
4.1.4 Kratos XQ-58 Valkyrie
4.1.5 MQ-20 Avenger UCAS
4.1.6自主彈藥
4.1.7 Dynetics X-61小精靈
4.2 海軍系統
4.3 陸軍系統
4.3.1 QinetiQ/Pratt Miller的遠征自主模塊化飛行器
4.3.2Textron系統公司的Ripsaw M5
4.3.3 Rheinmetall公司的Lynx KF41
4.4 群系統
4.4.1 DARPA的攻擊性蜂群戰術
4.4.2自主協同小直徑炸彈群
4.4.3 Perdix群
4.4.4 Mako UTAP22
4.4.5 Coyote UAS Block 3
4.4.6機器人代理命令和傳感群的控制架構
4.4.7激流勇進微型無人潛水器
4.5戰斗管理和智能指揮與控制
4.6 ISR和目標系統
4.6.1 SRC的HPEC Pod
4.6.2復仇女神
4.7導航
第五章 未來作戰中的AI
第六章 人工智能和外來威脅
6.1俄羅斯
6.2中國
第七章 倫理考量
第八章 總結
參考文獻
彈道導彈能力的增長已經威脅到了傳統航母及其機群的作用。在未來的對抗中,目前的平臺將需要被重新評估,并承擔新的和非傳統的角色,以填補傳統上由航母打擊群占據的空白。潛艇將需要一個新的和更具進攻性的理論,作為分布式海上作戰(DMO)的一個組成部分。兩棲平臺將發揮新的作用,成為能夠分散航空資產并為艦隊帶來超視距打擊能力的水面平臺。航空母艦將擺脫傳統的打擊角色,成為指揮和控制(C2)、情報、監視、偵察(ISR)和維持的中心。目前具有綜合能力和創新部署的平臺可以克服遠程陸基導彈防御帶來的威脅。
"這句話不是由機智的馬克-吐溫、深思熟慮的亞伯拉罕-林肯、甚至是聰明的愛因斯坦說的,而是由80年代的電視英雄馬蓋先說的。這部長期播出的節目講述了一個沒有超能力的普通英雄的冒險故事,以及他利用周圍任何東西來解決問題的非凡能力。馬蓋先從未將“回形針”用于其預期目的,而是創造了一個獨特的變通方法來實現預期目標。經過深思熟慮和創造性的再利用,“回形針”找到了新的用途和新的意義。今天,現代軍隊有許多 "回形針 "平臺,它們有各種不同的目的和能力。也許現在是海軍對其平臺采取類似馬蓋先的方法的時候了,以便在與同行競爭者的沖突中發揮能力。
杰拉爾德-R-福特號航母是美國海軍最新和最現代化的航空母艦。一個新的電磁飛機發射系統(EMALS)、經過改造的甲板配置和靈活的電子結構只是這艘價值130億美元的船的一些新升級。在與同行競爭者的現代沖突中,如果美國海軍失去了能力或直接拒絕冒失去數十億美元資產的風險,它將轉向什么?由于航空母艦的脆弱性和其在戰場上可能喪失的能力,美國海軍應該研究現有平臺的額外和非傳統用途,以便在海洋環境中與同行競爭者競爭制海權。首先,核潛艇作為一個能夠爭奪制海權的平臺具有很大的優勢。其次,裝載有飛機和無人機的較小的兩棲艦提供了一個可行的替代方案,可替代在敵對環境中運行的一或兩艘大型航空母艦。最后,提高航母機翼的模塊化程度,可以增強其航程和影響在目前航程不允許使用的地區的行動的能力。
融合項目(PC)是一項美國陸軍學習活動,旨在整合和推進他們對聯合部隊(陸軍、海軍、空軍和海軍陸戰隊)的貢獻。根據研究和分析中心(TRAC)-蒙特雷的說法,"PC確保陸軍作為聯合戰斗的一部分,能夠快速和持續地整合或'融合'所有領域的效果--空中、陸地、海上、太空和網絡空間,以便在競爭和沖突中戰勝對手"(研究和分析中心[TRAC]2020)。目標是評估在PC21上展示的新的創新系統(SoS)技術是否滿足為聯合部隊提供必要的速度、范圍和融合所需的作戰能力,以產生未來的決策主導權和大國競爭的超能力。然而,鑒于PC期間各種現代技術的注入,TRAC-蒙特雷目前缺乏一種方法來衡量作戰效果以及作為軍隊和聯合部隊的融合是否正在實現。因此,本項目的重點是制定一個概念性的評估框架,以確定在PC21演習中測試的多域作戰(MDO)任務中SoS的作戰有效性。這個框架將集中在那些被證明可以減少傳感器到射手(S2S)時間的技術的行動有效性,以便在聯合MDO任務中消滅一個固定的目標。
該小組確定,對某一特定能力的功能分解,結合用于開發MOE的Langford綜合框架的修改版,將產生描述該特定能力的行動有效性的良好措施。為了將衡量標準轉化為價值分數,團隊使用了構建價值尺度的理想范圍方法,該方法為每個衡量標準建立了一個從最好到最壞的情況,使其具有適應任何能力的靈活性。帕內爾的搖擺加權法被用來量化利益相關者對每個蘭福衍生的MOE的重要性,以確定能力的每個MOE的加權價值分數(WVS)。WVS相加得出總分,這就提供了對運營有效性的最終評估。然后,該團隊產生了一個行動有效性量表,向利益相關者說明他們的能力在這個量表中的得分情況。
該項目最后針對概念評估框架應用了PC21用例,以衡量其在生成與用例中的能力最相關的MOE以及單一行動有效性分數方面的穩健性。該模型的最終驗證將在目前計劃于2021年10月開始的PC21期間進行。
總之,該團隊使用系統工程流程建立了一個概念性評估框架系統,該系統將使TRAC-Monterey有能力評估PC21期間展示的新的創新SoS技術的作戰能力。該團隊開發了一個利益相關者分析,一個由利益相關者衍生的目標層次,一個功能分解,以及一個創建良好措施的過程,將這些措施轉化為價值分數,量化措施的重要性,并將產生的價值匯總為一個單一的、行動有效性分數。該框架將為利益相關者提供信息,使他們能夠就進一步的技術開發做出明智的決定。TRAC-Monterey還可以將本研究中制定的衡量標準作為指南,在整個PC21和未來的PC活動中收集相關信息。
建議 TRAC 在 PC21 期間對照 S2S 用例 1-1 驗證概念性評估框架。還應采用其他用例來測試框架的靈活性和可用性。還建議進一步研究行動效率的認知方面,以及如何利用這些信息來擴大本評估框架的范圍。TRAC和JMC向團隊表示,PC的努力將有助于改寫聯合行動的理論。
聯合戰區級模擬--全球行動(JTLS-GO?)是一個互動的、網絡化的、聯合和聯盟的兵棋推演系統。JTLS-GO從全球一體化作戰層面的角度表現軍民決策環境,其中包括空中、陸地、海上、太空、情報、后勤和特種作戰。這些環境可以被配置和擴展,以考察國家戰略(SN)、戰略戰區(ST)、作戰(OP)和戰術(TA)戰爭層面的聯合任務、行動、功能和使命。重要的是要理解JTLS-GO主要是一個作戰層面的模擬。
執行概述描述了模擬的基本操作,包括主要的軟件程序和構成系統的眾多小型支持程序。這些不同的、相互依賴的程序相互配合,以準備場景,運行模擬,并分析結果。本概述還提供了運行模擬系統所需的軟件和標準硬件的描述。JTLS-GO可以在一臺或幾臺計算機上同時運行,可以是單一的,也可以是多個分布的站點,這取決于訓練或分析環境和場景的大小。它是獨立于戰場的,不需要編程知識就可以執行。第4頁強調了一些新的模擬能力和特點。
JTLS-GO是一個復雜的模擬,專門設計來研究不斷變化的戰爭模式。來自作戰指揮部(COCOMs)、軍種、后備部隊、國民警衛隊、戰斗支援機構(CSA)、聯合參謀部(JS)和聯合特遣部隊(JTFs),包括北約和聯盟軍隊的領導人和主管都了解這一點,因為他們必須在國家戰略的背景下不斷地規劃、計劃、預算和執行財政政策。
本出版物針對JTLS-GO的主要版本和維護版本進行了更新和修訂。
我們的同行競爭者,利用科學、技術和信息環境的新興趨勢,已經投資于挑戰美國和重塑全球秩序的戰略和能力。他們采用創新的方法來挑戰美國和盟國在所有領域、電磁波譜和信息環境中的利益。他們經常尋求通過在武裝沖突門檻以下采取模糊的行動來實現其目標。在武裝沖突中,武器技術、傳感器、通信和信息處理方面的進步使這些對手能夠形成對峙能力,以在時間、空間和功能上將聯合部隊分開。為了應對這些挑戰,履行美國陸軍在保護國家和確保其重要利益方面的陸軍職責,陸軍正在調整其組織、訓練、教育、人員和裝備的方式,以應對這些圍繞多域作戰(MDO)概念的未來威脅。
陸軍的情報工作本質上是多領域的,因為它從多個領域收集情報,而且可以接觸到合作伙伴,彌補陸軍信息收集能力的不足。在競爭中,陸軍情報能力作為掌握作戰環境和了解威脅能力和脆弱性的一個關鍵因素。在整個競爭過程中,陸軍情報部門為每個梯隊的指揮官和參謀人員提供所需的態勢感知,以便在所有領域、電磁頻譜和信息環境中可視化和指揮戰斗,并在決策空間匯集內外部能力。
這個概念描述了關鍵的挑戰、解決方案和所需的支持能力,以使陸軍情報部門能夠在整個競爭過程中支持MDO,以完成戰役目標并保護美國國家利益。它是陸軍情報部隊、組織和能力現代化活動的基礎。這個概念還確定了對其他支持和輔助功能的影響。它將為其他概念的發展、實驗、能力發展活動和其他未來的部隊現代化努力提供信息,以實現MDO AimPoint部隊。
陸軍未來司令部的情報概念為陸軍情報部隊的現代化活動提供了一個規劃,以支持陸軍2035年的MDO AimPoint部隊在整個競爭過程中與同行競爭對手進行多域作戰。它提供了支持2035年以后MDO AimPoint部隊的見解。這個概念是對2017年美國陸軍情報功能概念中概述想法的修改:情報作為一個單位在所有領域的運作,有廣泛的合作伙伴投入。這個概念擴展了這些想法,以解決陸軍在進行大規模作戰行動中的頭號差距:支持遠距離精確射擊的深度傳感。領導陸軍情報現代化的舉措是組織上的變化,以提供旅級戰斗隊以上梯隊的能力,以及支持深層探測問題的四個物資解決方案。
支持MDO AimPoint Force 2035的組織變化使戰區陸軍、軍團和師級指揮官能夠以遠程精確火力和其他效果塑造深度機動和火力區域。在戰區層面,軍事情報旅的能力得到提高,新的多域特遣部隊擁有軍事情報能力。遠征軍的軍事情報旅被重新利用和組織,以支持軍團和師的指揮官,而不是最大限度地向下支持旅級戰斗隊。
支持MDO AimPoint Force 2035的物資變化,即將所有的傳感器、所有的火力、所有的指揮和控制節點與適當的局面融合在一起,對威脅進行近乎實時的瞄準定位。多域傳感系統提供了一個未來的空中情報、監視和偵察系統系列,從非常低的高度到低地球軌道,它支持戰術和作戰層面的目標定位,促進遠距離地對地射擊。地面層系統整合了選定的信號情報、電子戰和網絡空間能力,使指揮官能夠在網絡空間和電磁頻譜中競爭并獲勝。戰術情報定位接入節點利用空間、高空、空中和地面傳感器,直接向火力系統提供目標,并為支持指揮和控制的目標定位和形勢理解提供多學科情報支持。最后,通過分布式共同地面系統,陸軍提高了情報周期的速度、精度和準確性。
伴隨著這些舉措的是士兵培訓和人才管理方法,旨在最大限度地提高對目標定位和決策的情報支持。從2028年MDO AimPoint部隊開始,陸軍情報部門將繼續改進軍事情報隊伍,以支持2035年及以后的MDO AimPoint部隊。
這一概念確定了陸軍情報部門將如何轉型,以支持陸軍和聯合部隊在整個競爭過程中與同行競爭者抗衡。
圖1 邏輯圖
當代和新出現的安全威脅以及從最近的軍事行動中吸取的教訓已經證明,為了在傳統的物理領域(陸地、空中、海上、太空)實現作戰目標,確保在非物理領域的主導地位至關重要,即網絡空間、電磁環境(EME)和信息環境。因此,除了物理作戰領域之外,在非物理領域取得優勢的能力對于實現戰役的軍事和非軍事目標具有決定性意義。
作戰人員將面臨消除沖突,協作,同步和整合行動的挑戰,以實現并發揮協同效應以應對多種威脅,其中可能還包括來自每個作戰領域對手的武裝沖突閾值以下的行動,包括非物質的。
本文探討了作戰環境聯合情報準備 (JIPOE) 作為支持聯合作戰規劃、執行和評估的主要工具的作用和意義,從而有助于多域作戰 (MDO) 的同步和協調。在這方面,基于政治、軍事、經濟、信息、基礎設施-物理、時間(PMESII-PT)方法,不可能將對當代作戰環境(OE)的分析局限于物理領域及其與非物理領域的關系。相反,作者們相信,確定一種合適的方法來關注在非物理領域單獨或聯合進行的活動影響,它們在PMESII-PT所有領域的相互融合和實際操作領域的相關性,將大大有助于友軍識別和評估對手的重心(COG)、關鍵弱點、意圖和行動路線(COAs)的能力,包括各自的指標。JIPOE將為聯合部隊指揮官(JFC)提供OE的整體視圖,將與戰術層面密切合作、共享和開發,通過結合不同領域的能力,應該能夠壓倒對手的部隊。這種集中控制和分散執行的方法將有助于在作戰和戰術層面之間產生協同效應。
未來的軍事行動將以物理和非物理層面的融合為特征,眾多不同的行為者將在其中運作。任何部隊都需要適應極其復雜的作戰環境和大量的作戰變量,需要適應性地使用一系列武器系統來產生致命和非致命的效果。因此,除了物理作戰領域(即陸地、空中、海上和太空),在非物理領域(網絡空間、EME、信息環境)取得優勢的能力將對實現戰役的軍事和非軍事目標具有決定性意義[1, p.280]。
OE是影響能力運用和影響指揮官決策的條件、環境和影響因素的綜合體[2, p.3]。了解OE的因素和條件不僅是所有計劃活動,特別是行動設計的關鍵前提,也是友軍保護和許多其他相關任務的關鍵前提[3, p.41]。
JIPOE代表了一種系統的方法,用于分析有關OE和對手的信息。它可以應用于全部的軍事行動。指揮官和參謀部在危機背景、根本原因和具體動態方面,對戰區形成共同的理解和整體的看法。它使指揮官能夠直觀地看到問題的程度,以及他們如何塑造和改變OE,使之成為他們的優勢,這將為他們的決策提供信息[2, p.3-5]。
JIPOE產品極大地促進了聯合(即作戰)層面的軍事行動的規劃和執行。現代軍隊,特別是北大西洋公約組織(NATO)內的軍隊,幾十年來在討論跨領域(陸、海、空)的協調行動時一直使用聯合這一術語。如今,由于全球安全環境的巨大變化以及俄羅斯和中國日益增長的野心,為了挑戰潛在的同行對手,需要采取多領域的方法。在傳統的戰爭門檻下,盟國及其合作伙伴已經受到了跨越物理和非物理領域的持續攻擊[4, p.2]。MDO一詞不同于聯合行動,因為它旨在關注跨越多個領域的行動,而不考慮服務的歸屬,不一定是由多個部門進行的行動[5,p.49]。
圖1:支持聯合行動的當前JIPOE流程的可視化。
圖2:提出支持MDO的JIPOE過程方案。