亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國陸軍作戰能力發展指揮部分析中心創建了一種算法,用于估計定位、導航和授時(PNT)傳感器和系統的目標位置誤差。即使系統用來尋找感興趣目標的確切算法是專有的或未知的,該算法也可以使用。該程序具有高度的模塊化和可擴展性;因此,相對來說,添加各種不同的PNT傳感器、系統和目標是很容易的。然而,目前僅有的傳感器是使用到達時間差、到達頻率差和/或到達角度的信號智能系統,以及可能有激光測距儀和測量校準源輻射的光子計數探測器的電子光學/紅外(EO/IR)系統。

美國防部有各種傳感器,作戰人員可以用它們來尋找位置。一些傳感器可以讓作戰人員找到潛在的威脅。如果作戰人員目前不能使用GPS,他們可能需要使用傳感器來確定自己的位置。傳感器可以單獨使用,也可以在更復雜的情況下連接在一起,以估計一個感興趣的物體的位置。為了確保美國陸軍為作戰人員配備能夠執行任務的傳感器,建立一個能夠估計這些位置傳感器在任何情況下的性能的模型至關重要。

美國陸軍作戰能力發展司令部(DEVCOM)分析中心需要一種算法來估計正在進行定位、導航和授時(PNT)計算的各種傳感器和系統的性能。DEVCOM分析中心(DAC)開發了多用途通用簡化TLE計算器(MUSTC)模型,該模型可用于查找各種傳感器的目標位置誤差(TLE),進而用于定位各種物體。

MUSTC算法并不要求用戶了解系統如何使用傳感器的測量結果來確定位置。在MUSTC軟件中添加一個新的傳感器類型所需要的只是一個模型,該模型可以估計傳感器測量的原始值,作為傳感器和目標參數以及它們的位置的函數。

為了使算法能夠確定TLE,算法需要知道所有參考傳感器和目標在場景中的位置、可能影響位置測量的變量和這些變量的不確定性,以及用戶希望為感興趣的項目計算TLE值的空間位置。然后,該算法將假定感興趣的物品在名義上位于用戶想要估計TLE的位置。一旦知道了位置,軟件就可以使用測量模型來確定傳感器將為該場景測量什么。然后,該軟件可以使用這些測量結果,以及優化算法,來確定感興趣的項目在空間指定點的TLE。

該算法的主要優點是,它可以擴展到確定來自不同傳感器類型的測量的各種不確定性如何影響總TLE,或找到感興趣的項目的位置的不確定性。

該算法的主要缺點是,由于反復調用實現優化算法的函數來計算TLE,所以計算有時會很耗時。程序可以使用許多優化算法,有些算法比其他算法快。即使程序使用一個相對較快的優化算法,如果優化算法被調用足夠多的次數,計算時間仍然會增加。DAC努力減輕這一缺點,找到了可用的最快的優化算法,但仍能產生正確的答案,將程序寫成多線程應用程序,以便利用大多數現代計算機處理器的多個核心,并試圖在最終結果的準確性和必須調用優化算法的次數之間找到最佳平衡。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告是在 FA9453-19-1-0078 資助下編寫的。首先,提出了兩種數值方法來解決通信和導航中產生的非線性優化問題。其次,開發了兩個關于機器學習模型的解決方案質量和安全性的結果。

該研究項目的目標是開發高效的大規模非線性優化算法,以解決通信和導航方面的數據分析問題。這些問題被公認為在數學上具有挑戰性,并與空軍的利益直接相關。

在資助期間,我們成功研究了兩個研究方向。首先,我們設計了大規模非線性優化問題的最佳一階方法。在這個方向上,我們提出了兩個一階方法,可以對決策變量進行近似梯度更新。這兩種方法都可以解決分散通信的多Agent優化所產生的非線性優化問題。通過將多代理優化重新表述為約束性問題,我們開發的方法可以以最佳梯度/操作者評估復雜度來解決問題。我們開發的方法也可用于解決圖像重建問題。

第二,我們分析了機器學習模型中的解決方案質量和安全問題。在這個方向上,我們完成了兩個研究結果。我們的第一個成果是關于在多集群環境下,從二元結果的條件邏輯回歸模型中計算出來的估計值的屬性。我們表明,當每個單獨的數據點被無限次復制時,來自該模型的條件最大似然估計值漸進地接近最大似然估計值。我們的第二個結果是關于安全的矩陣乘法問題,我們設計了一種準確和安全地進行分布式矩陣乘法的方法。我們的安全協議可以確保在進行這種矩陣乘法的通信過程中沒有任何信息被泄露。

付費5元查看完整內容

美國陸軍未來司令部的士兵致命性(SL)跨職能小組(CFT)正在研究通過頭戴式和武器式能力的組合來增強下馬步兵的新方法。根據SLCFT的指示,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室的研究人員探索了加強輔助目標識別能力的技術,作為陸軍下一代智能班組武器計劃的一部分。

敵對環境中涉及潛在目標的復雜決策必須由下馬的士兵做出,以保持戰術優勢。這些決定可能是人工智能(AI)技術的強大信息,如AI支持的火力或指揮和控制決策輔助工具。例如,一個士兵發射武器是一個明確的跡象,表明該地區有一個敵對的目標。然而,一個士兵在環境中追蹤一個潛在的目標,然后放下他們的武器,這是一個模糊的、隱含的跡象,表明該目標受到關注,但最終被該士兵認為不是一個直接的威脅。在近距離作戰的環境中,與士兵狀態相關的隱性標記數據(如光電視頻、位置信息或火力行動)可用于輸入決策輔助工具,以得出真實的戰場背景。然而,需要對這些行動進行更徹底的檢查。此外,來自單個士兵的突發非交流行為在整個班級中的匯總可以增強戰術態勢感知。盡管它們有可能產生戰術影響,但這些狀態估計或行為指標往往不能以立即可用的形式獲得。

DEVCOM陸軍研究實驗室(ARL)的研究人員調查了一種通過機會主義感應來進行下馬士兵狀態估計的方法--一種不需要人類明確行動就能收集和推斷關鍵的真實世界數據的方法。在通過正常使用武器追蹤和攻擊移動和靜止目標時,連續獲得數據以解釋士兵的行為。這項工作中使用的士兵-武器行為分類方法主要來自人類活動識別(HAR)研究。然而,在這項工作中,為了提高行為結果的生態有效性,在眼球追蹤文獻中經常使用的實驗范式被反映出來,將眼球運動和認知推理聯系起來。具體來說,眼動跟蹤研究的一個子集的目標是收集和解釋與公開的視覺注意力有關的眼動事件(即固定、囊狀運動和追逐),這可以揭示認知過程和關于環境的客觀內容。在戰斗中,士兵們可能會將他們的目標停留在一個靜態的目標上(固定),當出現新的目標時迅速轉換目標點,有潛在的目標出現(囊狀運動),或者在潛在目標移動時跟蹤他們的目標點(平滑追擊)。

目前,頭戴式眼動跟蹤技術正在開發用于戰斗。然而,與校準誤差有關的凝視數據中的噪聲使其難以有效地使用這些數據。一個更突出的解決方案可能存在于士兵和他們的武器之間的互動中,這項工作使用傳統的HAR技術進行。執行HAR的主要方法是在一個人進行一些身體活動時,使用慣性測量單元收集時間序列數據。然后使用機器學習技術來訓練分類模型,根據數據信號預測行動。這種方法可以擴展到包括在人類與物體互動時對其運動的分類。在這種情況下,當近距離作戰的士兵與潛在的威脅進行互動時,武器的運動特征被伺機獲得,這為這些士兵在這種環境中做出的復雜決定提供了一個窗口。

論文中記錄并發表了對這一評估的全面分析。對來自動態士兵狀態估計的運動數據進行建模和分析以實現對形勢的理解。

付費5元查看完整內容

在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。

引言及與美國陸軍的相關性

無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。

為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。

城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。

第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。

圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。

付費5元查看完整內容

背景介紹

量子技術正被部署在太空中。這些系統的目標靈敏度、穩定性和精確度可能會受到相對論效應的影響,并反過來允許它們作為基本物理學的新探測器使用。

目標

  • 描述光子的定位和光學干涉測量中的重力效應

  • 確定計量學和時間保持中自旋-重力耦合的影響

  • 設計愛因斯坦等效原理(EEP)的天基全光學測試

影響

在一個新的環境中測試愛因斯坦相對論的基本前提:確定自旋與慣性和加速度相互作用的形式并設計新的測試方法

簡要敘述

1.我們引入了一個方便的形式體系來評估在一般彎曲背景上傳播的光信號相位。它使我們能夠在一般相對論背景下的大規模光學干涉測量中獲得頻率偏移和相位差之間的透明關系,并推導出單程和雙程方案中的多普勒效應的緊湊表達。我們的方案很容易適用于靜止的空間,特別是近地實驗,其中幾何形狀是用參數化的后牛頓近似法描述的。

2.非引力實驗的局部位置不變性,這需要引力紅移是愛因斯坦等效原理(EEP)的關鍵因素。引力紅移的精確測量僅在標準模型的費米子部門中嚴格約束對EEP的違反。利用光干涉測量法的建議受到一階多普勒效應的影響,它主導了測試EEP所必需的弱引力信號,使其不可行。在這里,我們提出了一個新的方案來測試EEP,它是基于雙重大距離光學干涉測量的。通過操縱在兩個地點檢測到的不同引力勢能的相移,有可能抵消一階多普勒效應,觀察到EEP所隱含的引力紅移,將其潛在的違反限制在~10-5的自然精度范圍內。我們介紹了在后牛頓框架內對這一建議的詳細分析,以及對預期信號的模擬,特別是側重于高偏心率軌道,以便區分信號和多普勒位移。

3.檢驗基礎物理學的進展依賴于我們測量超小物理量的能力。以40Ca+被困離子系統為例,我們表明用目前的技術可以測量一個極弱的合成磁場(在10-19T的規模)。這種改進的靈敏度可以用來測試影響等價原理的自旋耦合效應,如果存在的話,可能會影響擬議的糾纏光鐘陣列的性能。新穎的降噪方案是基于量子芝諾效應的,并將作為某些類別的量子優化算法中糾錯協議的一部分進行研究。

付費5元查看完整內容

摘要

《不列顛之戰:第一個綜合防空系統 》,作者是LTC Gregory P. Shipper,50頁。

不列顛戰役是唯一一場完全由空中力量進行的戰役,并取得了勝利。本專著所探討的研究問題是:英國的綜合防空系統是如何阻止德國空軍為入侵英國而設定的要求的?英國人之所以取得勝利,是因為他們的分層防御計劃給沒有護衛的德國轟炸機帶來了多個同時存在的問題,使他們無法專注于他們的指定任務。雷達的秘密使用導致英國皇家空軍有能力預先確定其時間地點,并選擇讓英國戰斗機中隊與轟炸機交戰。英國人比德國人更迅速地了解作戰環境的變化的能力,導致他們有能力在德國的決策周期內行動。約翰-博伊德上校的OODA循環概念的設計是為了幫助更好地理解不斷變化的環境,比敵人更快地提出多個問題讓他們解決,阻止他們完成任務。對今天的作戰環境來說,重要的是技術如何幫助以更快的速度處理信息,加快了解戰場的過程,并比敵人更迅速地運作。

簡介

1940年6月5日,德國總理阿道夫-希特勒正處在一個十字路口。德國軍隊剛剛迫使英國遠征軍(BEF)離開歐洲大陸,法國國家政府也已經投降。這意味著德國以相對最小的努力成功地接管了整個歐洲大陸或使之中立化。希特勒有消滅約瑟夫-斯大林和他的共產主義政府的宏偉計劃。但是,他仍然需要讓英國通過談判達成解決方案,結束西部的戰斗,這樣他就可以集中所有的精力來對付蘇聯。德國在戰時沒有能力進行兩線作戰,因為它缺乏必要的原材料資源,無法為德國的戰爭工業提供燃料。如果德國首先攻擊蘇聯,它可以獲得繼續對任何一個國家進行戰爭所需的材料。然而,如果德國先攻打英國,它就不得不犧牲自己的資源來保存戰斗力,以便日后與蘇聯作戰。希特勒選擇先攻打英國,希望能迅速取得勝利。當德國未能取得對英國的勝利時,他們將注意力轉向了東線。他們進攻蘇聯,這將是人類最大規模的軍事行動。在1940年7月1日至10月31日的短暫時間里,英國皇家空軍不畏艱險,將第一次決定性的失敗交給了德國戰爭機器。

英國人在對抗德軍的努力中取得了成功,因為他們的綜合防空系統。本文探討了英國綜合防空系統背后的網絡,它將所有使防空系統獲得成功的各種碎片和組織匯集在一起。綜合防空系統的整體成功歸功于皇家空軍(RAF)戰斗機司令部的指揮官休-道丁(AOC)的工作。他明白,保衛英國本土不受攻擊的唯一方法是將各個司令部整合到一個能夠協調其集體努力的單一控制之下。道丁的計劃基于這樣的信念,即英國人需要在德國飛機到達目標之前將其損失最大化,這是英國人在整個英國天空的戰役中取得成功的關鍵因素。道丁制定并實施了一套針對德國轟炸機編隊的防御系統,降低了他們到達目標的能力。德國戰斗機的燃料限制意味著一旦轟炸機編隊越過英吉利海峽不久,就會有有限的或沒有戰斗機的覆蓋。掌握了這個關鍵的弱點后,道丁指示他的戰斗機中隊集中力量對付沒有護航的轟炸機。德國戰爭機器遭受的損失是不可持續的。最終,德國人將他們的大部分空軍部隊從戰場上撤出,集中精力對付即將到來的蘇聯東部戰役。

道丁系統的綜合防空系統部分的設計是首創的,它使英國人能夠集中精力,減少在分配哪個航空中隊對即將到來的德國威脅發動的冗余。本文要探討的研究問題是:英國的綜合防空系統是如何阻止德國空軍設定德國入侵英國的要求的?證據支持,這場戰役的成功很大程度上屬于休-道丁空軍元帥的概念,以及他如何將各種組織組織在一起的想法,對英國人的成功至關重要。為了使他的計劃可行,道丁不得不爭取必要的資產,當時英國政府的重點是建立和裝備新的戰斗機中隊,以便在歐洲大陸上協助法國的戰爭。道丁的綜合防空計劃的總體概念并不限于對德國編隊的觀察。他還使用了第一次世界大戰期間使用的經驗和技術,將齊柏林飛機引導到高射炮(AAA)的有效射程和英國飛機的飛行路線上。

AOC道丁用來進入德國決策周期的過程從來都不是原創或獨特的。他認識到,德國人在他們所有的編隊中一直使用相同的模式,并沒有改變它們。約翰-博伊德上校觀察到,在朝鮮戰爭期間,他的中隊與共產黨的部隊作戰時,也在使用同樣的觀察方法。博伊德將他的意見總結為一個概念,即OODA(觀察、定位、決策和行動)循環。這個模型可以用來剖析英國人如何戰勝德國空軍的原因。現有的英國防空理論和在空戰開始時部署在關鍵地點的可用設備為防御計劃奠定了基礎,當德國空軍在對該島的早期空襲中展示他們的理論和戰術時,它們得到了擴展。

本研究以博伊德上校的OODA循環為比較模板,說明英國空軍司令部如何對德國的戰術進行調整,以保持他們的能力,防止德國的轟炸行動產生預期效果。在事后看來,博伊德的概念顯示了一個組織如何能夠成功地對新出現的情況作出反應,從而走在德國軍隊的前面。首先要研究的是,英國人是如何根據他們對德國人在整個第一次世界大戰期間如何進行空中作戰的觀察來設計他們的第一個理論和戰術的,以及他們如何在整個戰爭的剩余時間里根據觀察到的變化繼續進行改進。這些觀察為多層次的綜合防空計劃的發展提供了依據。它們幫助英國人將其最初有限的資產沿英國海岸線和重要的人口和戰爭物資生產中心周圍定位,防止德國人實現其戰略目標。英國人如何應對不斷變化的環境,決定了他們如何能夠發展和實施最新的理論和戰術,通過為海上入侵英國創造條件來阻止德國空軍獲得他們的戰略目標。其次,在戰時時期,英國政府讓軍隊接受了幾次大規模的預算削減和裁軍計劃。他們繼續在紙上進行防空計劃的改進,并進行討論,以進一步測試新的想法,而沒有大量預算的好處,也沒有能力實地測試多種新武器。最后,不列顛戰役是對英國人民生存的終極考驗,因為他們必須對抗一支擁有經驗豐富的飛行員的優勢空軍,這些飛行員在短短七個月內對歐洲大陸的淪陷做出了很大貢獻。

為了了解英國人是如何戰勝一支優勢的敵人空軍的,我們將把他們與博伊德上校的概念進行比較。博伊德將他的OODA概念建立在個人與環境不斷互動的基礎上,只有那些適應不斷變化的條件的人才能生存下來。英國證明,盡管德國空軍在裝備和經驗上有許多優勢,但它并不是不可戰勝的。道丁系統是世界上第一個綜合防空系統。它使盟軍的戰爭生產能力得到了保護,使人們的注意力集中在增加戰爭物資的生產上,而不是對設施的不斷維修。最后,它為英國增加了更高程度的保護,戰斗機中隊更接近他們的目標,這延長了他們飛越目標的時間。

付費5元查看完整內容

1. 簡介

機器學習(ML),從廣義上講,是一類自動優化參數以處理給定輸入并產生所需輸出的計算機算法。ML的一個經典例子是線性回歸,據此找到一條最適合(通過)一組點的線。最近的一個例子是分類任務,如用 "貓 "這樣的單字來標記一張百萬像素的圖像。

對于許多應用,ML完成了人類可以做得同樣好的任務。然而,ML在兩種情況下大放異彩:1)任務的數量巨大,例如數百萬;2)問題的維度超出了人類思維的理解。一個簡單的例子是同時實時監控成千上萬的安全攝像頭,尋找可疑的行為。也許一個ML方法可以發現異常事件,并只與人類觀察者分享這些視頻片段。更好的是,異常圖像可以被暫時貼上諸如 "1號入口處的蒙面入侵者 "之類的標簽,以幫助保安人員只關注相關的信息。

除了減少人類的負擔外,ML還可以將人類可能無法識別的復雜的相互聯系拼湊起來。例如,一個ML算法可以發現,在一百萬個銀行賬戶中,有五個賬戶的交易似乎是同步的,盡管它們沒有相互發送或接收資金,也沒有向共同的第三方發送或接收資金。

鑒于手持和固定設備的計算資源不斷增加,我們有必要想象一下,ML可以在哪些方面改變戰爭的打法。當然,ML已經對美國陸軍的科學研究產生了影響,但我們也可以很容易地想象到自主車輛和改進的監視等作戰應用。

本文件的主要目標是激勵美國陸軍和美國防部的人員思考ML可能帶來的結果,以及為實現這些結果,哪些研究投資可能是有成效的

5. 使用機器學習的ARL研究

在ARL的許多研究項目中,機器學習目前正在被使用,或者可以被使用。我們列出了一些使用ML或可能從ML中受益的研究項目。我們列出的與ML相關的ARL研究工作絕非完整。

6. 軍隊作戰應用

雖然從技術上講,機器學習自19世紀初高斯發明線性回歸以來就一直存在,但我們相信,ML的最新進展將以我們目前無法想象的方式影響軍隊。在本節中,我們概述了我們認為將得到加強的軍隊行動的許多領域,以及可能采用的ML方法的種類。

6.1 軍事情報

軍事情報包括信息收集和分析,因為它涉及到指揮官做出最佳決策所需的信息。由于收集的數據量越來越大,處理必須自動化。需要考慮的主要問題是數據的數量、速度、真實性和多樣性。大量的數據(又稱大數據)需要在許多計算節點上對數據進行智能分配。速度要求快速計算和網絡連接到數據流。真實性是對信息來源和異常檢測的信任問題。多樣性相當于使用許多不同的ML算法的不同訓練模型的應用。我們在本小節中概述了不同類型的數據和分析要求。

6.1.1 自然語言處理

讓計算機從從各種媒體來源收集到的大型文本數據庫中提煉出重要的概念和文本部分,有很大的好處。最近報道的另一個ML突破是不同語言之間的精確文本翻譯。 軍隊的一個獨特挑戰是翻譯不常見的語言,因此專業翻譯人員較少。在人工通用智能(AGI)領域,一些團體聲稱,自然語言處理將是類似人類認知的基礎。

6.1.2 數據挖掘

鑒于人類、傳感器和代理產生的數據的激增,一個很大的問題是,除了證明其收集的直接用途之外,這些數據還包含什么剩余價值。數據挖掘可以是統計學和機器學習的努力,以發現數據中的模式,否則人類操作者就會錯過。

6.1.3 異常檢測

傳統上,異常檢測是通過首先識別已知數據的群組和描述數據的分布來進行的。然后,當新的輸入被處理時,它們被識別為屬于或不屬于原始分布。如果它們在已知分布之外,就被認為是異常的。以下許多類型的異常檢測系統可能對軍隊有用。

  • 網絡入侵檢測:超出常規的網絡流量。McPAD和PAYL是目前使用的軟件中的2個這樣的例子,它們使用了異常檢測。

  • 生活模式異常:人們的視覺和生物統計學上的行為方式與常人不同,表明他們可能正在進行一些對抗性行動。

  • 基于條件的維護:在當前生命周期中,材料/系統在其年齡段不典型的信號。

  • 士兵異常:有理由相信士兵的生物識別技術不正常。

  • 異物檢測:在已知物資數據庫中無法識別的物體的視覺效果。

6.2 自主性

6.2.1 自動目標識別

自動目標識別(ATR)是一個非常成熟的領域,已經使用機器學習幾十年了。

1)目前深度學習的進展將在多大程度上增強ATR?

2)更復雜的算法是否需要更復雜/更耗電的機載計算?

  1. ML是否能對目標的各種欺騙性的混淆行為具有魯棒性?

  2. 強化學習在多大程度上可以用來進行實時軌跡調整?

6.2.2 機器人學

機器學習在機器人學中的應用也是一個巨大的領域。ML應用領域包括傳感、導航、運動和決策。目前,傳感將從計算機視覺的所有進展中受益。導航,除了使用標準的GPS之外,還可以從自我運動中受益,也就是基于自身感知的運動估計。運動可以被學習,而不是規劃,這不僅會導致更快的開發時間,而且還能在新的環境或受損的模式下重新適應(例如,失去四條腿中的一條)。最后,隨著機器人的數量超過人類操作員的數量,機器人將有必要自行決定如何執行其規定的任務。它將不得不做出這樣的決定:"由于電池電量不足,我是否要回到大本營?"或者 "我是否繼續前進一點,然后自我毀滅?"

6.2.3 自愈性

除了機器人技術,人們最終希望任何系統在損壞或不能滿負荷工作時能夠自我糾正。這需要在某種程度上的智能,以自主診斷缺陷和問題,并利用其可用的資源糾正這些問題。

6.2.4 倫理

在通過機器學習來學習自主權的情況下,問題將是:"自主系統將如何應對X情況?" 這里的問題是,對于一個擁有潛在致命武力的系統,我們怎么能確定它只會正確合法地使用武力?我們推測,在機器學習的算法擁有使用致命武力的實際能力之前,必須對其進行廣泛的測試,即使它與人類的環形決策相聯系。

6.3 通過玩游戲來訓練智能代理

近年來,大量的研究都在研究使用機器學習來自主地玩各種視頻游戲。在某些情況下,報告的算法現在已經超過了人類玩游戲的水平。在其他情況下,仍然存在著處理長期記憶的挑戰。對于美國空軍來說,智能代理已經成功地在以戰斗為中心的飛行模擬器上進行了訓練,這些模擬器密切模仿現實生活。陸軍的問題包括以下內容。

  • 智能代理能否附加到機器人平臺上?

  • 智能在多大程度上可以通用于處理現實生活與視頻游戲中遇到的各種情況?

  • 當我們可能不理解一個訓練有素的代理的邏輯時,我們能相信它的行動嗎?

  • 代理在多大程度上能夠與人類合作?

6.4 網絡安全

在過去的十年里,機器學習在網絡安全方面發揮了不可或缺的作用。具體來說,ML可以用于異常檢測,檢測已知威脅的特定模式,并辨別網絡行為是否可能由惡意代理產生。隨著該領域的不斷加強,問題是ML是否能使安全比對手領先一步,因為對手可能利用ML來混淆檢測。

6.5 預測和結構健康監測

一個長期的設想是,軍隊使用的每一個機械系統都有一些關于系統當前和預測健康的內部感應。相關問題如下。

  • 我們能從有限的傳感器中辨別出一個系統或系統組件的當前健康狀況嗎?

  • 機載ML能否預測一個系統或系統部件在暴露于特定環境或彈道侮辱之后的健康狀況?

6.6 健康/生物信息學

6.6.1 序列挖掘

隨著基因組序列的數量繼續呈指數級增長,比較在現場獲得的序列所需的計算工作可能變得無法管理。機器學習可以通過對序列進行不同層次的分類來減少必要的比較。

6.6.2 醫學診斷

93 近年來,機器學習已經在檢測各種組織中的惡性腫瘤方面取得了長足的進步。94 它同樣可以被用來描述創傷或創傷后應激障礙(PTSD)95,并制定治療計劃。

6.7 分析

陸軍的一個重要組成部分集中在對行動、系統、研究和測試的分析上。傳統上,分析人員使用大量的工具,包括機器學習,以多維回歸、聚類和降維的形式。隨著深度學習的出現,一套新的工具應該是可能的,可以更有效地處理需要更復雜模型的大型數據集。例如,應該有可能從測試期間拍攝的視頻流中提取特征和物理屬性,這可能超過目前的標準做法。

6.8 機器學習的其他用途

  • 自適應用戶界面(AUI)和情感計算。ML可以用來確定用戶的心理和/或情緒狀態,并提供適合這種狀態的界面。此外,可變的AUI可以服務于用戶的變化。例如,一些用戶可能喜歡音頻反饋而不是視覺反饋。

  • 推薦系統。最流行的推薦系統之一是根據以前看過的電影的評分來選擇用戶想看的下一部電影(例如,所謂的 "Netflix問題")。對于軍隊來說,可以根據以前的使用情況和庫存核算的反饋來推薦后勤補給的情況。

  • 搜索引擎/信息檢索。傳統上,搜索引擎返回文件的 "點擊率"。新的范式是以簡明的形式回答用戶的問題,而不是簡單的模式匹配。

  • 情感分析。社交媒體上的流量和對環境進行訓練的各種傳感器不僅可以檢測關鍵的關鍵詞或特定物體的存在,還可以推斷出可能的攻擊的可能性。

  • 有針對性的宣傳。傳統上,宣傳是通過散發傳單來完成的,如今,宣傳可以通過社交媒體來傳播。ML的角度是如何以最有說服力的信息向正確的人口群體進行宣傳。此外,重要的是快速檢測和顛覆來自對手針對我們自己的人員/人民的宣傳。

7. 機器學習的研究差距

本研究的目標之一是確定當前研究中的差距,這些差距可能會限制ML在軍隊研究和行動中的全部潛力。本節借用了ARL運動科學家Brian Henz博士和Tien Pham博士(未發表)的戰略規劃工作。

7.1 如何將軍隊的數據/問題納入當前的方法中

傳統上,在一個特定領域采用ML的一半戰斗是弄清楚如何適應現有的工具和算法。對于陸軍所面臨的許多問題來說,這一點更為突出,與其他學術、商業或政府用途相比,這些問題可能是獨一無二的。任何數據分析員面臨的第一個問題是使數據適應他們想要使用的統計或ML模型。并非所有的數據都使用連續變量或者是一個時間序列。離散/標簽數據的管理可能非常棘手,因為標簽可能不容易被轉換成數學上的東西。在自然語言處理中的一個例子是,單詞經常被轉換為高維的單熱向量。另一個例子可能是如何將大量的維修報告轉換為對某一特定車輛在一段時間內的表現的預測。

此外,陸軍的要求超出了典型的商業部門的使用范圍,不僅需要檢測物體和人,還需要檢測他們的意圖和姿態。這將需要開發新的模型。另一個大的要求是可解釋性,正如DARPA最近的一個項目所概述的那樣:是什么因素導致ML算法做出一個特定的決定?在一個真實的事件中,如果一個ML算法在沒有人類驗證的情況下宣布一個重要目標的存在,我們能相信這一決定嗎?

7.2 高性能計算

隨著對計算要求高的ML任務的設想,開發人員正在使用多線程、并行和異構架構(GPU、多核)來加快計算速度。ML的分布式實現遠不如GPU版本常見,因為分布式計算中的節點間通信存在固有的網絡瓶頸,而且在單精度浮點性能方面,GPU相對于CPU有很大優勢。除了目前對GPU的強烈依賴,生物啟發式神經計算旨在尋找非馮-諾伊曼架構來更有效地執行ML,并可能更快。這方面的一個例子是IBM的神經形態芯片。97 未來的研究應該關注如何分配ML處理,使節點之間的網絡通信最小化。另外,像聚類這樣的無監督學習算法在多大程度上可以被映射到神經網絡中?

其他需要考慮的事情。

  • 目前的ML軟件(特定的神經網絡)在一個小型的GPU集群中表現最好。

  • 大多數基于非神經網絡的ML算法的并行性不高,或者根本就沒有并行。

  • 另一個軍隊的具體挑戰是分析基本上沒有標記的數據集(例如,用無監督學習)。手動標注集群將是一種半監督學習的形式。

7.3 獨特的尺寸、重量、功率、時間和網絡限制因素

隨著進入偏遠地區或任何遠離基地的地區,軍隊必須限制系統的尺寸、重量和功率。此外,在 "激烈的戰斗 "中,時間是關鍵。例如,人們不能在遭到槍擊時等待作戰模擬的完成。最后,在其他商業發射器占主導地位的地區,或者在限制無線電通信以提高隱蔽性的情況下,網絡帶寬可能會受到很大限制。

在這種倍受限制的環境中,機器學習將需要有效地進行,而且往往是以一種孤立的方式進行。截然相反的條件是使用大型數據庫訓練大型神經網絡,這往往是最先進的機器學習功力的情況。商業部門正在開發自動駕駛汽車,據推測將使用低功耗的計算設備(如現場可編程門陣列、移動GPU)進行自主駕駛、道路/障礙物檢測和導航。然而,陸軍將有更多的要求,包括自主傳感器和執行器、態勢感知/理解、與人類的通信/合作,以及廣泛的戰場設備。這將需要多幾個因素的計算能力和特定算法的硬件,以實現最佳的小型化和低功耗。

7.4 用雜亂的或欺騙性的數據訓練/評估模型

在混亂的環境中,操作環境預計會有比通常密度更高的靜態和動態物體。此外,人們完全期待主動欺騙以避免被發現。我們也希望能夠開發出足夠強大的算法,至少能夠意識到欺騙,并相應地調低其確定性估計。

7.5 用小的和稀疏的數據訓練一個模型

基于CNN的目標分類的突破可以部分歸功于每個物體類別的成千上萬個例子的可用性。在軍隊場景中,某些人和物體的數據可能是有限的。人們最終將需要one-hot99或multishot分類器,其中幾個有代表性的數據條目就足以學習一個新的類別。到目前為止,最好的選擇是 "知識轉移",通過調整以前訓練的模型的所有參數的子集來學習新的類別。我們的想法是,由于需要優化的參數較少,修改這些參數所需的數據也較少。

7.6 專門針對軍隊相關目標的訓練模型

即使對于我們可以產生大量圖像的目標類別(例如,友好物體),我們也需要訓練自己的模型,以便從每個類別的潛在的數千張圖像中識別軍隊相關類別。軍隊還使用商業車輛中通常不存在的其他傳感模式(例如,熱能和雷達)。因此,需要為這些非典型的傳感設備訓練模型。從根本上說,非典型傳感設備可能需要新的神經網絡拓撲結構以達到最佳的準確性和緊湊性。

7.7 將物理學納入推理中

一個值得研究的有趣領域是將模型和模擬與機器學習相結合。有很多方法可以做到這一點。例如,ML可以用來推導出模擬的起始參數。此外,ML還可以用來處理模擬的輸出。一個耐人尋味的新領域是開發基于物理學或類似物理學的模擬,使用類似ML的模型/方程。一個這樣的應用是預測 "如果?"的情景。例如,"如果我跑過這棵樹呢?接下來會發生什么?"

7.8 軟人工智能

機器學習在傳統上被認為是人工智能的硬性(即數學)表現形式。有可能最終,所有的人工智能任務都會被簡化為數學。然而,就目前而言,一些智能任務似乎更多的是基于推理或情感。對于之前描述的方法中的任務,ML并不能充分解決以下軟性人工智能的特點。

7.8.1 類似人類的推理

人類并不總是完全按邏輯推理,但他們也有能力將不完整的信息拼湊起來,做出 "最佳猜測 "的決定。幾十年來,對這種行為進行編碼一直是一個挑戰。

7.8.2 情感

情緒似乎是驅動人類達到某些目的的動機/目標功能。例如,快樂可能會導致不活動或追求生產性的創造力。另一方面,恐懼則可能會導致忍氣吞聲。計算機是否需要情感來更有效地運作,還是說它們最好擁有100%的客觀性?這既是一個哲學問題,也是一個未來的研究方向。不過現在,毫無疑問的是,在人與代理人的團隊合作中,計算機需要準確地解釋人類的情感,以實現最佳的團體結果。

7.8.3 社會交流

與人類的互動性是陸軍研究未來的首要關注點。一個類似的問題是,不同的計算機系統之間如何進行交流,而這些系統不一定是由同一個實驗室設計的。研究的一個領域是用計算機來教那些在這方面有困難的人進行社會交流。 再一次,對于人與代理的合作,代理將需要能夠參與社會互動,并在人類的陪伴下遵守社會規范。

7.8.4 創造性

創造力通常被認為是隨機合并的想法,與新的元素相結合,由一個鑒別功能決定新創造的項目的功能和/或美學。在某些方面,創造力已經被某些計算機實驗室所證明。例如,為了設計的目的,計算機可以被賦予某些方面的創造力。

7.8.5 通用智能

人工智能的最終目標是將許多狹義的智能算法合并成一個統一的智能,就像人類的頭腦一樣。75鑒于許多狹義的人工智能任務已經比人類的某些任務要好,即使是早期的所謂人工通用智能(AGI)也可能具有一些超人的能力。AGI的一個主要目標是將目前由人類執行的某些任務自動化。

7.8.6 人工超級智能

如果不提及許多哲學家的猜測,機器學習將最終能夠改進自己的編程,導致能力的指數級提高,也許會遠遠超過人類智能,那么機器學習的研究就不完整了。這些設想既是烏托邦式的104,也是烏托邦式的105。希望超級智能能夠解決世界上的許多問題。

8.結論

在這項工作中,我們回顧了機器學習的不同類別,并描述了一些更常用的方法。然后,我們指出了一小部分關于ML在ARL中的應用的例子。最后,我們預測了ML在未來可以應用于軍隊的各個領域,并概述了為實現這一結果需要解決的一些挑戰。我們希望這份文件能夠激勵未來的研究人員和決策者繼續投資于研究和開發,以充分利用ML來幫助推動美國陸軍的發展。

付費5元查看完整內容

態勢感知是作戰人員的必需能力。一種常見的監視方法是利用傳感器。電子光學/紅外(EOIR)傳感器同時使用可見光和紅外傳感器,使其能夠在光照和黑暗(日/夜)情況下使用。這些系統經常被用來探測無人駕駛飛機系統(UAS)。識別天空中的這些物體需要監測該系統的人員開展大量工作。本報告的目的是研究在紅外數據上使用卷積神經網絡來識別天空中的無人機系統圖像的可行性。本項目使用的數據是由作戰能力發展司令部軍備中心的精確瞄準和集成小組提供的

該報告考慮了來自紅外傳感器的圖像數據。這些圖像被送入一個前饋卷積神經網絡,該網絡將圖像分類為有無無人機系統。卷積模型被證明是處理這些數據的第一次嘗試。本報告提供了一個未來的方向,以便在未來進行擴展。建議包括微調這個模型,以及在這個數據集上使用其他機器學習方法,如目標檢測和 YOLO算法。

付費5元查看完整內容
北京阿比特科技有限公司