知識圖譜一直是學術工業界關注的焦點,但是知識圖譜的書籍缺非常少。南加州大學計算機科學家Mayank Kejriwal撰寫了《Domain-Specific Knowledge Graph Construction》,總共115頁圖書,包含了知識圖譜的涵義、信息抽取、實體鏈接、知識圖譜補全、知識圖譜實例等內容,值得學習閱讀!
領域知識圖譜構建
特定領域的知識圖譜已經作為一個方向開始出現,并且發展迅速。圖方法在人工智能中已經存在了很長一段時間,可以追溯到該領域最早的時代,但將大量數據自動表示為圖譜是一項相對現代的發明。隨著Web的出現,以及對更智能搜索引擎的需求,谷歌知識圖譜誕生了。谷歌知識圖譜改變了我們與搜索引擎交互的方式,盡管我們常常沒有意識到這一點。例如,用戶在搜索某個東西時不點擊某個鏈接的情況已經不再罕見;一般來說,搜索引擎本身能夠為用戶所面臨的問題提供解決方案。將傳統的搜索引擎與圖像、新聞和視頻有機地結合起來,為這些交互添加豐富的元素。
領域特定知識圖構建(KGC)是一個活躍的研究領域,最近由于機器學習技術(如深度神經網絡和單詞嵌入)取得了令人印象深刻的進展。本書將以一種引人入勝和可訪問的方式綜合Web數據上的知識圖結構。
知識圖譜示例
Google知識圖譜構建流程
目錄內容:
3 實體消歧
5 生態系統