這項工作使用來自建設性模擬的可靠數據,比較了有監督的機器學習方法,以估計空戰中發射導彈的最有效時刻。我們采用了重采樣技術來改進預測模型,分析了準確度、精確度、召回率和f1-score。事實上,我們可以發現基于決策樹的模型性能卓越,而其他算法對重采樣技術非常敏感。在未使用重采樣技術和使用重采樣技術的情況下,最佳f1-score模型的值分別為0.378和0.463,提高了22.49%。因此,如果需要,重采樣技術可以提高模型的召回率和f1-score,但準確率和精確度會略有下降。此外,通過創建基于機器學習模型的決策支持工具,有可能提高飛行員在空戰中的表現,這有助于提高攻擊任務命中特定目標的有效性。
我們的研究展示了如何將技術和數據科學實踐與用戶知識相結合,既提高任務性能,又讓用戶對所使用的系統充滿信心。在本手稿中,我們重點關注圖像分類,以及當分析師需要及時、準確地對大量圖像進行分類時出現的問題。利用著名的無監督分類算法(k-means),并將其與用戶對某些圖像的手動分類相結合,我們創建了一種半監督圖像分類方法。這種半監督分類方法比嚴格的無監督方法具有更高的準確性,而且比用戶手動標記每張圖像所花費的時間要少得多,這表明機器和人工優勢的結合比任何替代方法都能更快地產生更好的結果。
在這項工作中,我們提出了貝葉斯優化算法,用于調整大規模光子庫計算機中的超參數。我們在以前報道的實驗系統上測試了這種方法,應用于計算機視覺中的一項具有挑戰性的任務,其中對來自標準圖像識別數據庫KTH和MNIST的視頻片段的圖像識別準確率分別為91.3%和99%,用于驗證所開發的光子遞歸神經網絡(RNN)的性能。我們還將其結果與非光子RNN計算(RC)界常用的光子RNN的網格搜索和貝葉斯優化進行了比較。我們報告了以下方面的改進:(1)分類性能,準確率提高了4%;(2)收斂到最佳超參數集的時間,大約減少了30%的時間(在準確率低于1.5%的情況下可以增加一倍)。考慮到我們的光子水庫計算機的精度接近于這項任務的最先進結果,以及以天為單位的實驗超參數優化時間,這些改進被證明是系統性能的寶貴提升。此外,用貝葉斯方法對超參數空間的廣泛探索為其基本結構和參數的相對重要性提供了寶貴的見解。考慮到貝葉斯優化算法提供的所有優勢,它可能很快成為光子庫計算中超參數優化的新標準方法。
圖2-基于光子學的系統說明,創建一個具有隨機拓撲結構的光子學遞歸神經網絡,用于自動分析視頻記錄中的人類行動。SLM:空間光調制器。Pol.:偏振器。改編自[Antonik2019]。
為了解決如何利用現有數據的增長來建立有用的模型的問題,一個自動發現模型和管道的方法是有序的,它可以利用這些數據。我們已經探索了自動發現模型和管道所需的許多方面:建立一個模型知識庫和基于推薦系統方法的模型排名,通過數據集的圖形表示進行模型推薦,通過擴展基于樹的管道優化工具(TPOT)和基于強化學習的方法進行管道生成。我們探索了一種預算意識到的超參數調整算法和神經網絡的不確定性估計。我們探索了不同的訓練方法,包括無梯度優化、零點學習和持續學習。我們還解決了神經網絡架構的問題。我們將所有這些結合起來,形成了一個模塊化的自動機器學習(AutoML)系統,該系統支持廣泛的任務類型,在項目評估中一直處于前三名。
這項工作比較了有監督的機器學習方法,使用來自建設性模擬的可靠數據來估計空戰期間發射導彈的最有效時刻。我們采用了重采樣技術來改進預測模型,分析了準確性、精確性、召回率和f1-score。事實上,我們可以識別出基于決策樹的模型的顯著性能和其他算法對重采樣技術的顯著敏感性。具有最佳f1分數的模型在沒有重采樣技術和有重采樣技術的情況下,分別帶來了0.379和0.465的數值,這意味著增加了22.69%。因此,如果可取的話,重采樣技術可以提高模型的召回率和f1-score,而準確性和精確性則略有下降。因此,通過建設性模擬獲得的數據,有可能開發出基于機器學習模型的決策支持工具,這可能會改善BVR空戰中的飛行質量,提高攻擊性任務對特定目標的打擊效果。
監督下的深度學習算法正在重新定義目標檢測和分類的最先進技術。然而,訓練這些算法需要大量的數據集,而收集這些數據集通常是昂貴和耗時的。在國防和安全領域,當數據具有敏感性質時,例如軍用船只的紅外圖像,這可能變得不切實際。因此,算法的開發和訓練往往是在合成環境中進行的,但這使人懷疑解決方案對現實世界數據的通用性。
在本文中,我們研究了在不使用真實世界的紅外數據的情況下訓練紅外自動目標識別的深度學習算法。使用目標-導彈交戰模擬軟件和10個高保真計算機輔助設計模型,生成了一個長波紅外波段的海上船只紅外圖像的大型合成數據集。探索了訓練YOLOv3架構的多種方法,并隨后使用真實世界紅外數據的視頻序列進行了評估。實驗表明,用少量的半標記偽紅外圖像樣本來補充訓練數據,可以明顯提高性能。盡管沒有真實的紅外訓練數據,但在我們的真實世界測試數據上,平均精度和召回率分別達到了99%和93%的高分。為了進一步推動自動目標識別算法的發展和基準測試,本文還提供了我們的照片真實合成紅外圖像數據集。
這項工作提出了一個在歐盟項目FOLDOUT中開發的融合和跟蹤系統,旨在通過融合不同的傳感器信息和提出對監視區域內檢測到的目標自動跟蹤來促進邊防工作。FOLDOUT的重點是歐盟內部和外部地區的穿透式樹葉檢測。融合多個傳感器信號可以提高檢測的有效性,特別是在森林和其他被樹葉遮擋的地區。我們使用加權地圖(也稱為熱圖)來結合多傳感器信息;對所產生的融合目標進行跟蹤;根據對融合檢測的時間關聯的成本計算來創建或更新跟蹤。我們比較了來自單個傳感器的跟蹤結果和來自融合目標的跟蹤結果,這些數據是在模擬邊界收集的,代表了保加利亞的實際歐盟邊界。結果表明,如果根據融合后的數據而不是單個傳感器的信息進行追蹤,追蹤效果會得到加強。
邊防軍的主要興趣是在全球地圖上對監視區域內檢測到的人員進行定位和跟蹤。為了實現這一目標,首先要將不同傳感器系統觀察到的單個人的探測結果進行融合。當檢測結果相互關聯并保持一致時,就可以在一個共同的地圖上對單獨的目標進行跟蹤。
圖2:指導動作(紅線),扮演一個非法越境的場景:1.一個人通過步行越過邊境。2.該人沿著邊境小路向大路走去。3.此人停下腳步,在路上停留很長時間(可能是在等待汽車中的走私者)。4.在某一時刻離開道路,躲進樹叢中。5. 在樹葉中,該人再次回到路上(可能再次尋找汽車)
RGB和熱像儀中的人員檢測
基于深度學習的綜合物體檢測被應用于相機圖像上。深度學習方法已被證明優于以前的最先進的機器學習技術。深度神經網絡(DNNs)模仿了大腦感知和處理信息的方式。與以前的方法相比,DNNs學習了諸如人物檢測等任務所需的特征。近年來,DNN在物體檢測和分類任務上表現出突出的性能[9, 10]。在這項工作中,物體檢測是基于一個著名的DNN實現,即YOLO檢測器[11]。
PIR傳感器中的人員檢測
探測器經過調整,使被動紅外傳感器在PIR周圍7.5米的半徑內觸發人的存在。
在這項工作中,我們使用加權地圖來提供傳感器數據的層次(也稱為HeatMaps),并以邏輯和數學的方式組合它們。它的動態是完全使用不同傳感器模式的傳感器檢測假設的事件驅動。這些傳感器假設包括位置(WGS84基準)、時間戳(Unix時間戳)和權重(例如,從傳感器檢測中獲取的信心)。為了實現這一點,有兩個組件是必不可少的:加權分布圖(HeatMaps);線性意見庫。圖3顯示了這種方法的基本概念。
圖3:融合方法的基本概念(左),作為使用兩個加權分布圖(熱力圖)的例子。應用不同的衰減函數(右)來建立加權分布圖的時間動態行為。
加權分布圖(熱圖)
加權分布圖是我們數據融合方法的兩個基本組成部分中的第一個。加權地圖的基本思想是,保持和更新關于不同傳感器探測假設的時空信息。加權地圖來自于概率占用網格,但以加權的形式解釋傳入的數據。此外,還采用了時間上的衰減來模擬傳感器數據的及時行為。權重被存儲在一個可選擇分辨率的數組中,代表WGS84坐標中感興趣的矩形區域。圖3展示了用于模擬加權分布圖動態行為的可能衰減函數。
通常,加權分布圖對應于任何一種傳感器數據或傳感器模式(例如,從攝像機圖像中檢測人的邊界框)的時空。傳感器數據被攝取到一個專門的加權圖中,這導致加權圖的值根據傳入的傳感器假設的權重而增加(替換)。相對而言,衰減將及時應用到加權分布圖的值矩陣中。每次傳感器假設被攝入分布圖,它將通過重新計算加權分布圖的權重和衰減以前狀態的值來更新。
最后,線性意見庫允許我們結合多個加權分布圖,從而結合多傳感器模式,目的是減少傳感器系統的整體錯誤發現率。
線性意見庫(LOP)
我們融合方法的第二個重要組成部分是線性意見庫[8]。
每當一個加權分布圖的狀態由于新的傳感器檢測假設而被更新時,就會應用LOP。在評估了LOP之后,閾值處理使我們能夠產生警報。為了確定警報的位置,在組合值矩陣中超過閾值的區域使用分割算法(blob檢測)。這些警報是由多個傳感器假設產生的,用于為跟蹤提供必要的輸入數據,這將在下一節中描述。
為了跟蹤越境進入禁區或敏感區域的入侵者的行動,我們開發了一種基于空間和時間上關聯目標檢測的成本計算的定制算法。該跟蹤系統的工作原理是完全基于目標的位置和時間戳建立一個模型。
在第一次檢測目標時,該模型以該檢測的位置和時間戳進行初始化。軌跡模型是用以下元組定義的:???? = (????,????,????)。
如果幾個目標檢測同時發生,那么創建的模型模板數量與同時收到的檢測數量相同。后續的檢測被添加到一個給定的軌道模型中,這取決于將檢測添加到軌道中的成本。該成本被定義為傳入的檢測和軌跡候選者之間的距離。
在有多個傳入的檢測和多個軌跡候選者的情況下,已經實施了匈牙利算法[12],使檢測和軌跡之間的關聯產生最小的成本。
圖4. 人工智能對目標定位的增強:人工智能可以通過搜索目標并在發現后發出警報來增強動態目標定位周期。
開發和使用新的軍事技術是一個軍事專業人員工作的一部分。事實上,軍事歷史在很大程度上是一個技術革新的故事,士兵需要學習如何操作新系統。因此,關于整合人工智能的很多東西并不新鮮。就像坦克、飛機甚至弩一樣,隨著時間的推移,士兵們學會了使用和運用技術,工業界學會了以足夠的數量和質量生產技術,高級領導人學會了運用技術來實現戰略效果。如前所述,人工智能技術與它們的顛覆性“前輩”之間的區別在于,前者有能力改善廣泛的軍事武器、系統和應用。由于這種潛在的普遍性,幾乎所有的士兵都必須在某種程度上變得熟練,才能有效地和道德地運用AI技術。隨著這項技術在應用上的擴展,戰爭將像管理暴力一樣管理數據。
這種普遍性也提出了關于人類發展和人才管理的問題。盡管培訓計劃最終會培養出更多的知識型士兵,人事系統也會提高管理士兵的能力,但軍警人員能夠獲得知識和技能的限制仍然存在,特別是在作戰層面。盡管討論的目的不是要建立嚴格的指導方針,但討論確定了士兵需要獲得的許多知識。例如,士兵將需要知道如何策劃和培訓數據庫,而該數據庫對他們正在執行的任務有著重要作用。這樣做需要確保數據的準確、完整、一致和及時。使用這些數據需要熟練應用推薦模型卡中描述的條件,而熟練的操作有助于確保算法以有效和道德的方式執行。
當然,信任不能僅靠政策和程序來保證。指揮官、參謀員和操作員需要知道他們被信任做什么,以及他們信任系統做什么。指揮官、參謀員和操作員信任人工智能系統來識別合法目標,并避免識別非法目標。參與這一過程的人必須在使用這些信息時,既需要擊敗敵人,又必須避免友軍和非戰斗人員的傷亡。要找到這種平衡,就需要判斷人應該承擔多大的風險。
只要參與流程的人類能夠與系統進行有效的互動,由人工智能賦能的系統就能促進找到這種平衡。在將人類控制整合到機器流程中時,人們經常被迫在控制和速度之間做出選擇:強加的人類控制越多,系統的運行速度就越慢。但本研究發現這種兩難的局面是錯誤的。盡管在某些情況下,在人的控制和速度之間進行平衡可能是必要的,但如果系統要最佳地運作,人的輸入是必要的。
實現最佳性能首先要求指揮官確保參謀和操作人員了解模型能力,理解數據質量的重要性,以及洞悉模型在作戰環境中的表現。盡管它可能不會使系統更加精確或準確,但實現這些任務可使系統能夠更好地對輸出進行概率分配。第二,指揮官需要確定對任務、友軍戰斗人員和敵方非戰斗人員的風險有多大才合適。這一決定很復雜,其中關鍵任務可能是需要容忍更多的友軍和非戰斗人員傷亡。同樣,如果非戰斗人員的密度較低,即使任務不那么緊急,也可以容忍較高的風險。尋找這種平衡將是人類的工作。
但在前面描述的模糊邏輯控制器的幫助下,指揮官可以更好地確定什么時候可以信任一個人工智能系統在沒有人類監督的情況下執行一些目標定位步驟。此外,可以通過構建交互的邏輯,以找到多種不同的人機互動配置,確保系統的最佳使用,同時避免不必要的傷害。在LSCO期間,讓指揮官在需要時選擇智能和負責任地加快目標定位過程將是至關重要的,本報告中提出的設計實現了這一目標。這一成就在未來尤其重要,因為為了保護部隊并實現任務目標,指揮官將面臨大量時間敏感目標,及面臨承擔更多風險的操作條件。
在培養具有正確技能的足夠數量士兵以充分利用人工智能技術方面,仍有大量的工作。目前的人才管理計劃尚未達到管理這一挑戰的要求,盡管多個有前途的計劃準備最終滿足需求。然而,在大多數情況下,這些計劃都是為了滿足機構層面的要求,在機構層面上做出全軍采買人工智能和相關技術的決策。但是,這些技能將如何滲透到作戰陸軍,尚不清楚。
盡管人工智能在目標定位中的使用并不違反當前的戰爭法,但它確實引起了一些道德倫理問題。在所討論的目標定位系統背景下,這些倫理問題中最主要的是問責制差距和自動化偏見。第一個問題對于回答核心問題至關重要,“指揮官在什么基礎上可以信任人工智能系統,從而使指揮官可以對這些系統的使用負責?”自動化偏見和數據衛生與問責制差距有關,因為當這些問題存在時,它們會破壞指揮官可能希望實施的有意義的人類控制措施。指揮官可以通過以下方式縮小問責差距:首先,確保人員受到適當的教育、技能和培訓,以整理相關數據;其次,確保指揮官允許的風險,準確地反映完成任務與保護友軍士兵和非戰斗人員之間的平衡需求。指揮官還可以通過在機器需要更多監督時向參與該過程的人類發出信號來減少自動化偏見的機會及其潛在影響。
作為一個專業人員,不僅僅意味著要提供服務,還要在出問題時承擔責任。專業人員還必須了解各種利益相關者,包括公眾和政府及私營部門實體,如何與本行業互動和競爭。鑒于這些技術的潛力,軍事專業人員必須首先學會在技術及其應用的發展中管理預期。由于這種演變影響到專業工作的特點,軍事專業人員還必須注意專業以外的人如何重視、獎勵和支持這項工作。因此,隨著美軍繼續將人工智能和數據技術整合到各種行動中,對其專業性的考驗將在于擁有專業知識的能力,以及建立能夠繼續發展、維護和認證這種專業知識的機構,這些機構既能滿足美國人民的國防需求,又能反映他們的價值觀。
近幾十年來,國防系統的規劃已經演變成基于能力的規劃(CBP)過程。本文試圖回答兩個問題:首先,如何表達一個復雜的、真實世界的能力需求;其次,如何評估一個具有交互元素的系統是否滿足這一需求。我們建議用一套一致的模型以可追蹤的方式來表達能力需求和滿足該需求的解決方案。這些模型將目前的能力模型,具體到規劃級別和能力觀點,與系統思維方法相結合。我們的概念模型定義了環境中的防御系統,數據模型定義并組織了CBP術語,類圖定義了CBP規劃元素。通過給出一個能力參數化的例子來說明這個方法,并將其與DODAF能力觀點和通用CBP過程進行比較。我們的數據模型描述了能力在行動中是如何退化的,并將該方法擴展到能力動態。定量能力定義的目的是支持解決現實世界中相互作用的子系統,這些子系統共同實現所需的能力。
在本節中,能力被定義為執行任務的效果或功能并作為系統時,我們討論CBP;在1.2小節中進一步討論Anteroinen的分類中的第三和第五類。為了專注于軍事系統或軍事單位的結構定義和未來的數學建模,只考慮系統的物理組成部分,即人員和物資,以及他們與能力的關系。環境的影響--天氣條件、地形、周圍的基礎設施和其他軍事單位--被省略,以關注兩種力量之間的相互作用;盡管在實踐中,環境和其他更廣泛的系統問題顯然是相關的。通常情況下,CBP過程定義了環境的相關方面和軍事行動的類型,為能力需求定義、能力評估和解決方案選擇制定了可能的規劃情況集合。
一個軍事單位或一個組織由其人員和物資組成。經過組織和訓練的人員配備了適當的物資,代表、擁有或產生能力。當兩個軍事單位相互作戰時,他們會啟動自己的能力,以造成敵人的物資和人員的退化。為了定義能力需求并計劃如何作為軍事單位或系統來實施,需要解決的問題是:在與敵人的互動過程中,能力將如何演變,而敵人的能力卻鮮為人知?圖1說明了在敵人能力的作用下,自己的軍事作戰和維持能力的動態互動。我們的能力削弱了敵方的人員和物資,對敵方的能力產生了影響;而敵方的能力削弱了我們的人員和物資,對我們的能力產生了影響。外部資源,也就是供應和維持能力,維持著被削弱的人員和物資。如因果循環圖所示,敵方的能力可以與我方的能力對稱地表示。第3節的進一步建模集中在我們自己的能力上,由圖1中的虛線表示,以便更純粹地表示。
對我們自己的能力的定義說明,由人員和物資提供,表明了復雜的結構和與能力有關的功能和元素之間的相互作用。此外,真正的軍事單位,通常由較小的編隊組成,有幾種能力,由大量不同的物資和人員組成,并與環境互動。
架構被定義為 "一個系統在其環境中的基本概念或屬性,體現在其元素、關系以及設計和進化的原則中"。因此,架構描述是一種表達架構的工作產品。架構框架是在一些應用領域或社區應用架構描述的基礎。架構框架為網絡系統的復雜性管理提供了結構化的方法,使利益相關者之間能夠進行溝通,并支持未來和現有系統的系統分析和設計。企業架構的Zachman框架是這類通用框架的一個例子。DoDAF、MODAF和NAF是用于國防系統分析和定義的架構框架,特別是用于指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)。這些架構框架由觀點組成,定義了代表特定系統關注點的一組架構視圖的規則。架構視圖由一個或多個模型組成。架構框架基礎的元模型定義了不同視點中元素之間的關系。DoDAF元模型DM2有一個概念數據模型圖(DIV-1),用來向管理者和執行者傳達架構描述的高層數據構造的概念。MODAF元模型詳細定義了每個架構視圖的數據模型。
利益相關者需要適當的支持,以促進他們彼此之間以及與規劃專家團體的溝通,從而從CBP方法中獲益。軍事專家的作用不是參與復雜的工具和方法,而是為規劃過程提供重要的領域專業知識。架構框架是一個很好的工具,可以定義當前的防御系統,確定能力需求,并描述系統解決方案。不幸的是,架構框架和相關元模型的精確但復雜的機制與復雜的符號并不一定能以明顯的方式解釋能力觀點和要素之間的關系。因此,架構觀點和典型的CBP流程并沒有明顯的聯系。因此,參與能力規劃的軍事專家和決策者很少能夠加深理解,或者在沒有專門掌握這些工具和方法的人員的情況下,通過應用架構框架確定解決方案。需要對能力進行更簡單的定義,與流程兼容。
圖2提出了一個高層次的數據模型,它代表了能力定義問題的抽象。數據模型描述了能力模型類型及其關系,作為能力和防御系統建模的框架。符號的選擇是為了保持信息量,但對更多的人來說是可讀的,因此它不遵循任何特定的方法,但與SODA的認知圖譜有一些共同點。
能力的現實世界實例在圖的左邊,而概念模型類型在右邊。該模型的第一個版本已經被Koivisto和Tuukkanen應用于一個基于研發的自下而上的過程和概念性的未來系統,即認知無線電。原始模型描述,系統模型定義了物資、戰斗力和功能能力。實際上,這是一種雙向的關系:在所需能力和所需資源的驅動下建立系統模型,然后用系統模型來預測特定環境和實例中的結果。
防御系統由系統、系統要素及其相互作用組成,其突發屬性由系統、系統要素和它們的相互作用界定。圖3中的模型代表了系統層次結構中的防御系統層次。防御系統可以被看作是SoS,但我們應用一般的系統術語來保持模型的可擴展性,并為防御系統層次結構的較低層次提供合適的術語。在國防系統層次結構的任何一級,系統代表一個由系統元素組成的軍事單位:人員和物資。
圖3 國防系統在其背景下的概念系統模型。防御系統,即利益系統(SOI),被環境和其他行為者的系統所包圍。這些系統包括相互作用的系統要素人員(P)和物資(M)。子系統和系統元素之間的聯系是示范性的。
除了系統元素和它們的組織之外,還要定義功能和相應的輸出,以獲得更全面的系統定義。我們將能力定義為執行任務的效果或功能,是一種功能能力。在CBP過程中,功能能力定義了一些當前或計劃中的軍事單位或由物資和人員組成的系統的能力潛力。最終,能力發展過程必須以現實世界的軍事單位來定義系統的實施。力量要素的概念定義了最終的系統結構,也就是要生產的現實世界的軍事單位的組織。在我們的數據模型中,功能能力被安排在SOI內部,以代表系統的涌現屬性。當這種潛力或涌現被計劃為引起某種效果時,系統,具體來說是其功能能力,在計劃過程中被分配到一個任務中。此外,當軍事單位執行任務時,效果就會產生。高層數據模型的作用,如圖4,是將關鍵的術語及其關系可視化。
圖 4 基于能力的規劃中術語及其關系的高級數據模型表示
圖5中的類圖將圖3所示的概念系統模型中確定的國防系統規劃要素與圖4中的能力模型類型結合起來。由于我們關注的是國防系統,國家權力和軍事力量的要素被認為是其環境的一部分,不在圖中。然而,我們建議,國家權力也可以通過效應來表示。
圖 5 基于能力的規劃元素的統一建模語言 (UML) 類圖表示
強化學習在最近的學術和商業研究項目中的應用已經產生了能夠達到或超過人類性能水平的強大系統。本論文的目的是確定通過強化學習訓練的智能體是否能夠在小型戰斗場景中實現最佳性能。在一組計算實驗中,訓練是在一個簡單的總體層面上進行的,模擬能夠實現確定性和隨機性的戰斗模型,神經網絡的性能被驗證為質量和武力經濟性戰術原則。總的來說,神經網絡能夠學習到理想的行為,其中作戰模型和強化學習算法對性能的影響最為顯著。此外,在集結是最佳戰術的情況下,訓練時間和學習率被確定為最重要的訓練超參數。然而,當武力的經濟性是理想的時候,折扣系數是唯一有重大影響的超參數。綜上所述,本論文得出結論,強化學習為發展戰斗模擬中的智能行為提供了一種有前途的手段,它可以應用于訓練或分析領域。建議未來的研究對更大、更復雜的訓練場景進行研究,以充分了解強化學習的能力和局限性。