摘要:醫學影像分割是計算機視覺在醫學影像處理中的一個重要應用領域,其目標是從醫學影像中分割出目標區域,為后續的疾病診斷和治療提供有效的幫助。近年來深度學習技術在圖像處理方面取得了巨大進展,基于深度學習的醫學影像分割算法逐漸成為該領域研究的重點和熱點。首先敘述了計算機視覺下的醫學影像分割任務及其難點,然后重點綜述了基于深度學習的醫學影像分割算法,對當前具有代表性的相關方法進行了分類和總結,進而介紹了醫學影像分割算法常用的評價指標和數據集。最后,對該技術的發展進行了總結和展望。
利用深度學習方法對醫學影像數據進行處理分析,極大地促進了精準醫療和個性化醫療的快速發展。深度學習在醫學圖像領域的應用較為廣泛,具有多病種、多模態、多組學和多功能的特點。為便于對深度學習在醫學圖像處理領域的應用進行更深入有效的探索,本文系統綜述了相關研究進展。首先,從深度學習在影像基因組學中的應用出發,理清了深度學習在醫學影像領域應用的一般思路和現狀,將醫學影像領域分為智能診斷、療效評估和預測預后等3個模塊,并對模塊內的各病種進行總結,展示了深度學習各算法的優缺點及面臨的問題和挑戰。其次,對深度學習中出現的新思路、新方法以及對傳統方法的改進進行了闡述。最后,總結了該領域現階段面臨的問題,并對未來的研究方向做出了展望。基于深度學習的醫學圖像智能處理與分析雖然取得了一些有價值的研究成果,但還需要根據臨床的實際需求,將深度學習與經典的機器學習算法及無創并且高效的多組學數據結合起來,對深度學習的理論和方法進行深入研究。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20210206&flag=1
深度學習能自動從大樣本數據中學習獲得優良的特征表達,有效提升各種機器學習任務的性能,已廣泛應用于信號處理、計算機視覺和自然語言處理等諸多領域。基于深度學習的醫學影像智能計算是目前智慧醫療領域的研究熱點,其中深度學習方法已經應用于醫學影像處理、分析的全流程。由于醫學影像內在的特殊性、復雜性,特別是考慮到醫學影像領域普遍存在的小樣本問題,相關學習任務和應用場景對深度學習方法提出了新要求。本文以臨床常用的X射線、超聲、計算機斷層掃描和磁共振等4種影像為例,對深度學習在醫學影像中的應用現狀進行綜述, 特別面向圖像重建、病灶檢測、圖像分割、圖像配準和計算機輔助診斷這5大任務的主要深度學習方法的進展進行介紹,并對發展趨勢進行展望。
行人再識別的主要任務是利用計算機視覺對特定行人進行跨視域匹配和檢索。相比于傳統算法,由數據驅 動的深度學習方法所提取的特征更能表征行人之間的區分性。對行人再識別的背景及研究歷史、主要面臨的挑 戰、主要方法、數據集及評價指標進行了梳理和總結。主要從特征表達、局部特征、生成對抗網絡三個方面對行人 再識別的算法進行分析,列舉了行人再識別9個常用數據集、3個評價標準和14種典型方法在 Market1501數據集 上取得的準確率,最后對行人再識別的未來研究方向進行展望。
目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。
語義圖像分割任務包括將圖像的每個像素分類為一個實例,其中每個實例對應一個類。這個任務是場景理解或更好地解釋圖像的全局上下文概念的一部分。在醫學圖像分析領域,圖像分割可用于圖像引導干預、放療或改進的放射診斷。本綜述將基于深度學習的醫學和非醫學圖像分割解決方案分為六大組:深度架構、基于數據合成、基于損失函數、排序模型、弱監督和多任務方法,并對每一組的貢獻進行全面綜述。然后,針對每一組,我們分析了每一組的不同,并討論了當前方法的局限性和未來語義圖像分割的研究方向。
摘要:近年來,基于深度學習的表面缺陷檢測技術廣泛應用在各種工業場景中.本文對近年來基于深度學習的表面缺陷檢測方法進行了梳理,根據數據標簽的不同將其分為全監督學習模型方法、無監督學習模型方法和其他方法三大類,并對各種典型方法進一步細分歸類和對比分析,總結了每種方法的優缺點和應用場景.本文探討了表面缺陷檢測中三個關鍵問題,介紹了工業表面缺陷常用數據集.最后,對表面缺陷檢測的未來發展趨勢進行了展望.
摘要: 目標檢測算法應用廣泛,一直是計算機視覺領域備受關注的研究熱點。近年來,隨著深度學習的發展,3D圖像的目標檢測研究取得了巨大的突破。與2D目標檢測相比,3D目標檢測結合了深度信息,能夠提供目標的位置、方向和大小等空間場景信息,在自動駕駛和機器人領域發展迅速。文中首先對基于深度學習的2D目標檢測算法進行概述;其次根據圖像、激光雷達、多傳感器等不同數據采集方式,分析目前具有代表性和開創性的3D目標檢測算法;結合自動駕駛的應用場景,對比分析不同 3D 目標檢測算法的性能、優勢和局限性;最后總結了3D目標檢測的應用意義以及待解決的問題,并對 3D 目標檢測的發展方向和新的挑戰進行了討論和展望。