由于該領域的多重進展,計算機視覺系統在過去二十年中取得了快速進步。隨著這些系統越來越多地部署在高風險的現實應用中,迫切需要確保它們不會傳播或放大歷史或人工整理數據中的任何歧視性傾向,或無意中從虛假的相關性中學習到偏見。本文提供了關于公平性的全面綜述,總結并揭示了計算機視覺背景下的最新趨勢和成功。我們討論的話題包括:
所提出的描述應幫助研究人員理解在計算機視覺中識別和緩解偏見的重要性、該領域的現狀,并識別未來研究的潛在方向。
計算機視覺領域多年來經歷了多次重大進展。機器學習和統計方法的引入引發了對視覺識別的極大興趣和進步,例如[1, 2, 3],這最終激發了最近在使用神經網絡[4, 5, 6]和大規模數據集[7, 8]的深度學習方法方面的諸多進展。識別問題的快速進展也激發了對各種其他問題的正確方法和模型的探索,例如用于圖像分割的U-Net [9]或用于圖像合成的潛在擴散模型[10]。 然而,機器學習和統計方法依賴于可以引發、傳播或放大統計偏差的訓練數據集和損失函數。當這些偏差與人們相關的敏感保護屬性(例如種族、性別、年齡或民族)相關時,這些偏差是不受歡迎的。學習這些固有相關性或依賴于這些屬性的虛假相關性的模型可能會產生不同的結果,從而導致倫理或法律問題[11, 12]。公平性和偏差緩解的目標[13, 14]是防止或最小化此類偏差對模型決策的影響。 為了使計算機視覺系統廣泛采用、接受和信任,有必要避免社會不平等并提高其可靠性。這激發了對公平性和偏差問題的關注,旨在開發能夠公平地為社會服務的負責任的視覺識別和相關系統。從早期揭示圖像描述[15]或面部識別[16]偏見的研究,到最近在各種任務中緩解偏見的努力[14, 17, 18, 19],在研究公平性和提出緩解計算機視覺偏見方法方面,已經有大量的工作。本文綜述了這方面的文獻以及機器學習系統在大規模數據集上訓練并應用于社會偏見相關問題的相關問題。 本文首先介紹了公平性的符號、起源和定義,同時總結了與更廣泛的機器學習文獻中公平性研究的共性。然后,我們簡要討論了先前在發現和分析計算機視覺數據集和模型中的偏見方面的工作。接下來,我們綜合了用于研究偏見及其緩解的提出的方法和數據集。最后,我們討論了在多模態基礎模型中發現和緩解偏見的當前趨勢以及該領域的未解問題。該綜述旨在為新研究提供快速參考和起點,適應或設計新方法以最大限度地提高新興計算機視覺模型的公平性。 計算機視覺模型中公平性研究與其他領域(如表格數據和圖表)相比有何不同?公平性的總體框架包括量化模型對不同類別敏感保護屬性群體的不同比例結果,并提出緩解這些差異的方法。例如,COMPAS[20]是一個常用于分析機器學習公平性的表格數據集,其中將種族作為敏感保護屬性,包括為分類變量。相比之下,計算機視覺數據集通常缺乏對敏感屬性的明確分類標簽。這些屬性通常隱含在輸入圖像像素的組合和模型要推斷的特定任務目標屬性中。例如,在沒有偏見緩解的情況下,訓練預測人類活動(如烹飪與不烹飪)的計算機視覺模型可能會對不同性別的人物圖像預測出不同的比例[21]。挑戰在于解開與性別相關的人物外觀和正在執行的活動的影響。由于這一目標很難實現,計算機視覺中的偏見緩解提出了表格數據集中不存在的獨特挑戰。這證明了對計算機視覺方法進行全面綜述的必要性,同時簡要回顧了更一般的公平性文獻。對于機器學習公平性的全面綜述,我們推薦閱讀Mehrabi等人[22]、Pessach和Shmueli[23]、Le Quy等人[24]、Caton和Haas[25]的文獻。或許與我們更相關和互補的是Parraga等人[26]最近的綜述,該綜述側重于視覺與語言模型。相比之下,我們的綜述更全面地總結了與傳統計算機視覺任務(如圖像分類、目標檢測、活動識別和面部識別與分析)相關的公平性文獻。 計算機視覺的另一個挑戰是缺乏對敏感保護屬性的明確標簽的訪問。通常,計算機視覺數據集中沒有明確注釋或由圖像中的個人提供的人口變量(如性別、種族或民族)信息。因此,這些數據集上的大多數注釋只能被視為基于數據注釋者感知判斷的代理值。此外,Scheuerman和Brubaker[29]認為,科技工作者和科學家在定義計算機視覺數據集中的人物身份類別方面也發揮了重要作用。因此,之前的研究中對性別等人口標記的研究僅作為二元變量,種族則通常作為一組離散類別進行研究。本綜述中總結的幾項工作承認了其中一些問題,但總體領域應在這種背景下進行評估。 除了這些問題之外,由于偏見的性質、數據集和任務的多樣性以及模型性能和公平性之間的權衡,導航計算機視覺中的公平性和偏見緩解挑戰仍然是一項復雜的工作。本文綜述了核心計算機視覺任務,并確定了實現每項任務的公平性和緩解偏見所面臨的主要挑戰。圖1展示了計算機視覺系統中普遍存在的人口偏見和不公平類型。表1和表2廣泛總結了計算機視覺文獻中開發的特定任務去偏方法以及用于研究偏見和公平性的數據集。在第4節和第5節中可以找到對偏見緩解的常用方法的詳細概述以及按偏見屬性和任務分類的數據集的全面討論。
最近的技術進步增強了我們收集和分析豐富多模態數據(如語音、視頻和眼動)的能力,以更好地改進學習和訓練體驗。盡管之前的綜述已經關注了多模態處理流程的部分內容(如概念模型和數據融合),但尚未有關于多模態學習和訓練環境方法的全面文獻綜述。本文提供了對這些環境中的研究方法的深入分析,提出了一個涵蓋該領域最新方法進展的分類法和框架,并根據五個模態組對多模態領域進行了描述:自然語言、視頻、傳感器、人本中心和環境日志。我們引入了一種新的數據融合類別——中級融合(mid fusion),以及一種用于優化文獻綜述的基于圖的技術,稱為引文圖剪枝。我們的分析表明,利用多種模態可以更全面地理解學習者和受訓者的行為和結果。即使多模態未能提高預測準確性,它通常也能揭示模式,以情境化和解釋單模態數據,揭示單一模態可能遺漏的細微差別。然而,仍需進一步研究以彌合多模態學習和訓練研究與基礎AI研究之間的差距。
1 引言與背景
1.1 簡史
隨著技術進步推動學習科學的發展,教育和訓練課程的個性化正在不斷推進,以滿足學習者和受訓者的獨特需求。這種轉變由數據驅動的方法支撐,這些方法已被整合到學習分析領域[61]。學習分析專注于收集和評估學習者和受訓者的行為數據——特別是他們在學習和訓練任務中的表現[94, 166]。例如,智能輔導系統如Practical Algebra Tutor [78]專注于診斷學生錯誤,開放式環境如Betty’s Brain [84]自適應地支架學習,而教師反饋工具(如[72, 124])則通過提供學生行為的洞察來幫助教育者改進教學。 學習分析中的一個核心研究問題是,哪些類型的數據對于深入了解學習者的行為和表現,以及在不同情境下促進學生學習和訓練提供有意義的支持是必要的?[108, 151]。最初,數據收集和分析的范圍受到教育環境中可用技術和計算方法的限制。早期的學習分析主要分析基于計算機環境的日志數據,將學生的行為與其數字交互建立關聯,從而為該領域的許多現代理論和方法奠定了基礎[71, 108]。 傳感器和數據收集技術的進步正將學習分析擴展到傳統的基于日志的分析之外[108]。在實際的學習空間中,日志數據不足以捕捉所有學習者的行為、情感狀態和協作行為。研究人員現在整合了額外的數據收集設備,如用于捕捉物理互動的視頻、用于記錄對話的麥克風、用于檢測壓力水平的生物傳感器和用于跟蹤注意力的眼動儀[151]。這種豐富的數據收集提供了對學生情感、認知、心理運動和元認知狀態的更全面理解,推進了多模態學習分析(MMLA)[12, 13, 158]。經過十年的研究,MMLA已經成熟,并通過期刊專題[52, 96, 109]、會議[60]、編輯書籍[64]和系統綜述[4, 22, 39, 50, 100, 130, 158]得到了廣泛傳播。本文基于這一堅實的基礎,重點關注MMLA中的應用研究方法。1.2 相關工作最近的MMLA研究、調查和綜述通過不同的視角探索了MMLA的全貌:多模態數據融合[22]、概念模型和分類法[50]、統計和定性評估[121, 131]、虛擬現實[118]、技術和數據工程[26]以及倫理考量[4]。我們的綜述集中在多模態學習和訓練環境中支持數據收集和分析的應用方法,特別關注使用學習理論收集、融合、分析和解釋多模態數據的方法。我們擴展和修改了現有的分類法,以反映MMLA的最新進展。 Di Mitri等人[50]提出了多模態學習分析模型(MLeAM),這是一個概念框架,概述了MMLA中行為、數據、機器學習和反饋之間的關系。該框架提供了一種分類法,并引入了數據可觀測性(data observability)的概念,將可量化的輸入證據與推斷的注釋(如情感、認知)區分開來。可觀測性線劃分了這些領域,對于MMLA研究中從輸入到假設的AI介導轉化至關重要。Chango等人[22]調查了MMLA中的融合方法,將研究按融合類型和在多模態管道中的應用階段進行分類。他們提出了三種融合類型:早期融合(特征級整合)、后期融合(決策級整合)和混合融合(兩者的結合)。這一分類澄清了融合方法及其在教育數據挖掘中的相關性。 整合了這兩項調查的見解后,我們提出了一種聚焦于特征可觀測性的分類法,區分感官數據和人類推斷的注釋。這一改進的分類方案精煉了我們對MMLA中數據融合的理解,并在第2節中展示了一個精細的分類法。
1.3 本綜述的范圍
在本文中,我們將數據收集媒介定義為一種獨特的原始數據流(如視頻、音頻、光體積描記(PPG)傳感器)。模態是從一個或多個數據流中派生出的獨特屬性,每個流傳達不同的信息,即使來自相同的媒介[108]。模態組是通過歸納編碼派生出的傳達相似信息的模態的獨立集合(見圖1)。多模態是多種模態或多種數據流的組合。例如,同一視頻數據流可以用來派生情感和姿勢模態,情感模態可以從音頻和視頻流中派生。這兩個例子都被認為是多模態的。我們在文中將“論文”和“作品”交替使用,包括會議和期刊之外的出版物(如書籍和書籍章節)。我們的定義旨在描述我們綜述的范圍,而不是建立“通用”的多模態和多模態分析的定義。 我們的綜述包括所有未被排除標準(見附錄B.2.2)排除的文獻搜索結果中的論文。這包括“順帶”進行的多模態學習和訓練分析。例如,一篇專注于多模態創作環境的論文,如果在此過程中進行了多模態學習分析,也會被納入。我們感興趣的是多模態分析所使用的方法,而不僅僅是其作為主要研究焦點的研究。我們審查了跨越多種媒介和模態的數據收集和分析的研究,包括完全物理環境(如物理治療)、混合現實環境(如基于假人的護理模擬)以及在線教育平臺(如基于計算機的物理教學)。值得注意的是,由于當前虛擬現實環境在教育環境中的可擴展性挑戰[37],我們的綜述排除了虛擬現實環境。
1.4 貢獻本文對多模態學習和訓練環境的方法進行了系統的文獻綜述,并做出了以下幾個新穎的貢獻:
當前的人工智能(AI)模型通常通過精細的參數調整和優化技術來提升性能。然而,模型背后的基本設計原則相對較少受到關注,這可能限制我們對其潛力和局限性的理解。本綜述探討了塑造現代AI模型的多樣化設計靈感,即腦啟發的人工智能(BIAI)。我們提出了一個分類框架,將BIAI方法分為物理結構啟發型和人類行為啟發型模型。我們還審視了不同BIAI模型在實際應用中的表現,突出其實際優勢和部署挑戰。通過深入探討這些領域,我們提供了新的見解,并提出了推動創新和解決當前領域內空白的未來研究方向。本綜述為研究人員和從業者提供了BIAI領域的全面概覽,幫助他們利用其潛力,加速AI開發的進步。
1 引言
人工智能(AI)的一個基本目標是創造能夠像人類一樣學習和思考的機器。為了實現這一目標,人工學習器在多個領域中取得了顯著的里程碑,包括目標和語音識別【131, 151】、圖像處理【115】、機器人技術【50】、醫學數據分析【161】、自然語言處理(NLP)【114】等。這些成功加速了AI的發展,使其在某些領域能夠與人類匹敵甚至超越。例如,AI模型現在在某些特定任務中表現優于人類,如語言翻譯【134】、圖像識別【63】甚至戰略游戲如國際象棋和圍棋【155】。最近,許多公司提出了一系列能夠理解圖像、音頻、視頻和文本的多模態模型,其能力類似于人類【3, 7, 169】。這種快速的進步彰顯了AI在各個領域中的變革潛力,推動了技術能實現的邊界。然而,旨在創造具有類似人類思維和推理能力的機器的一般AI方法在可擴展性、魯棒性、能效、可解釋性、學習效率和適應性方面仍然存在局限性【98】。 人類大腦被認為是最復雜的信息處理系統,能夠解決諸如學習、推理和感知等復雜任務。基于對人腦研究的最新進展,研究人員正在將神經科學的見解整合到AI系統中,旨在開發能夠更接近人類行為的感知、推理和行動的腦啟發人工智能(BIAI)系統【128, 163】。這一努力源于對生物智能的基本原理的理解,并希望利用這些原理來構建更智能、適應性更強和更魯棒的AI系統。什么是腦啟發人工智能(BIAI)?BIAI指的是從人類大腦和神經系統的生物結構、功能和原理中獲得靈感的AI系統和算法。它專注于復制或模仿生物體中觀察到的復雜過程和功能,以在人工系統中實現更類似于人類或大腦的行為【197】。與一般AI算法相比,BIAI通常集中于人類行為的特定方面,如從經驗中學習、適應新環境以及關注重要信息。在這篇全面綜述中,BIAI文獻大致分為物理結構(PS)啟發型模型和人類行為(HB)啟發型模型。PS啟發型模型是指模仿生物神經元、突觸和神經回路結構的模型,用于執行諸如學習、推理和決策等任務。代表性模型包括多層感知器(MLP)、人工神經網絡(ANNs)以及最近的脈沖神經網絡(SNNs)。HB啟發型模型被定義為復制人類行為中觀察到的生物機制和過程的模型。這些模型旨在捕捉生物系統的動態,同時提供對人類如何感知、學習、適應和與環境互動的見解。注意力機制、遷移學習和強化學習是常見的人類行為啟發的深度學習方法。BIAI與一般AI的區別在于它們在AI領域中的不同方法和目標【31, 77】。具體而言,一般AI并不一定受到人類大腦具體工作方式的啟發,而是旨在更廣泛的意義上達到或甚至超越人類水平的智能。相反,設計BIAI系統的目的是復制或模仿人類認知背后的生物機制和過程。這些系統通常在圖像識別和機器人控制等任務中表現出色,但它們可能不具備人類智能的全方位能力。BIAI與傳統AI的更全面比較見表1。為什么BIAI重要?BIAI的重要性主要體現在兩個方面。一方面,BIAI在適應性、泛化能力和可解釋性等許多方面有潛力超越傳統的AI方法。另一方面,BIAI模型旨在模仿大腦的結構和功能,從而增加其生物學的合理性。這種與生物學原理的契合不僅加深了我們對智能的科學理解,也為神經科學和AI研究之間的合作創造了新的機會。本質上,通過從人類大腦——最先進的信息處理系統——中汲取靈感,研究人員正在為開發可能達到甚至超越人類能力的智能系統奠定基礎【47, 103, 125】。
人類大腦是生物復雜性的頂峰。它不僅調節所有身體功能和過程,還使高級認知能力得以實現,如思維、記憶和情感【16】。將神經科學與AI系統相結合有助于解決許多現實應用中的緊迫問題和某些瓶頸【204】。一方面,人類大腦在處理大量信息時效率極高,同時消耗的能量相對較少。模仿其架構和過程可以使AI系統在操作上同樣高效和優雅。例如,傳統機器人無法在復雜環境中及時獲取環境知識,這限制了其做出準確快速決策的能力。此外,在該領域中,低學習效率、泛化能力差、難以制定目標導向的策略以及對動態環境的慢適應性等問題仍然存在。將BIAI整合到機器人系統中可以顯著提高機器人的運動和操控能力【132】。此外,BIAI還可以應用于解決許多其他現實問題,如醫學診斷、自動駕駛汽車、聊天機器人和虛擬助手、網絡威脅檢測、輔導系統、供應鏈優化、內容創作和個性化推薦。這些應用突顯了BIAI在不同方面的廣泛影響和相關性。另一方面,理解大腦的機制不僅為我們提供了有關智能如何產生的見解,還為解決AI中的復雜問題提供了線索。通過研究生物神經網絡,研究人員可以開發更好地捕捉認知和感知復雜性的算法和架構。例如,神經網絡作為AI的基礎和基本模型之一,汲取了大腦結構和計算過程的靈感。作為現代AI的基石,神經網絡推動了醫療、金融、交通和娛樂等領域的進步。它們從數據中學習并揭示有價值的見解的能力使其成為解決復雜挑戰和推動AI創新的關鍵。此外,人類大腦具有顯著的魯棒性和適應性,能夠從經驗中學習,處理噪聲和不確定數據,并將知識泛化到新情境【41】。通過模仿大腦的彈性和適應性,BIAI旨在創造更為魯棒和多功能的AI系統。這種方法還強調了透明性、可解釋性和責任感,從而優先考慮倫理AI的發展。以生物系統為模型的智能化推動了可信賴且符合人類價值觀的AI的創建。盡管BIAI在推動AI和機器人技術方面具有巨大的潛力【102】,但它也面臨著一些挑戰和局限性。人類大腦是一個極其復雜的器官,擁有數十億的神經元和數萬億的突觸,這些神經元和突觸組織成復雜的網絡,控制著認知、感知和行為。在人工神經網絡(ANNs)中復制這種復雜性帶來了巨大的計算和工程挑戰【160】。由于人腦的復雜性,盡管經過了數十年的研究,我們對大腦的理解仍然不完整。許多大腦功能方面,如學習、記憶和意識,仍然理解不充分【152】。這種理解的缺乏使得將神經科學的見解轉化為BIAI的實際算法和架構的努力變得更加復雜。此外,BIAI模型的復雜性和不透明性妨礙了我們理解其決策過程的能力。這種明顯缺乏可解釋性和透明性的情況在安全關鍵型應用(如醫療保健和自動駕駛車輛)中引發了對責任感、偏見和可信賴性方面的重大擔憂【78, 91】。這些不足促使我們對BIAI進行全面研究。在文獻中,已有幾篇綜述論文從不同的應用場景和不同的視角調查了BIAI的算法。然而,大多數研究僅關注某一特定方面,如算法、應用場景或代價函數,缺乏對當前BIAI研究進展的詳細介紹和討論的全面綜述。在這篇綜述文章中,我們基于算法的靈感來源和學習機制對當前BIAI研究進行了分類和審視。對于每個BIAI算法,在介紹其特點和適用場景后,我們討論了其優缺點。然后,我們討論了當前BIAI模型的開放問題,并列出了幾個未來的研究方向。我們希望這篇全面綜述能為相關領域的研究人員提供有用的見解。
之前的研究涵蓋了腦啟發/類腦學習或計算范圍內的類似主題【62, 74, 132, 149】,但沒有一篇集中探討神經科學為AI模型帶來的具體知識,也沒有全面詳細地介紹BIAI系統。在【132】中,作者試圖總結腦啟發算法在智能機器人中的進展,深入探討了視覺認知、情感調節決策、肌肉骨骼機器人技術和運動控制等關鍵領域。Ou等人【122】介紹了類腦計算模型和芯片、它們的演變歷史、常見應用場景和未來前景。Hassabis等人【62】探討了AI與神經科學之間的歷史聯系,并研究了受人類和其他動物神經計算研究啟發的AI的最新進展。在【106】中,作者展示了機器學習和神經網絡如何改變動物行為和神經成像研究領域。關于人工神經網絡中的腦啟發學習,可以在【149】中找到生物學基礎和算法介紹。這篇綜述主要集中在如何從人類大腦的物理結構中學習。然而,沒有一篇綜述注意到并審視了受人類行為和學習機制啟發的AI模型。此外,他們也未全面討論AI可以從人類大腦和神經系統中學習哪些部分來設計模型。在本綜述中,我們主要回答以下問題:什么是BIAI?BIAI與一般AI有什么區別?BIAI能為我們帶來哪些優勢?我們可以從人類大腦的哪些角度來設計AI模型?哪些BIAI模型已經在現實世界中使用?引入BIAI可以進一步推動哪些研究領域?當將神經科學與AI模型相結合時,研究人員面臨哪些挑戰?當前BIAI技術中存在哪些差距,未來可以在哪些方面開展工作?通過回答這些問題,我們希望研究人員能夠加深對BIAI系統的理解,并提高他們為不同應用設計更合適的BIAI算法的能力。
本文的覆蓋范圍如圖1所示。我們的主要貢獻總結如下:
模型融合是機器學習社區中的一種高效賦能技術,它不需要收集原始訓練數據,也不需要昂貴的計算。隨著模型融合在各個領域中變得越來越普遍,全面了解現有的模型融合技術變得至關重要。然而,文獻中在系統且深入地審視這些技術方面存在顯著的空白。本綜述提供了對模型融合方法和理論的全面概述,涵蓋了它們在各個領域和場景中的應用,以及未來的研究方向。具體而言,我們首先提出了一種新的分類方法,對現有的模型融合方法進行了詳盡的討論。其次,我們討論了模型融合技術在大語言模型、多模態大語言模型以及10多個機器學習子領域中的應用,包括持續學習、多任務學習、少樣本學習等。最后,我們強調了模型融合的剩余挑戰,并討論了未來的研究方向。關于模型融合的論文完整列表請參見\url{this https URL}。
模型融合,也稱為模型合并,是一種有效的技術,通過融合多個具有不同能力的獨立模型的參數,構建一個通用模型,而無需訪問原始訓練數據或進行昂貴的計算。與模型融合最相關的概念是集成學習 [33, 109, 142, 180],因為它們都促進了知識的融合與傳遞。如圖1所示,它們之間的主要區別在于,集成學習必須保存所有的單個模型,并在推理階段融合多個模型的預測(或輸出),而模型融合則直接在參數層面進行合并,并且在推理時只有一個最終模型。這使得模型融合具備了更為吸引人的特性。盡管模型融合是一個相對年輕的課題,但它正在快速發展,并且已經在多個領域中找到了應用。例如,在基礎模型中,由不同下游任務微調的模型被合并,以增強大語言模型的能力,而具有不同風格的圖像生成模型被合并,以創建具有混合風格能力的新模型。特別是,近年來機器學習社區中的預訓練和微調檢查點數量呈指數級增長,包括開源庫如Huggingface [182]、torchvision [111]和timm [181],這使得用戶可以輕松獲取各種能力的訓練良好的專家模型。這些豐富的模型庫進一步推動了模型融合方向的快速發展。隨著模型融合在機器學習社區的各個領域中變得越來越流行,全面了解現有模型融合技術的優勢和局限性及其在不同領域的應用變得至關重要。盡管社區已經做出了一些努力 [48, 96, 157, 214],但仍有許多空白需要填補。更具體地說,MergeKit [48]和FusionBench [157]是技術報告,MergeKit中僅討論了七種代表性方法,FusionBench中討論了八種合并方法。此外,Zheng等人 [214] 討論了“從模型中學習”的話題,并且僅在整個論文中以一個子節(一頁)提到了模型融合。與“模型融合”主題最相關的工作是 [96],但在應用方面,它只討論了模型融合在聯邦學習、微調和蒸餾三種場景中的應用。由于模型融合方向的快速發展,它也忽略了許多最近發表的文章。為了解決這些空白,本綜述旨在闡明模型融合方向中的方法、理論、應用和未來趨勢,提供相關方法的全面分類。特別是,本文通過涵蓋三個主要方面來增強對模型融合的全面理解:
**首先,現有的模型融合方法是如何分類的?**我們首先在圖2(上半部分)中提出了一個新的分類法,將現有的模型融合方法分為兩個階段(§2):預融合和融合過程中。(i)預融合方法旨在為融合創造更好的條件。它進一步分為使用線性微調實現權重空間和輸入空間的解耦,執行架構轉換以將異構模型轉換為同質模型,以及對齊權重以將它們置于同一盆地。(ii)融合過程中的方法側重于設計復雜的技術,將多個模型融合為一個。這些方法解決了在融合模型時的任務沖突和干擾問題。它們可以進一步分為基本融合方法,即執行最簡單的參數融合策略;加權融合方法,即根據特定規則計算的重要性來融合多個模型;子空間融合方法,即將多個模型投影到稀疏子空間進行融合;基于路由的方法,即在推理過程中根據輸入樣本動態融合模型;以及基于后校準的方法,即對融合后的模型進行校正。除了這些方法外,我們還討論了模型融合的理論或實證分析。
**其次,哪些應用可以從模型融合中受益?**我們詳細討論了模型融合在基礎模型(§3)和機器學習的十多個子領域(§4)中的各種用例。如圖2(下半部分)所示,模型融合可以應用于多種基礎模型,包括大語言模型、多模態大語言模型和圖像生成模型。例如,模型融合在大語言模型中可以幫助減輕不真實和有害輸出,實現知識去學習,并加速訓練。此外,模型融合還出現在不同的機器學習子領域,如持續學習、多任務/多域學習、少樣本學習和其他子領域,以解決各種挑戰。例如,在持續學習中,模型融合可以減輕舊任務的災難性遺忘。在多任務學習、多目標學習和多域學習中,它促進了知識傳遞。此外,在對抗性學習中,模型融合可以用于攻擊和防御策略。**第三,模型融合的剩余挑戰和未來研究機遇是什么?**盡管融合方法取得了進展并且應用已經得到了充分發展,但該領域仍存在許多未解決的挑戰和未來的研究方向(§5)。例如,隨著任務數量的增加,現有方法與獨立專家模型之間的性能差距顯著擴大。此外,當前的模型融合方法在融合過程中產生了巨大的內存成本,并且缺乏信任保證以及深入的理論分析。解決這些空白需要研究人員做出大量努力,以進一步推動該領域的蓬勃發展。
總而言之,本文的主要貢獻包括以下三個方面: ? 方法概述:我們提供了對模型融合技術方面的全面總結。具體而言,我們提出了一個新的分類法,將現有的模型融合方法分為兩個階段,并根據關鍵技術進一步細分每個階段的方法。此外,我們還討論了與模型融合相關的理論分析工作。 ? 應用概述:我們提供了對模型融合應用方面的全面總結。具體而言,我們探索了模型融合在基礎模型和10多個機器學習子領域中的應用,展示了模型融合如何解決這些領域中的現有挑戰。 ? 未來方向:我們概述了模型融合的幾個剩余挑戰和未來方向。我們認為,未來需要從性能差距、理論分析、信任保證、跨學科應用等方面進一步探索模型融合。 本文的主要結構如下:§1是介紹,§2從技術角度對高級模型融合方法進行了全面討論。在§3和§4中,我們分別總結了模型融合在各種基礎模型和機器學習不同子領域中的應用。剩余的挑戰和未來的研究方向在§5中討論。最后,我們在§6中對本文進行了總結。
高級模型融合方法
在本節中,我們首先在§2.1中介紹模型融合的符號表示和問題定義。然后,我們詳細闡述了高級模型融合方法(表1總結了每類方法的主要目的)。現有的模型融合技術大致可以分為以下兩類: (i) 融合前方法 在§2.2中:為模型融合提供更好的先驗知識。 (ii) 融合過程中方法 在§2.3中:通過各種策略解決任務沖突/干擾,然后執行參數融合操作。最后,我們在§2.4中總結了模型融合有效性的理論或解釋。
模型融合在基礎模型中的應用
基礎模型的出現,包括大語言模型(LLM)、多模態大語言模型(MLLM)和圖像生成模型,是近年來人工智能領域技術進步的重要標志。然而,盡管這些大型模型取得了顯著進展,但它們仍面臨諸多挑戰,如LLM生成有害內容、MLLM在融合不同模態信息時的困難,以及圖像生成模型在生成混合風格圖像時的難度。最新研究表明,模型融合技術為這些基礎模型中固有的挑戰提供了一個有前景的解決方案。表2首先簡要總結了模型融合在基礎模型中的應用。然后,§3.1、§3.2和§3.3分別詳細討論了LLM、MLLM和圖像生成模型如何從模型融合中受益。
模型融合在不同機器學習子領域的應用
模型融合是一種簡單而有效的技術,廣泛應用于機器學習的各個子領域,如持續學習、多任務學習、領域泛化、聯邦學習、少樣本學習和對抗性防御等。在本節中,我們將全面討論模型融合在不同機器學習子領域中的應用。表3提供了簡要總結,§4.1至§4.6中詳細介紹了每個應用案例。
結論
模型融合是一種簡單而有效的模型增強技術,通過結合多個模型來實現多樣化的能力。在本綜述中,我們首先全面概述了當前在模型融合領域可用的高級方法和理論。接下來,我們討論了模型融合技術在各種基礎模型(如LLM、MLLM)和機器學習的十多個子領域中的應用,強調了它們在解決各種挑戰和困難中的作用。最后,我們識別了模型融合領域中尚存的問題,并提出了六個值得進一步探索的研究方向。我們相信,作為一種高效且模塊化的模型賦能解決方案,模型融合技術將在未來的更多實際場景中發揮重要作用。
視覺與語言導航(VLN)近年來受到越來越多的關注,許多方法已經涌現出來以推動其發展。基礎模型的顯著成就已經塑造了VLN研究的挑戰和提出的方法。在本綜述中,我們提供了一種自上而下的審視方法,采用了一種原則性框架進行具身規劃和推理,并強調了利用基礎模型應對VLN挑戰的當前方法和未來機會。我們希望通過深入的討論提供有價值的資源和見解:一方面,用以標記進展里程碑,探索基礎模型在該領域的機會和潛在作用;另一方面,為基礎模型研究者整理VLN中的各種挑戰和解決方案。
開發能夠與人類及其周圍環境互動的具身代理是人工智能(AI)的長期目標之一(Nguyen et al., 2021; Duan et al., 2022)。這些AI系統在實際應用中具有巨大的潛力,可以作為多功能助手在日常生活中發揮作用,如家庭機器人(Szot et al., 2021)、自動駕駛汽車(Hu et al., 2023)和個人助理(Chu et al., 2023)。一個推進這一研究方向的正式問題設置是視覺與語言導航(VLN)(Anderson et al., 2018),這是一項多模態和協作任務,要求代理根據人類指令探索三維環境,并在各種模糊情況下進行在場通信。多年來,VLN在仿真環境(Chang et al., 2017; Savva et al., 2019; Xia et al., 2018)和實際環境(Mirowski et al., 2018; Banerjee et al., 2021)中都進行了探索,產生了許多基準測試(Anderson et al., 2018; Ku et al., 2020; Krantz et al., 2020),每個基準測試都提出了稍有不同的問題表述。
近年來,基礎模型(Bommasani et al., 2021)從早期的預訓練模型如BERT(Kenton and Toutanova, 2019)到當代的大型語言模型(LLMs)和視覺語言模型(VLMs)(Achiam et al., 2023; Radford et al., 2021)展現出了在多模態理解、推理和跨領域泛化方面的非凡能力。這些模型在海量數據上進行了預訓練,如文本、圖像、音頻和視頻,并可以進一步適應廣泛的具體應用,包括具身AI任務(Xu et al., 2024)。將這些基礎模型整合到VLN任務中標志著具身AI研究的一個關鍵進展,表現出顯著的性能提升(Chen et al., 2021b; Wang et al., 2023f; Zhou et al., 2024a)。基礎模型還為VLN領域帶來了新的機會,例如從多模態注意力學習和策略政策學習擴展到預訓練通用的視覺和語言表征,從而實現任務規劃、常識推理以及泛化到現實環境。
盡管基礎模型對VLN研究產生了最近的影響,以往關于VLN的綜述(Gu et al., 2022; Park and Kim, 2023; Wu et al., 2024)來自基礎模型時代之前,主要關注VLN基準測試和傳統方法,即缺少利用基礎模型解決VLN挑戰的現有方法和機會的全面概述。特別是隨著LLMs的出現,據我們所知,尚未有綜述討論它們在VLN任務中的應用。此外,與以前將VLN任務視為孤立的下游任務的努力不同,本綜述的目標有兩個:首先,標記進展里程碑,探索基礎模型在該領域的機會和潛在作用;其次,在系統框架內為基礎模型研究者組織VLN中的不同挑戰和解決方案。為建立這種聯系,我們采用LAW框架(Hu and Shu, 2023),其中基礎模型作為世界模型和代理模型的骨干。該框架提供了基礎模型中推理和規劃的一般景觀,并與VLN的核心挑戰緊密相關。
具體而言,在每一步導航中,AI代理感知視覺環境,接收來自人類的語言指令,并基于其對世界和人類的表征進行推理,以規劃行動并高效完成導航任務。如圖1所示,世界模型是代理理解周圍外部環境以及其行動如何改變世界狀態的抽象(Ha and Schmidhuber, 2018; Koh et al., 2021)。該模型是一個更廣泛的代理模型的一部分,該代理模型還包含一個人類模型,該模型解釋其人類伙伴的指令,從而告知代理的目標(Andreas, 2022; Ma et al., 2023)。為了回顧VLN領域不斷增長的工作并理解所取得的里程碑,我們采用自上而下的方法進行綜述,重點關注從三個角度出發的基本挑戰:
我們在圖2中展示了一個分層和細粒度的分類法,基于基礎模型討論每個模型的挑戰、解決方案和未來方向。為了組織本綜述,我們首先簡要概述該領域的背景和相關研究工作以及可用的基準測試(第2節)。我們圍繞提出的方法如何解決上述三個關鍵挑戰進行結構化審查:世界模型(第3節)、人類模型(第4節)和VLN代理(第5節)。最后,我們討論了當前的挑戰和未來的研究機會,特別是在基礎模型興起的背景下(第6節)。
一個典型的視覺與語言導航(VLN)代理在指定位置接收來自人類指令者的(一系列)語言指令。代理使用以自我為中心的視覺視角在環境中導航。通過遵循指令,代理的任務是在一系列離散視圖或較低級別的動作和控制(例如,前進0.25米)上生成軌跡,以到達目的地。如果代理到達距離目的地指定距離(例如3米)以內的位置,則任務被認為成功。此外,代理可以在導航過程中與指令者交換信息,可以請求幫助或進行自由形式的語言交流。此外,人們對VLN代理集成額外任務(如操作任務(Shridhar et al., 2020)和物體檢測(Qi et al., 2020b))的期望也在不斷增加。
如表1所示,現有的VLN基準測試可以根據幾個關鍵方面進行分類:(1)導航發生的世界,包括領域(室內或室外)和環境的具體情況。(2)涉及的人機交互類型,包括交互回合(單次或多次)、通信格式(自由對話、限制對話或多重指令)和語言粒度(動作導向或目標導向)。(3)VLN代理,包括其類型(如家庭機器人、自動駕駛車輛或自主飛行器)、動作空間(基于圖形、離散或連續)和額外任務(操作和物體檢測)。(4)數據集的收集,包括文本收集方法(人類生成或模板化)和路徑演示(人類執行或規劃生成)。有代表性的是,Anderson等人(2018)基于Matterport3D模擬器(Chang et al., 2017)創建了Room-to-Room(R2R)數據集,代理需要遵循精細的導航指令到達目標。Room-across-Room(RxR)(Ku et al., 2020)是一個多語言版本,包括英語、印地語和泰盧固語指令。它提供了更大的樣本量,并為虛擬姿態提供了時間對齊的指令,豐富了任務的語言和空間信息。Matterport3D允許VLN代理在離散環境中操作,并依賴預定義的連接圖進行導航,代理通過在相鄰節點之間的傳送在圖上移動,被稱為VLN-DE。為了使簡化的設置更現實,Krantz等人(2020)、Li等人(2022c)、Irshad等人(2021)通過將離散的R2R路徑轉移到連續空間(Savva等人,2019)提出了連續環境中的VLN(VLN-CE)。Robo-VLN(Irshad等人,2021)通過引入在機器人環境中更現實的連續動作空間的VLN,進一步縮小了模擬到現實的差距。最近的VLN基準測試經歷了幾次設計變更和期望,我們在第6節中討論這些變更。
三種主要指標用于評估導航路徑規劃性能(Anderson等人,2018):(1)導航誤差(NE),代理最終位置與目標位置之間最短路徑距離的平均值;(2)成功率(SR),最終位置足夠接近目標位置的百分比;(3)成功率加權路徑長度(SPL),通過軌跡長度標準化成功率。一些其他指標用于衡量指令遵循的忠實度和預測軌跡與真實軌跡之間的一致性,例如:(4)按長度加權的覆蓋得分(CLS)(Jain等人,2019);(5)歸一化動態時間規整(nDTW)(Ilharco等人,2019),對偏離真實軌跡的情況進行懲罰;以及(6)按成功率加權的歸一化動態時間規整(sDTW)(Ilharco等人,2019),對偏離真實軌跡的情況進行懲罰,并考慮成功率。
生成式檢索(GR)是一種新興的信息檢索范式,利用生成模型直接將查詢映射到相關的文檔標識符(DocIDs),無需傳統的查詢處理或文檔重排序。本綜述提供了對GR的全面概述,重點介紹了關鍵發展、索引和檢索策略以及面臨的挑戰。我們討論了各種文檔標識符策略,包括數字和基于字符串的標識符,并探索了不同的文檔表示方法。我們的主要貢獻在于概述未來可能對該領域產生深遠影響的研究方向:改進查詢生成的質量、探索可學習的文檔標識符、增強可擴展性以及將GR與多任務學習框架集成。通過研究最先進的GR技術及其應用,本綜述旨在提供對GR的基礎性理解,并激發在這種變革性信息檢索方法上的進一步創新。我們還將諸如論文集等補充材料公開。
信息檢索(IR)的歷史經歷了顯著的演變,從基于統計詞關系的初步方法發展到利用先進深度學習技術的復雜系統。這一進程主要圍繞兩個主要訓練目標,如圖1所示:
目標1:向量相似度
最初,IR系統依賴于稀疏檢索技術,通過諸如詞袋模型和向量空間模型(VSM)(Salton, 1983)等方法利用詞之間的統計關系。在這些模型中,文檔被表示為稀疏向量,每個維度指示詞的存在或頻率。二元獨立模型(BIM)(Robertson和Jones, 1976)的發展和詞頻-逆文檔頻率(TF-IDF)的實現是這種方法的典型代表,強調了詞出現的獨立性和頻率。
隨著技術進步,重點轉向了稠密檢索。在這一階段,詞嵌入將詞轉化為稠密向量表示,捕捉到比單純關鍵詞匹配更深層次的語義相似性和上下文關系。在這一領域的重要發展包括Word2Vec(Mikolov et al., 2013)、GloVe(Pennington et al., 2014)以及變壓器網絡的進步如BERT(Devlin et al., 2018)。這些創新最終催生了如DPR(Dense Passage Retrieval)(Karpukhin et al., 2020)等復雜模型,通過采用稠密向量嵌入來理解復雜的查詢和文檔,顯著提高了信息檢索的精度和有效性。在DPR的基礎上,REALM(Guu et al., 2020)和RAG(Lewis et al., 2020)等模型將檢索與語言模型集成,進一步優化了相關性。ColBERT-QA(Khattab et al., 2021)通過上下文化嵌入進行精確答案檢索,提升了問答能力。
目標2:直接文檔映射
隨著信息檢索從向量相似度方法轉變,它采用了生成式檢索,這是一種利用生成模型直接生成與用戶查詢相關的文本響應或文檔標識符的方法。這標志著從匹配預先存在的向量表示到動態生成直接滿足用戶需求的文本輸出的重大轉變。在預檢索階段,生成模型通過諸如Xiao等人(2022)所示的使用掩碼自編碼器(MAE)的檢索導向預訓練范式等創新方法來提高稠密檢索的效率。該模型訓練從嵌入和掩碼輸入中重建句子,在各種基準測試中表現優異。在檢索階段,Lewis等人(2020)的檢索增強生成模型通過稠密段落檢索器選擇文檔并為復雜的自然語言處理任務生成答案,取得了頂級性能。此外,Tay等人(2022)的可微搜索索引(DSI)通過將查詢直接映射到相關文檔,顯著超越了傳統方法,并在零樣本設置中表現出強大的泛化能力。在后檢索階段,深度學習技術被應用于重新排序檢索到的文檔,如Guo等人(2016)通過分析查詢和文檔之間的復雜匹配模式來優化文檔排名。類似地,Mitra等人(2017)通過融合局部和分布式文本表示,利用局部和全局上下文來提高搜索結果質量,增強了網頁搜索重排序。通過這些創新,包括雙塔模型架構和可微搜索索引(DSI)(Tay等人,2022),生成式檢索不僅有效地響應查詢,還能在語料庫中識別相關信息,利用端到端訓練架構整合深度學習過程來簡化檢索體驗。
## 2 生成式檢索簡介
### 2.1 生成式檢索的定義
前一節展示了在各種信息檢索階段應用生成模型以促進任務執行。在本綜述論文中,我們旨在定義“生成式檢索”(GR),其背景是在Tay等人(2022)的可微搜索索引架構中,其中查詢通過seq2seq模型直接映射到相關文檔,無需預檢索查詢處理或后檢索文檔重排序。本質上,端到端架構足以完成信息檢索任務。我們正式定義GR為一個系統,其中,給定用戶查詢q作為輸入,seq2seq學習模型直接輸出若干文檔標識符(docids)。每個標識符j對應于語料庫D中的特定文檔dj,表明該文檔與查詢q相關(見圖2)。要實現這一點,GR需要兩個關鍵組件:索引和檢索。
#### 2.1.1 索引
在GR索引策略中,關鍵考慮因素是索引方法和索引目標。索引方法研究的是將文檔內容與其唯一標識符建立聯系的技術,基本上掌握了將每個文檔的文本與一個獨特的docid相關聯的過程。相反,索引目標關注文檔表示策略。這涉及有關索引細節級別的決策、索引特定文檔部分的重要性、處理重復信息的方式,以及語義理解在描繪文檔內容本質中的重要性。 在GR的索引方法中,重點是簡化將文檔內容與其唯一標識符連接的過程。我們可以將索引方法的過程公式化為對兩種類型的示例進行訓練。第一個是(dj, j),其中dj ∈ D表示語料庫D中的第j個文檔,j表示對應的標識符。構建索引時,對文檔-docid配對進行訓練是至關重要的。這種配對過程是創建每個文檔內容與其在數據庫中的位置之間的可檢索鏈接的第一步,從而實現高效的存儲和檢索。 第二個訓練示例是(qi, j),在這里我們將查詢qi與其相關的docid j鏈接。通過將查詢與相關的docid配對,系統學習定義用戶搜索意圖(通過查詢表達)和文檔內容(通過docid表示)之間相關性的上下文細微差別。這種訓練有助于模型理解哪些文檔與給定查詢最相關,這種理解僅通過索引是無法實現的。這些方法包括序列到序列轉換和雙向訓練的創新方法,以及基于跨度的去噪高級技術。第二個訓練示例的詳細信息將在第3節中討論。 對于索引目標,重點轉向系統中文檔的表示方式。由于模型容量和計算資源的限制,生成式檢索模型通常不可能以整個文檔作為直接輸入進行訓練。因此,有必要考慮其他有效表示文檔的方法,包括:
#### 2.1.2 檢索
完成索引階段后,我們將注意力轉向檢索階段。經典的GR模型采用seq2seq方法自回歸地解碼候選docids,其中這些docids的表示選擇對檢索效率至關重要。 在生成式檢索的開創性工作中,Tay等人(2022)引入了非結構化原子標識符方法,為每個文檔分配唯一整數。這一基礎方法得到了結構化標識符方法的補充,包括簡單結構的字符串標識符和語義結構的標識符,為細致的文檔表示鋪平了道路。隨著該領域的發展,后續工作在標識符表示上進行了多樣化探索,探索了字符串子集、文章標題等替代方案。第3節將詳細探討和比較這些擴展及其系列中的更廣泛工作,突出它們在生成式檢索背景下的貢獻和創新。
本文對生成式檢索(GR)進行了全面的綜述和分析,探討了其發展歷史、關鍵技術、挑戰和未來方向。以下是對信息檢索領域的五項重要貢獻:
總之,這項研究提供了一個詳細的綜述,幫助讀者深入了解生成式檢索技術。它旨在激發該領域的進一步研究,并推動信息檢索技術的發展。
多模態融合致力于整合來自多種模態的信息,目的是實現更準確的預測。在包括自動駕駛和醫療診斷等廣泛的場景中,多模態融合已取得顯著進展。然而,在低質量數據環境下,多模態融合的可靠性大部分仍未被探索。本文綜述了開放多模態融合面臨的常見挑戰和最新進展,并將它們呈現在一個全面的分類體系中。從數據中心的視角,我們確定了低質量數據上多模態融合面臨的四個主要挑戰,即**(1)噪聲多模態數據,它們被不同種類的噪聲污染;(2)不完整的多模態數據,某些模態缺失;(3)不平衡的多模態數據,不同模態的質量或屬性有顯著差異;以及(4)質量變化的多模態數據**,每種模態的質量會根據不同樣本動態變化。這一新的分類體系將使研究人員能夠理解該領域的現狀,并識別出幾個潛在的研究方向。我們還討論了這一領域的開放問題以及有趣的未來研究方向。
//arxiv.org/abs/2404.18947 我們對世界的感知基于多種模態,例如觸覺、視覺、聽覺、嗅覺和味覺。即使某些感官信號不可靠,人類也能從不完美的多模態輸入中提取有用線索,并進一步拼湊出正在發生事件的整個場景【1】。隨著感知技術的發展,我們可以輕松收集各種形式的數據進行分析。為了充分釋放每種模式的價值,多模態融合作為一種有前景的范式出現,通過整合所有可用線索進行下游分析任務,以獲得精確和可靠的預測,例如醫學圖像分析、自動駕駛車輛【2】【3】和情感識別【4】【5】【6】。直觀地說,融合來自不同模式的信息提供了探索跨模態相關性并獲得更好性能的可能性。然而,人們越來越認識到,廣泛使用的AI模型常常被低質量數據中的假相關性和偏見所誤導。在現實世界中,由于意外的環境因素或傳感器問題,不同模態的質量通常存在差異。一些最近的研究實證和理論上表明,傳統的多模態融合可能在野外的低質量多模態數據上失敗,例如不平衡【7】【8】【9】【10】、噪聲【11】或甚至損壞【12】的多模態數據。為了克服這一限制,并向實際應用中強大且通用的多模態學習邁進一步,我們確定了低質量多模態數據的特性,并專注于現實世界多模態機器融合的一些獨特挑戰。我們還強調了可能有助于使多模態融合在開放環境中更加可靠和值得信賴的技術進展。在本文中,我們識別并探索了圍繞低質量多模態數據的多模態融合的四個核心技術挑戰。它們總結如下(也在圖1中直觀展示): (1) 噪聲多模態數據。第一個基本挑戰是學習如何減輕多模態數據中任意噪聲的潛在影響。高維多模態數據往往包含復雜的噪聲。多模態數據的異質性使得識別和減少潛在噪聲成為挑戰,同時也提供了通過探索不同模態之間的相關性來識別和減少噪聲的機會。 (2) 不完整的多模態數據。第二個基本挑戰是如何學習帶有部分缺失模態的多模態數據(即不完整的多模態數據)。例如,在醫療領域,即使是患有同一疾病的患者也可能選擇不同的醫療檢查,產生不完整的多模態數據。開發能夠處理不完整多模態數據的靈活且可靠的多模態學習方法是一個具有挑戰性但充滿希望的研究方向。 (3) 不平衡的多模態數據。第三個基本挑戰是如何減輕模態間偏差和差異的影響。例如,視覺模態通常比聽覺模態更有效,導致模型采取捷徑且缺乏對音頻的探索。盡管現有融合方法表現出有希望的性能,但它們可能無法在某些偏好特定模態的應用上比單模態主導模型表現更好。 (4) 質量動態變化的多模態數據。第四個基本挑戰是如何適應多模態數據的質量動態變化性質。在實踐中,由于不可預見的環境因素或傳感器問題,一個模態的質量通常會因不同樣本而變化。例如,在低光或逆光條件下,RGB圖像的信息量不如熱成像模態。因此,在實際應用中,意識到融合中的質量變化并動態整合多模態數據是必要的。 為了應對這些日益重要的多模態融合問題,本研究系統地組織了通過幾個分類體系的關鍵挑戰。與以往討論各種多模態學習任務【13】【14】的相關工作不同,這項綜述主要關注多模態學習中最基本的問題以及在下游任務中低質量多模態數據所引起的獨特挑戰,包括聚類、分類、對象檢測和語義分割。在以下部分中,我們通過最近的進展和多模態融合面臨的技術挑戰詳細介紹了這一領域:在噪聲多模態數據上的學習(第2節)、缺失模態插補(第3節)、平衡多模態融合(第4節)和動態多模態融合(第5節)。第6節提供了一個作為結論的討論。 在噪聲多模態數據上的學習
在現實世界場景中收集高質量的多模態數據不可避免地面臨著由噪聲帶來的重大挑戰。多模態數據【15】的噪聲可能源于傳感器錯誤【16】、環境干擾或傳輸損失。對于視覺模態,傳感器中的電子噪聲會導致細節丟失。此外,音頻模態可能因環境因素受到意外的扭曲。更糟糕的是,弱對齊甚至未對齊的多模態樣本也常見,這存在于更高級別的語義空間中。幸運的是,考慮多模態之間的相關性或更好地利用多模態數據可以幫助融合噪聲多模態數據。各種相關工作【16】【17】【18】表明,多模態模型超越了它們的單模態對應物。這可以歸因于多模態數據利用不同模態之間的相關性,識別和減輕潛在噪聲的能力。 多模態噪聲大致可以根據其來源分為兩類:1) 模態特定噪聲,來源于各個模態的傳感器錯誤、環境因素或傳輸;2) 跨模態噪聲,來源于未對齊的多模態對,可以被視為語義級別的噪聲。
不完整多模態學習
在真實應用中收集的多模態數據常常不完整,某些樣本的部分模態因意外因素(如設備損壞、數據傳輸和存儲損失)而缺失。例如,在面向用戶的推薦系統中,瀏覽行為歷史和信用評分信息可能并不總是對某些用戶可用【48】。同樣地,雖然結合多種模態的數據,例如磁共振成像(MRI)掃描、正電子發射斷層掃描(PET)和腦脊液(CSF)信息,可以為阿爾茨海默病提供更準確的診斷【49】【50】,但由于PET掃描的高測量成本和CSF的不適感侵入性測試,一些患者可能拒絕進行這些檢查。因此,在阿爾茨海默病診斷中常見不完整的多模態數據【51】。通常,傳統的多模態學習模型假設多模態數據的完整性,因此不能直接適用于部分模態缺失的情況。針對這一問題,旨在探索具有部分缺失模態的不完整多模態數據的信息的不完整多模態學習出現,并在近年來獲得了越來越多的研究關注【52】。在本節中,我們主要關注不完整多模態學習研究的當前進展。從是否對缺失數據進行插補的角度來看,我們將現有方法分為兩大類,包括基于插補的和無插補的不完整多模態學習,其中基于插補的方法進一步分為兩組,如圖2所示,包括實例和模態級別的插補。 平衡多模態學習
不同的模態之間緊密相關,因為它們從不同的視角描述同一概念。這一屬性激發了多模態學習的興盛,其中多種模態被整合,旨在增強對相關事件或對象的理解。然而,盡管存在自然的跨模態相關性,每種模態都有其獨特的數據來源和形式。例如,音頻數據通常表現為一維波形,而視覺數據則由像素組成的圖像構成。一方面,這種差異賦予了每種模態不同的屬性,如收斂速度,然后使得同時處理和學習所有模態變得困難,給聯合多模態學習帶來了難度。另一方面,這種差異也反映在單模態數據的質量上。盡管所有模態描述相同的概念,它們與目標事件或對象相關的信息量不同。例如,考慮一個標有會議的音視覺樣本,視覺數據明顯顯示了會議的視覺內容,這很容易被識別(見圖1c)。而相應的音頻數據是嘈雜的街道汽車聲,很難與會議標簽建立聯系。視覺模態的信息量顯然比音頻模態多。由于深度神經網絡的貪婪本性【9】,多模態模型傾向于僅依賴具有充足與目標相關信息的高質量模態,同時對其他模態欠擬合。為了應對這些挑戰并提高多模態模型的效能,最近的研究集中于策略上,以平衡模態之間的差異并增強模型的整體性能。 動態多模態融合
當前的多模態融合方法常基于一種假設,即多模態數據的質量是靜態的,這在現實世界場景中并不總是成立的。處理具有動態變化質量的多模態數據是多模態智能系統不可避免的問題。由于意外的環境因素和傳感器問題,一些模態可能會遭受可靠性差和丟失任務特定信息的問題。此外,不同模態的質量會根據場景動態變化,如圖5所示。這一現象激發了一種新的多模態學習范式,即動態多模態融合,其目標是適應多模態數據質量的動態變化并有選擇性地整合任務特定信息。在本節中,我們關注動態多模態融合的挑戰,并將當前文獻中的進展分類為三個主要方向,包括啟發式、基于注意力和意識到不確定性的動態融合。
視頻生成是一個迅速發展的研究領域,由于其廣泛的應用范圍而獲得了重大關注。這一領域的一個關鍵方面是長時視頻的生成,這呈現了獨特的挑戰和機遇。本文呈現了對長視頻生成近期進展的第一個綜述,并將其總結為兩個關鍵范式:分而治之或時間自回歸。我們深入探討了每個范式中常用的模型,包括網絡設計和條件技術的方面。此外,我們提供了數據集和評估指標的全面概述和分類,這對于推進長視頻生成研究至關重要。以現有研究的總結結束,我們還討論了這一動態領域中出現的挑戰和未來方向。我們希望這篇綜述能成為長視頻生成領域的研究人員和實踐者的重要參考。
//www.zhuanzhi.ai/paper/6fcdf09712b06f301551fccf2dc693f8
計算機視覺和人工智能領域經歷了變革性的增長,特別是在視頻生成領域。最近,開發出能夠產生高質量和逼真視頻序列的算法激增。值得注意的是,長視頻的生成,以其延長的持續時間和復雜的內容為特征,為社區提出了新的挑戰并激發了新的研究方向。
盡管如此,關于長視頻生成的研究仍存在差距。當前研究中的一個缺口是缺乏長視頻的標準定義。長短視頻之間的區別通常依賴于不同工作中的相對度量,如幀數(例如,512,1024或3376幀)或持續時間(例如,3、5分鐘),與較短視頻(例如,30、48或64幀)相比。考慮到研究標準的多樣性,我們在圖1中總結了現有研究中聲稱的長視頻生成的視頻長度,基于此我們提出了長視頻的定義。具體而言,如果視頻的持續時間超過10秒,假設標準幀率為10fps,或者等價地,如果視頻包含超過100幀,則將視頻分類為“長”視頻。這一定義旨在為各種研究背景中長視頻的識別提供一個明確的基準。
根據這一定義,長視頻長度已取得顯著進展。Yin等人(2023)提出了一種分而治之的擴散結構,專門針對長視頻進行訓練,以消除推理和訓練之間的差距,成功生成長達1024幀的視頻。Zhuang等人(2024)利用大型語言模型(LLM)的強大能力,將輸入文本擴展為腳本,以指導生成分鐘級長視頻。最近,Sora(OpenAI,2024)實現了高保真且無縫生成長達一分鐘的長視頻,特色包括多分辨率和鏡頭轉換等高質量效果。此外,許多杰出的研究在現有視頻生成模型上引入了新的結構和思想,為長視頻生成鋪平了道路。
即便如此,長視頻的生成仍面臨諸多挑戰。其核心是,長視頻的固有多維復雜性對處理和生成的硬件資源提出了巨大的需求,導致訓練和生成成本在時間和資源上的顯著增加。這提出了在現有資源約束下生成長視頻的挑戰。此外,長視頻數據集的稀缺性未能滿足訓練要求,阻止研究人員直接獲得支持長視頻模型生成的最優參數。在這種情況下,當生成的視頻長度超過某些閾值時,難以保持長視頻生成的時間一致性、連續性和多樣性。此外,當前研究表面上出現了幾種偏離現實世界既定物理定律的現象,提出了尚未被現有方法理解或直接操縱的未預見挑戰。因此,長視頻生成研究仍處于早期階段,有許多挑戰待解決,需要進一步的探索和發展。 在這項綜述中,我們對長視頻生成的現有研究進行了全面調查,旨在提供當前發展狀態的清晰概述,并為其未來進展做出貢獻。本文其余部分的組織概述在圖2中。最初,我們在第1節中定義了長視頻持續時間。第2節討論了四種不同類型的視頻生成模型和控制信號。根據第1節和第2節,我們在第3.1節和第3.2節中分別介紹了簡化長視頻生成任務的兩種常見范式:分而治之和時間自回歸。第4節和第5節討論了視頻質量改進和硬件要求。最后,本文以長視頻生成的總結和對新興趨勢及機會的討論結束。
我們詳細介紹了四種流行的視頻生成模型,包括擴散模型、自回歸模型、生成對抗網絡(GAN)和掩碼建模。 擴散模型用于視頻生成,采用了傳統擴散技術的迭代細化過程,這些技術最初是為靜態圖像設計的(Ho等,2020),適應了視頻的動態領域。這些模型的核心是從一系列隨機噪聲開始,通過一系列步驟逐步去噪,以生成一個連貫的視頻序列。每一步都由學習到的梯度指導,這些梯度能夠基于單個幀的空間內容及連續幀之間的時間關系預測性地去噪。這種方法允許生成的視頻不僅每一幀在視覺上與其前序幀一致,而且還有助于整個序列的流暢性。 在視頻生成中,空間自回歸模型(Alex Graves,2013)采用了一種獨特的方法,通過基于補丁的方法合成內容,每個補丁的創建依賴于與之前生成的補丁的空間關系。這個過程類似于遞歸算法,一次生成一個補丁。因此,它一幀一幀地構建視頻,直至完成。在這個框架內,補丁之間的空間關系至關重要,因為每個后續補丁必須與其鄰居無縫對齊,以確保整個幀在視覺上的連貫性。這種方法利用了視頻內容中固有的空間依賴性,確保視頻在時間上進展時,每一幀都與其前序幀保持一致和連續,不僅僅是在時間上,也在空間上。 GAN(生成對抗網絡)(Creswell等,2020)在使用GAN進行視頻生成的過程中,從生成器開始,將簡單的噪聲模式轉換為一系列視頻幀。這個本質上隨機的噪聲作為視頻制作的初始空白狀態。通過神經網絡的層,生成器逐漸將這個噪聲塑造成看起來像視頻幀的圖像,確保每一幀邏輯上緊跟上一幀,創造平滑的動作和可信的敘述。 這種從噪聲到視頻的演變通過來自鑒別器的反饋進行精煉,鑒別器是一個判斷生成的視頻看起來是真實還是假的組件。生成器從這個判斷中學習,隨著時間的推移提高其產生更逼真視頻的能力。最終目標是生成的視頻與真實視頻無法區分,并展示自然的動作和過渡。 掩碼建模在視頻生成中,掩碼建模利用了選擇性遮蓋視頻幀部分區域以增強模型學習過程的概念。這種技術通過在視頻的某些段落應用掩碼開始,有效地在訓練期間將它們隱藏起來。模型隨后學習基于可見的上下文和視頻的時間流動來預測這些遮蓋的部分。這個過程不僅迫使模型理解視頻內容的基本結構和動態,還提高了其生成連貫和連續視頻序列的能力。通過在部分可見數據上進行迭代訓練,模型變得擅長填補缺失的信息,確保生成的視頻保持場景和動作的自然進展。 長視頻生成范式
在長視頻生成的領域中,有限的計算資源的挑戰以及現有模型直接生成顯著持續時間視頻的能力不足,導致提出了兩個不同的范式:分而治之和時間自回歸,如圖3所示。這些范式旨在將長視頻生成的復雜任務解構為更易管理的過程,專注于創建單個幀或短片段,這些片段可以邏輯上組裝以完成長視頻的生成。 分而治之范式首先通過識別概述主要敘事的關鍵幀開始,然后生成介于關鍵幀之間的幀,以編織出一個連貫的長視頻。另一方面,時間自回歸范式,也簡稱為自回歸,采用序列方法基于先前條件生成短視頻段。這一范式旨在確保片段之間的流暢過渡,從而實現連續的長視頻敘述。與分而治之采取層次化方法通過區分故事線關鍵幀和補充填充幀不同,時間自回歸范式放棄了層次結構,轉而專注于直接生成由前序幀信息指導的詳細片段。 在這一部分,討論集中在兩個范式上,考察當前研究如何策略性地將長視頻生成任務簡化為更小、更易管理的任務。此外,它還突出了現有模型是如何被用于生成的,這些輸出隨后被組裝成完整的視頻敘述。
結論與未來方向
本文提供了長視頻生成領域最新研究進展的全面回顧。我們系統地回顧了四種視頻生成模型,并深入探討了基于這些模型生成長視頻的范式,將它們歸類為兩大類型:分而治之和自回歸。此外,我們的工作包括了長視頻生成質量特性的綜合總結。為旨在增強這些質量的現有研究提供了詳細解釋。還討論了聚焦于資源需求解決方案的研究。為了進一步推進該領域,我們識別了幾個未來發展的有希望方向。 數據資源擴展現有方法面臨著在訓練長視頻生成模型時由于長視頻數據集資源不足的挑戰,這些數據集未能滿足通過訓練數據獲得最優模型參數的要求。因此,這導致了如長視頻生成不連貫和內容重復等問題。為了解決這一問題,Gu等人(2023)提出了一種使用大型語言模型并轉換現有視頻內容以擴展數據集的方法,有效解決了數據稀缺問題。未來的研究可以探索更有效的方法來豐富長視頻數據集。 統一生成方法的開發長視頻生成的現有范式被總結為兩大類:分而治之和自回歸。雖然它們能夠利用現有模型生成長視頻,但每種方法都有其缺點。具體而言,分而治之受制于長視頻訓練數據集的稀缺性,需要顯著的生成時間,面臨在長時間跨度上預測關鍵幀的挑戰,且關鍵幀的質量顯著影響填充幀的質量。自回歸傾向于累積錯誤,并在多次推斷后遭受內容退化。總體而言,每種范式都有其優勢和弱點。未來的研究可能旨在開發一種高質量的統一范式,整合兩種范式的優勢以解決它們各自的局限性。 具有靈活長度和寬高比的生成當前的研究主要側重于訓練和創建具有預定尺寸的長視頻內容。然而,對多樣化視頻內容和模擬現實世界的日益增長的需求,要求生成具有可變長度和寬高比的視頻。Sora(OpenAI,2024)和FiT(Lu等人,2024)在這一領域取得了進展,Sora實現了靈活視頻大小的生成,FiT在圖像生成的兩個維度上展示了適應性。未來的研究可能會強調改善視頻生成的靈活性,旨在提高生成模型在現實世界設置中的適用性,并進一步激發視頻內容利用的創新。 超長視頻的生成在圖1中描述的調查中,現有研究中長視頻的最長持續時間為1小時(Skorokhodov等人,2022)。然而,在現實生活中,如電影和駕駛模擬中,視頻持續時間通常為90分鐘甚至更長。我們將這些稱為“超長視頻”。因此,未來的研究可以集中于生成超長視頻,并解決隨著持續時間延長而出現的視角轉換、角色和場景發展以及動作和情節豐富化的挑戰。 增強的可控性和現實世界模擬在長視頻生成中,當前模型在生成過程中和內部操作像黑盒一樣,使得理解錯誤的原因(如違反物理定律的錯誤,由Sora(OpenAI,2024)展示)變得具有挑戰性。現有解決方案缺乏對問題起源的洞察以及直觀、可控的補救措施。因此,需要新的方法和技術來增強我們對生成模型的理解和控制,使它們更適合于現實世界的應用。
近來,持續圖學習在非靜態環境下處理多樣的圖結構數據任務中被越來越多地采用。盡管其學習能力充滿希望,當前關于持續圖學習的研究主要集中在緩解災難性遺忘問題,而忽視了持續性能改進。為了彌補這一差距,本文旨在提供一個關于持續圖學習最近努力的全面綜述。具體而言,我們從克服災難性遺忘的角度引入了一個新的持續圖學習分類法。此外,我們系統地分析了在持續提高性能中應用這些持續圖學習方法的挑戰,然后討論可能的解決方案。最后,我們提出了與持續圖學習發展相關的開放問題和未來方向,并討論它們如何影響持續性能改進。隨著深度學習在生活各領域的成功應用,社區開始渴望更強大的通用人工智能。盡管具有前景的潛力,基于神經網絡的持續學習面臨著一個嚴重的遺忘問題:在新任務上的學習通常會導致舊任務上性能的急劇下降,這被稱為災難性遺忘(CF)[95]。持續學習(CL)[46, 122] 被認為是克服這一挑戰的有希望的方式。CL 被視為智能代理逐步獲取、更新、積累并利用知識以持續改善其在任務上性能的學習能力[46]。為了緩解災難性遺忘問題,已經提出了許多CL策略,包括重放方法、正則化方法和參數隔離方法[27]。這些策略在智能代理的可塑性和穩定性之間尋找平衡,并減輕了災難性遺忘的問題。然而,當前的CL僅考慮單個數據樣本,并忽略了它們之間普遍存在的聯系。此外,克服CF僅代表著實現持續性能改進(CPI)的一條必不可少的路徑,而不是CL的終點。圖,也稱為網絡,是一種描述和分析具有交互作用實體的通用數據表示。圖已被廣泛采用于模擬不同應用中不同類型的關系,從生物分子到社會網絡。一方面,許多數據自然以圖的形式存在,如引文網絡、社交網絡和交易網絡。另一方面,即使那些看似未連接的數據也可以人為地構建成圖,如文本中的依賴圖、圖像中的特征圖和代碼中的調用圖。最近,圖學習已成為AI和機器學習中一個有前景的領域,由于其在學習實體間錯綜復雜的關系及相應的網絡結構方面的優勢。
然而,圖學習也受到了災難性遺忘現象的困擾。將持續學習與圖學習整合顯然也是緩解災難性遺忘的流行解決方案。持續圖學習(CGL)的整合稱為持續圖學習。盡管CGL具有潛力,但由于歐幾里得數據與圖之間的結構差異,一般CL與CGL之間存在顯著或復雜的差異,包括模型、任務設置和方法。此外,CL和CGL主要關注克服災難性遺忘,而忽視了持續性能改進。盡管關于CGL的研究數量在增加,但關于CGL的綜述很少。為了彌補這一差距,本文旨在提供一個關于CGL研究努力的全面綜述,特別是討論CGL方法如何實現持續性能改進。本綜述與現有綜述的不同之處。由于CGL與持續學習和圖學習高度相關,兩個領域都有許多綜述。表1將相關綜述歸類為CL、圖學習和CGL。特別是,關于持續學習的綜述大多關注(i)特定領域,如自然語言處理(NLP)[11]、計算機視覺(CV)[97]、機器人學[71]和自主系統[109];(ii)特定任務,如分類[27, 88];以及(iii)模型,如神經網絡[8, 46, 93]。然而,它們都只從孤立的角度而非綜合角度考慮數據。此外,它們過分強調緩解災難性遺忘,而忽視了持續性能改進,這是持續學習的最終目標。關于圖學習的綜述主要關注特定技術,包括圖表示學習[12, 24, 43, 48, 49]、圖神經網絡[138, 170]和圖深度學習[9, 41, 164]。此外,這些研究大多數通常考慮樣本級別的連接數據,而忽略了特征級別和任務級別的連接。另外,它們只關注靜態圖而忽略了在動態圖上的持續學習。盡管有幾項綜述考慮了圖的動態性質,包括動態圖學習[171]、動態圖表示學習[10, 62, 145]和動態圖神經網絡[116],它們主要考慮模型是否適應新數據,而忽略了災難性遺忘問題,從而完全排除了CL。據我們所知,只有兩篇綜述全面整合了持續學習和圖學習。特別是,[35] 回顧了CGL的研究進展、潛在應用和挑戰,而 [154] 則分類了克服CGL中災難性遺忘的方法。盡管它們明確考慮了持續學習中數據之間的聯系并專注于CGL,但它們沒有構建一個全面的視角,并且未能徹底闡述CL和CGL之間的關系和差異。此外,它們主要關注緩解災難性遺忘,而忽略了持續性能改進。
貢獻。本綜述總結了CGL領域的最新研究,并討論了當前方法是否以及如何實現持續性能改進。具體來說,我們的主要貢獻如下所述:
圖1展示了本文的組織結構。第2節介紹了CL和圖學習的基礎知識。第3節提出了CGL的概述,包括形式化、動機以及克服災難性遺忘的CGL方法的新分類法。具體來說,它從特定維度比較了與CGL相關的領域。第4至第7節根據提出的分類法總結了CGL的最近進展。在每一個類別中,都調查了主要挑戰及其相應的解決方案。此外,還從知識增強和優化控制的角度討論了這些方法如何實現持續性能改進。第8節總結了現有CLG研究中使用的實際應用和數據集。此后,第9節討論了開放問題和未來方向。最后,第10節總結了本文。
持續圖學習分類法持續圖學習本質上是持續學習的一個子領域,因此,持續圖學習的目標與常規持續學習相同:通過增量學習實現模型的持續性能改進。然而,由于圖中節點之間的相互依賴性,持續圖學習在方法上比常規持續學習更為復雜和多樣化。因此,我們提出了當前持續圖學習方法的一個新分類法,該分類法分為四個類別:基于重放的方法、基于正則化的方法、基于架構的方法和基于表示的方法,如圖3所示。所提出的分類法主要關注那些明確聲稱能夠克服災難性遺忘的方法,因為當前的工作很少涉及持續性能改進。然而,我們從知識的角度討論了災難性遺忘的根本原因和持續性能改進的關鍵,并進一步討論這些方法是否以及如何實現持續性能改進。從知識的角度看,災難性遺忘的根本原因是新知識對現有知識的覆蓋。假設某一時期的知識是有限的,并且可以在持續學習的設置中學到,那么持續學習的目標就是學習所有知識并在特定任務上實現持續性能改進。基于這種考慮,持續性能改進等同于持續獲取新知識或對現有知識的補充。這通常可以通過兩種方式實現:知識增強和優化控制。知識增強指的是后續任務的知識可以增強先前任務的知識。例如,人們在低年級學習四則運算,并使用它們來解決現實世界中的問題。然而,他們不使用變量來代表數字,因此在理解對象之間的數量關系時容易犯錯。在他們高年級學習變量和方程式后,他們將使用變量方程來理解和建模對象之間的數量關系,這給他們犯錯的機會更少。在這個例子中,變量和方程是對基本四則運算的增強。知識增強可以通過學習正樣本或負樣本來實現。優化控制指的是控制學習過程。如果學習過程可以用完成度來量化,完全學習肯定優于不完全學習。類比地,那些在課堂上認真聽講并完成所有作業的學生通常會比那些在課堂上分心并留下空白作業的學生表現得更好。在本文中,我們遵循上述考慮來討論和分析當前持續圖學習方法是否以及如何實現持續性能改進。
基于重放的方法利用從先前任務中學到的知識,與當前數據一起進行聯合訓練,以避免在學習新任務時發生災難性遺忘。基于重放方法的關鍵是獲取從先前任務中學到的知識,這通常通過抽樣或生成模型來獲得。圖4總結了基于重放的方法。
基于正則化的方法通過顯式考慮拓撲結構并向損失函數添加相應的正則化項來平衡舊任務和新任務的學習,以此來規范梯度方向,從而限制對先前任務至關重要的參數的劇烈變化,以克服災難性遺忘。正則化項通常有兩種方式:約束和蒸餾。圖5總結了基于正則化的方法。
基于架構的方法通過特定架構為任務分配任務特定的參數或網絡(部分共享或不共享),以避免任務之間的干擾。這些架構可以是固定的或動態的,如圖6所示。
由于節點之間的相互依賴性以及任務間邊緣的存在,新的增量圖將會影響先前的圖,而且先前任務的知識也可以傳遞給后續任務。這種知識難以顯式地納入持續圖學習,但可以隱式地編碼在節點嵌入中,我們將此稱為基于表示的方法。其基本原理是,現有的節點嵌入已經包含了下游任務所需的所有必要信息,而通過這種方法獲得的嵌入等同于弱化的聯合訓練。一般來說,基于表示的方法可以總結為分離和傳輸,如圖7所示。
結論 由于圖在現實世界中的普遍存在和動態性質,由圖神經網絡(GNNs)代表的圖模型已在各個領域得到廣泛應用。持續圖學習是一種新興的學習范式,旨在持續學習設置中進行圖學習任務,并實現持續性能改進。在這篇綜述中,我們提供了對持續圖學習近期研究的全面回顧。我們提出了一種新的分類法,用于總結克服災難性遺忘的持續圖學習方法。此外,對于每個類別,我們簡要闡明了關鍵問題,詳細描述了當前研究中的相應實踐,并討論了實現持續性能改進的可能解決方案。進一步地,我們還提出了一些與持續性能改進相關的開放問題,并建議了相應的有前景的研究方向。我們希望這篇綜述能幫助讀者理解持續圖學習的最近進展,并對這個有前景的領域的未來發展提供一些啟示。
機器學習已經被應用于越來越多影響我們日常生活的社交相關場景,從社交媒體和電子商務到自動駕駛汽車和刑事司法。因此,開發可信、可靠的機器學習方法至關重要,以避免對個人和社會產生負面影響。本文致力于理解和提升圖機器學習的可信性,由于圖數據的復雜關系結構,這提出了獨特的挑戰。
特別地,我們認為機器學習模型的可信性在異常情況下是可靠的。例如,機器學習模型在對抗攻擊下或在子種群上的性能不應嚴重退化,分別對應對抗魯棒性或公平性問題。值得信任的圖機器學習的獨特挑戰是,在圖數據的上下文中有許多更復雜的,有時是隱式的異常條件。本文識別了未充分挖掘的異常情況,理解了識別出的異常情況下的預期模型行為,并改進了現有模型在此類異常情況下的行為。
重點關注圖神經網絡(GNN),這是一類流行的圖機器學習模型,利用了深度學習的最新進展。**本文確定了圖神經網絡的三種異常情況。**首先,受社交網絡應用場景啟發,通過一個新的實際威脅模型研究了GNN的對抗魯棒性,并研究了GNN何時以及為什么會遭受對抗攻擊。發現現有的GNN對許多現實世界的圖數據可能會被錯誤指定,并開發了一個新的框架來改進現有的模型。發現了一種與節點結構位置相關的測試節點子種群之間的GNN預測的不公平性。本文還提出了一種主動學習框架來緩解不公平問題。
人工智能(AI),特別是機器學習(ML),已經作為一種通用技術融入人類社會1,有望在許多方面重塑我們的日常生活,從社交媒體和電子商務,到自動駕駛汽車和刑事司法。然而,盡管AI和ML帶來了巨大的經驗成功和商業價值,但要更廣泛地部署這些技術,需要更好地理解ML模型對社會的影響。因此,可信的ML成為了一個越來越受歡迎的研究方向。Trustworthy ML是一個概括性的概念,包括關于ML可靠性和透明度的各種主題,如公平性、魯棒性、可解釋性等。
例如,機器學習模型可能在特定子種群上的系統表現較差,這導致了公平性問題。因此,對機器學習公平性的研究興趣迅速增加。也有現實世界的ML應用程序證明了偏見和不公平:亞馬遜的人工智能招聘工具被發現具有性別偏見[37];一種曾經廣泛使用的犯罪預測工具,矯正罪犯管理分析替代制裁(COMPAS),被發現具有種族偏見[4]。另一個例子是,ML模型已被證明對添加到數據中的小的對抗性擾動很敏感,因此容易受到對抗性攻擊[136]。例如,最先進的計算機視覺模型可能通過停車標志[45]上看似隨機的涂鴉,將停車標志識別為限速標志。
由于相關主題的多樣性和我們對可信機器學習的科學理解的文獻歷史,社區自然發展出了一套相對被廣泛接受的可信性問題的概念類別,包括但不限于公平性、魯棒性、安全性、隱私、可問責性、可解釋性和因果性。雖然這種概念分類,像任何分類系統一樣,有助于簡化對該領域的理解,但有時也會產生誤導。
首先,這種分類可以使可信機器學習的不同問題被視為孤立的主題。然而,這些不同的可信性問題可能相互沖突或相關。例如,在某些隱私和公平概念之間存在固有的沖突[32,24]。另一方面,公平性也可以與域外泛化相關[99]。此外,可解釋的ML[41]和因果推理[113]可以成為一些公平性或魯棒性問題的候選解決方案。一個扁平的概念類別分類方法無法捕捉不同主題之間豐富的相互關系。
其次,這種分類傾向于為每個主題尋找過度通用的解決方案,這可能不是解決可信機器學習問題的最佳方法。由于主題的概念性質,通常有各種直觀合理的方法來將可信性概念(例如,公平性或魯棒性)形式化為定量概念,而同時實現所有概念的可信性是不現實的。例如,Kleinberg等人[78]證明,通常不可能有一種算法同時滿足三個常見的公平標準。因此,沒有一個通用的解決方案是所有應用的萬能藥。此外,不同的可信性問題的重要性和恰當表述是高度特定于應用程序的。就可信性不同方面的重要性而言,例如,自動駕駛汽車可能會遭受對抗性攻擊,因為它在野生[45]中接受數據輸入;相比之下,對電子健康記錄(EHR)數據進行對抗性攻擊實際上要困難得多,因為這些數據由授權的醫療專家生成,并且在封閉的系統中循環。另一方面,EHR數據的隱私標準遠高于駕駛數據。在可信性的正確制定方面,研究表明,制定的選擇應該利用利益相關者在具體應用[28]中的感知。總的來說,應該將可信性作為位于特定類型的應用程序場景中的ML技術的屬性來研究,而不是作為通用ML技術的屬性。
許多現有的可信性概念可以按照這個程序重新制定。例如,機器學習模型的不公平性問題往往是由于它們在特定少數子種群上的性能下降,而與它們在多數子種群上的性能相比。機器學習的對抗漏洞是指與在干凈數據上的性能相比,它們在對抗攻擊下的性能下降。另一方面,其他一些可信性概念,如可解釋性或因果關系,不能通過上述過程直接表述。在某種程度上,不公平或不魯棒的模型將產生直接后果,而可解釋性或因果關系可以被視為緩解問題的候選解決方案(例如,不公平或不魯棒)。上述過程關注的是作為問題而不是解決方案的可信性概念。這個過程還強調應用場景的可信性問題。
為約束特定應用場景下的可信范圍,本文對圖機器學習(GML)的可信性進行了研究。現實世界的數據中存在大量的關系結構,通常以圖的形式表示。例如,社交媒體上的用戶或物聯網系統中的傳感器通過圖結構進行連接。如果在預測任務中使用得當,這種關系圖結構可以提供顯著的預測能力。GML是一個流行的機器學習技術家族,它將圖結構用于預測模型。近年來,GML在許多影響人們日常生活的應用中表現出了優異的性能。舉個常見的例子,GML在Uber Eats[65]、亞馬遜[162]和Pinterest[157]的工業推薦系統中發揮著重要作用;GML還被廣泛用于在谷歌Map[38]中的ETA預測或房地產價格估計等任務中對地理數據進行建模[114]。此外,由于關系結構的普遍性,GML方法已經應用于或準備應用于高利害攸關的決策問題,如社會正義。例如犯罪預測和數據驅動的起訴[68,156],警察不當行為預測[22],假釋決定的風險評估[132],公共安全監視[95],以及許多其他社會公正和安全問題[111]。
鑒于GML的眾多社會相關應用場景,這類ML系統的可信性問題變得至關重要。此外,與傳統的ML相比,由于GML復雜的關系結構,在理解和改進GML的可信性問題方面存在獨特的挑戰。特別是,在GML的上下文中,有許多更復雜,有時甚至是隱式的異常條件。以對抗性攻擊為例,在傳統的機器學習設置中,攻擊者大多通過向輸入特征添加對抗性擾動來進行攻擊。對于GML,在實際應用中存在著更復雜的威脅:攻擊者不僅可以擾動GML節點屬性,還可以擾動圖結構;攻擊者還可以通過擾動鄰居節點來間接影響節點的預測結果。在子種群之間的機器學習公平性方面,大多數傳統文獻研究的是有關某些敏感屬性的子種群,如性別或種族。在圖數據中,人們可以根據圖結構來調查子群體,例如節點中心性[12,13]或社區結構[51,47]。社會科學理論認為,社會網絡中人們的結構特征往往與其社會經濟地位相關[53,16]。圖數據中獨特的對抗性威脅和基于結構的子群呈現出在傳統ML文獻中沒有充分探索的例外情況,使可信的GML更具挑戰性。
本文旨在解決這些對理解和提高GML可信性的獨特挑戰。具體而言,本文旨在回答以下3類研究問題,并在3種應用場景下展示研究方法。
摘要
深度強化學習 (RL) 中的泛化研究旨在產生 RL 算法,其策略可以很好地泛化到部署時新的未知情況,避免過度擬合其訓練環境。如果要在現實世界的場景中部署強化學習算法,解決這個問題至關重要,在現實世界中,環境將是多樣的、動態的和不可預測的。本綜述是對這一新興領域的概述,在已有研究的基礎上,通過提供了一個統一的格式和術語來討論不同的泛化問題。繼續對現有的泛化基準以及解決泛化問題的方法進行分類。最后,對該領域的現狀進行了批判性討論,包括對未來研究的建議。本文認為對基準設計采用純程序性內容生成方法不利于推廣,其建議快速在線適應和解決RL特定問題,并在未充分探索的問題環境中建立基準,如離線RL概括和獎勵函數變化。
引言
強化學習(RL)可以用于一系列應用,如自動駕駛汽車[1]和機器人[2],但為了實現這一潛力,我們需要可以在現實世界中使用的RL算法。現實是動態的、開放的、總是在變化的,RL算法需要對其環境的變化具有健壯性,并在部署過程中具有遷移和適應不可見(但類似)環境的能力。
然而,目前許多RL研究工作都是在諸如Atari[3]和MuJoCo[4,5]等基準測試上進行的,這些基準測試不具備上述屬性:它們在訓練策略時所處的環境中評估策略,這與現實場景不匹配(圖1左列)。這與監督學習的標準假設形成了鮮明的對比,在監督學習中,訓練集和測試集是不相交的,很可能導致強評估過擬合[6]。這導致策略即使在稍微調整的環境實例(環境中的特定關卡或任務)上表現也很糟糕,并且經常在用于隨機初始化上失敗[7,8,9,10]。
許多研究人員已經認真對待這些批評,現在專注于提高RL的泛化(從這項綜述的內容可以看出)。本研究的重點是生成策略具有預期魯棒性、遷移和自適應特性的算法,挑戰訓練和測試將是相同的基本假設(圖1中右列)。雖然這項研究是有價值的,但目前它經常缺乏清晰或連貫的論文。我們認為,這部分是因為泛化(尤其是在RL中)是一類問題,而不是一個特定的問題。改進“泛化”,但不明確需要哪種泛化,這是不明確的;我們不太可能從總體上改進泛化,因為這類問題太廣泛了,以至于適用于一些類似于No Free Lunch定理[11]的類比:在某些情況下改進泛化可能會損害在其他情況下的泛化。圖1中右兩欄顯示了兩大類泛化問題。
我們將泛化概念作為一個單一的問題來解決。我們提出了一種理解這類問題的形式化(建立在以前的工作[12,13,14,15,16]),以及在指定一個泛化問題時有哪些選擇。這是基于特定基準所做出的選擇,以及為驗證特定方法而做出的假設,我們將在下面討論這些。最后,我們在泛化中提出了一些尚未被探索的設置,但對于RL的各種現實應用仍然至關重要,以及未來在解決不同泛化問題的方法上的許多途徑。我們的目標是使該領域的研究人員和實踐者在該領域內外更容易理解,并使討論新的研究方向更容易。這種新的清晰性可以改善該領域,并使更通用的RL方法取得穩健的進展。
綜述結構。綜述的結構如下。我們首先在第2節中簡要描述相關工作,如其他概述。在第3節中,我們介紹了RL中泛化的形式化和術語,包括相關的背景。然后,在第4節中,我們繼續使用這種形式化來描述用于RL泛化的當前基準,討論環境(第4.1節)和評估協議(第4.2節)。我們將在第5節中對處理泛化的工作產生方法進行分類和描述。最后,我們將在第6節中對當前領域進行批判性的討論,包括在方法和基準方面對未來工作的建議,并在第7節中總結綜述的關鍵結論。
我們提出了關于泛化的一種形式主義和術語,這是建立在以往多部工作[12,13,14,15,16]中提出的形式主義和術語基礎上的。我們在這里的貢獻是將這些先前的工作統一為RL中被稱為泛化的一類問題的清晰的正式描述。
我們提出了一個現有基準的分類,可以用來進行泛化測試,將討論分為分類環境和評估協議。我們的形式主義讓我們能夠清楚地描述純粹的PCG方法在泛化基準和環境設計方面的弱點:擁有一個完全的PCG環境限制了在該環境下進行研究的精確度。我們建議未來的環境應結合PCG和可控變異因素。
我們提出現有的分類方法來解決各種泛化問題,出于希望使它容易對從業人員選擇的方法給出一個具體的問題。我們指出了許多有待進一步研究的途徑,包括快速在線適應、解決RL特定的一般化問題、新穎的架構、基于模型的RL和環境生成。
我們批判性地討論了RL研究的泛化現狀,并提出了未來的研究方向。特別地,我們指出,構建基準將使離線的RL一般化和獎勵功能變化取得進展,這兩者都是重要的設置。此外,我們指出了幾個值得探索的不同設置和評估指標:調查上下文效率和在連續的RL設置中工作都是未來工作的必要領域。