摘要:知識圖譜由Google公司提出, 作為增強其搜索功能的知識庫, 在近幾年得到了迅速發展. 隨著知識圖譜價值不斷地被發掘, 各類領域知識圖譜也迅速建設起來. 本文通過領域知識圖譜和通用知識圖譜的對比來清晰化領域知識圖譜的定義, 介紹了領域知識圖譜的架構, 并以醫學知識圖譜為例講解了領域知識圖譜的構建技術. 最后, 本文介紹了當前熱門的領域知識圖譜的發展狀況和應用, 對當前領域知識圖譜狀況進行了較為全面的總結.
推薦系統旨在為用戶推薦個性化的在線商品或信息, 其廣泛應用于眾多Web場景之中, 來處理海量信息數據所導致的信息過載問題, 以此提升用戶體驗. 鑒于推薦系統強大的實用性, 自20世紀90年代中期以來, 研究者針對其方法與應用兩方面, 進行了大量廣泛的研究. 近年來, 很多工作發現知識圖譜中所蘊含的豐富信息可以有效地解決推薦系統中存在的一系列關鍵問題, 例如數據稀疏、冷啟動、推薦多樣性等. 因此, 本文 針對基于知識圖譜的推薦系統這一領域進行了全面的綜述. 具體地, 首先簡單介紹推薦系統與知識圖譜中的一些基本概念. 隨后, 詳細介紹現有方法如何挖掘知識圖譜不同種類的信息并應用于推薦系統. 此外, 總結了相關的一系列推薦應用場景. 最后, 提出了對基于知識圖譜的推薦系統前景的看法, 并展望了該領域未來的研究方向.
知識圖譜一直是研究的熱點,東南大學漆桂林老師等發表了一篇關于中文知識圖譜構建的綜述論文,詳細講述了當前中文知識圖譜的研究進展,是非常好的學習資料。
隨著智能技術的不斷發展,作為人工智能支柱的知識圖譜以其強大的知識表示和推理能力受到了學術界和產業界的廣泛關注。近年來,知識圖譜在語義搜索、問答、知識管理等領域得到了廣泛的應用。構建中文知識圖譜的技術也在迅速發展,不同的中文知識圖譜以支持不同的應用。同時,我國在知識圖譜開發方面積累的經驗對非英語知識圖譜的開發也有很好的借鑒意義。本文旨在介紹中文知識圖譜的構建技術及其應用,然后介紹了典型的中文知識圖譜,此外我們介紹了構建中文知識圖譜的技術細節,并介紹了了中文知識圖譜的幾種應用。