亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

概率論是經濟學和計量經濟學的基礎。概率論是用來處理不確定性的數學語言,是現代經濟理論的核心。概率論也是數理統計的基礎,而數理統計又是計量經濟學理論的基礎。概率用于建模不確定性、變異性和隨機性。當我們說某事是不確定的,我們的意思是結果是未知的。例如,你們大學明年的博士班將有多少學生進入?我們所說的可變性是指在所有情況下結果都不相同。例如,博士生的數量每年都在波動。我們所說的隨機性是指變異性具有某種模式。例如,博士生的數量可能在20到30之間波動,25人的可能性比20或30人中的任何一個都大。概率給了我們一種數學語言來描述不確定性、變異性和隨機性。

付費5元查看完整內容

相關內容

文本無處不在,對社會科學家來說,它是一個極好的資源。然而,由于信息非常豐富,而且語言又是千變萬化的,通常很難提取出我們想要的信息。人工智能的整個子領域與文本分析(自然語言處理)有關。開發的許多基本分析方法現在都可以作為Python實現使用。這本書將告訴您何時使用哪個方法、它如何工作的數學背景以及實現它的Python代碼。

概述:

今天,文本是我們生活中不可或缺的一部分,也是最豐富的信息來源之一。平均每天,我們閱讀約9000字,包括電子郵件、短信、新聞、博客文章、報告、推特,以及街道名稱和廣告。在你一生的閱讀過程中,這會讓你有大約2億字。這聽起來令人印象深刻(事實也的確如此),然而,我們可以在不到0.5 g的空間里存儲這些信息:我們可以在u盤上隨身攜帶一生都值得閱讀的信息。在我寫這篇文章的時候,互聯網上估計至少有超過1200 TB的文本,或250萬人的閱讀價值。現在,大部分文本都以社交媒體的形式存在:微博、推特、Facebook狀態、Instagram帖子、在線評論、LinkedIn個人資料、YouTube評論等等。然而,文本即使在線下也是豐富的——季度收益報告、專利申請、問卷答復、書面信函、歌詞、詩歌、日記、小說、議會會議記錄、會議記錄,以及成千上萬的其他形式,可以(也正在)用于社會科學研究和數據挖掘。

文本是一個極好的信息來源,不僅僅是因為它的規模和可用性。它(相對)是永久性的,而且——最重要的是——它對語言進行編碼。這一人類能力(間接地,有時甚至直接地)反映了廣泛的社會文化和心理結構:信任、權力、信仰、恐懼。因此,文本分析被用于衡量社會文化結構,如信任(Niculae, Kumar, Boyd-Graber, & danescul - niculescul - mizil, 2015)和權力(Prabhakaran, Rambow, & Diab, 2012)。語言編碼了作者的年齡、性別、出身和許多其他人口統計因素(Labov, 1972;Pennebaker, 2011;Trudgill, 2000)。因此,文本可以用來衡量社會隨著時間推移對這些目標概念的態度(見Garg, Schiebinger, Jurafsky, & Zou, 2018;Hamilton, Leskovec, & Jurafsky, 2016;Kulkarni, Al-Rfou, Perozzi, & Skiena, 2015)。

然而,這種海量數據可能很快就會讓人喘不過氣來,處理這些數據可能會讓人望而生畏。文本通常被稱為非結構化數據,這意味著它不是以電子表格的形式出現,而是整齊地按類別排列。它有不同的長度,如果不首先對其進行格式化,就不能很容易地將其送入您喜歡的統計分析工具。然而,正如我們將看到的,“非結構化”是一個有點用詞不當。文本絕不是沒有任何結構的——它遵循非常規則的結構,受語法規則的控制。如果你知道這些,理解文本就會變得容易得多。

這本書分成兩部分。在前半部分,我們將學習文本和語言的一些基本屬性——語言分析的層次、語法和語義成分,以及如何描述它們。我們還將討論為我們的分析刪除哪些內容,保留哪些內容,以及如何計算簡單、有用的統計數據。在下半部分,我們將著眼于探索,發現數據中的潛在結構。我們將從簡單的統計學習到更復雜的機器學習方法,如主題模型、詞嵌入和降維。

付費5元查看完整內容

概率論起源于17世紀的法國,當時兩位偉大的法國數學家,布萊斯·帕斯卡和皮埃爾·德·費馬,對兩個來自機會博弈的問題進行了通信。帕斯卡和費馬解決的問題繼續影響著惠更斯、伯努利和DeMoivre等早期研究者建立數學概率論。今天,概率論是一個建立良好的數學分支,應用于從音樂到物理的學術活動的每一個領域,也應用于日常經驗,從天氣預報到預測新的醫療方法的風險。

本文是為數學、物理和社會科學、工程和計算機科學的二、三、四年級學生開設的概率論入門課程而設計的。它提出了一個徹底的處理概率的想法和技術為一個牢固的理解的主題必要。文本可以用于各種課程長度、水平和重點領域。

在標準的一學期課程中,離散概率和連續概率都包括在內,學生必須先修兩個學期的微積分,包括多重積分的介紹。第11章包含了關于馬爾可夫鏈的材料,為了涵蓋這一章,一些矩陣理論的知識是必要的。

文本也可以用于離散概率課程。材料被組織在這樣一種方式,離散和連續的概率討論是在一個獨立的,但平行的方式,呈現。這種組織驅散了對概率過于嚴格或正式的觀點,并提供了一些強大的教學價值,因為離散的討論有時可以激發更抽象的連續的概率討論。在離散概率課程中,學生應該先修一學期的微積分。

為了充分利用文中的計算材料和例子,假設或必要的計算背景很少。所有在文本中使用的程序都是用TrueBASIC、Maple和Mathematica語言編寫的。

付費5元查看完整內容

當看到這些材料時,一個明顯的問題可能會出現:“為什么還要寫一本深度學習和自然語言處理的書呢?”一些優秀的論文已經出版,涵蓋了深度學習的理論和實踐方面,以及它在語言處理中的應用。然而,從我教授自然語言處理課程的經驗來看,我認為,盡管這些書的質量非常好,但大多數都不是針對最有可能的讀者。本書的目標讀者是那些在機器學習和自然語言處理之外的領域有經驗的人,并且他們的工作至少部分地依賴于對大量數據,特別是文本數據的自動化分析。這些專家可能包括社會科學家、政治科學家、生物醫學科學家,甚至是對機器學習接觸有限的計算機科學家和計算語言學家。

現有的深度學習和自然語言處理書籍通常分為兩大陣營。第一個陣營專注于深度學習的理論基礎。這對前面提到的讀者肯定是有用的,因為在使用工具之前應該了解它的理論方面。然而,這些書傾向于假設一個典型的機器學習研究者的背景,因此,我經常看到沒有這種背景的學生很快就迷失在這樣的材料中。為了緩解這個問題,目前存在的第二種類型的書集中在機器學習從業者;也就是說,如何使用深度學習軟件,而很少關注理論方面。我認為,關注實際方面同樣是必要的,但還不夠。考慮到深度學習框架和庫已經變得相當復雜,由于理論上的誤解而濫用它們的可能性很高。這個問題在我的課程中也很常見。

因此,本書旨在為自然語言處理的深度學習搭建理論和實踐的橋梁。我涵蓋了必要的理論背景,并假設讀者有最少的機器學習背景。我的目標是讓任何上過線性代數和微積分課程的人都能跟上理論材料。為了解決實際問題,本書包含了用于討論的較簡單算法的偽代碼,以及用于較復雜體系結構的實際Python代碼。任何上過Python編程課程的人都應該能夠理解這些代碼。讀完這本書后,我希望讀者能有必要的基礎,立即開始構建真實世界的、實用的自然語言處理系統,并通過閱讀有關這些主題的研究出版物來擴展他們的知識。

//clulab.cs.arizona.edu/gentlenlp/gentlenlp-book-05172020.pdf

付費5元查看完整內容

這是一本關于理論計算機科學的本科入門課程的教科書。這本書的教育目的是傳達以下信息:

? 這種計算出現在各種自然和人為系統中,而不僅僅是現代的硅基計算機中。 ? 類似地,除了作為一個極其重要的工具,計算也作為一個有用的鏡頭來描述自然,物理,數學,甚至社會概念。 ? 許多不同計算模型的普遍性概念,以及代碼和數據之間的二元性相關概念。 ? 一個人可以精確地定義一個計算的數學模型,然后用它來證明(有時只是猜測)下界和不可能的結果。 ? 現代理論計算機科學的一些令人驚訝的結果和發現,包括np完備性的流行、交互作用的力量、一方面的隨機性的力量和另一方面的去隨機化的可能性、在密碼學中“為好的”使用硬度的能力,以及量子計算的迷人可能性。

付費5元查看完整內容

這本書的第五版繼續講述如何運用概率論來深入了解真實日常的統計問題。這本書是為工程、計算機科學、數學、統計和自然科學的學生編寫的統計學、概率論和統計的入門課程。因此,它假定有基本的微積分知識。

第一章介紹了統計學的簡要介紹,介紹了它的兩個分支:描述統計學和推理統計學,以及這門學科的簡短歷史和一些人,他們的早期工作為今天的工作提供了基礎。

第二章將討論描述性統計的主題。本章展示了描述數據集的圖表和表格,以及用于總結數據集某些關鍵屬性的數量。

為了能夠從數據中得出結論,有必要了解數據的來源。例如,人們常常假定這些數據是來自某個總體的“隨機樣本”。為了確切地理解這意味著什么,以及它的結果對于將樣本數據的性質與整個總體的性質聯系起來有什么意義,有必要對概率有一些了解,這就是第三章的主題。本章介紹了概率實驗的思想,解釋了事件概率的概念,并給出了概率的公理。

我們在第四章繼續研究概率,它處理隨機變量和期望的重要概念,在第五章,考慮一些在應用中經常發生的特殊類型的隨機變量。給出了二項式、泊松、超幾何、正規、均勻、伽瑪、卡方、t和F等隨機變量。

付費5元查看完整內容

本備忘單是機器學習手冊的濃縮版,包含了許多關于機器學習的經典方程和圖表,旨在幫助您快速回憶起機器學習中的知識和思想。

這個備忘單有兩個顯著的優點:

  1. 清晰的符號。數學公式使用了許多令人困惑的符號。例如,X可以是一個集合,一個隨機變量,或者一個矩陣。這是非常混亂的,使讀者很難理解數學公式的意義。本備忘單試圖規范符號的使用,所有符號都有明確的預先定義,請參見小節。

  2. 更少的思維跳躍。在許多機器學習的書籍中,作者省略了數學證明過程中的一些中間步驟,這可能會節省一些空間,但是會給讀者理解這個公式帶來困難,讀者會在中間迷失。

付費5元查看完整內容

對因果推理的簡明和自成體系的介紹,在數據科學和機器學習中越來越重要。

因果關系的數學化是一個相對較新的發展,在數據科學和機器學習中變得越來越重要。這本書提供了一個獨立的和簡明的介紹因果模型和如何學習他們的數據。在解釋因果模型的必要性,討論潛在的因果推論的一些原則,這本書教讀者如何使用因果模型:如何計算干預分布,如何從觀測推斷因果模型和介入的數據,和如何利用因果思想經典的機器學習問題。所有這些主題都將首先以兩個變量的形式進行討論,然后在更一般的多元情況下進行討論。對于因果學習來說,二元情況是一個特別困難的問題,因為經典方法中用于解決多元情況的條件獨立不存在。作者認為分析因果之間的統計不對稱是非常有意義的,他們報告了他們對這個問題十年來的深入研究。

本書對具有機器學習或統計學背景的讀者開放,可用于研究生課程或作為研究人員的參考。文本包括可以復制和粘貼的代碼片段、練習和附錄,其中包括最重要的技術概念摘要。

首先,本書主要研究因果關系推理子問題,這可能被認為是最基本和最不現實的。這是一個因果問題,需要分析的系統只包含兩個可觀測值。在過去十年中,作者對這個問題進行了較為詳細的研究。本書整理這方面的大部分工作,并試圖將其嵌入到作者認為對研究因果關系推理問題的選擇性至關重要的更大背景中。盡管先研究二元(bivariate)案例可能有指導意義,但按照章節順序,也可以直接開始閱讀多元(multivariate)章節;見圖一。

第二,本書提出的解決方法來源于機器學習和計算統計領域的技術。作者對其中的方法如何有助于因果結構的推斷更感興趣,以及因果推理是否能告訴我們應該如何進行機器學習。事實上,如果我們不把概率分布描述的隨機實驗作為出發點,而是考慮分布背后的因果結構,機器學習的一些最深刻的開放性問題就能得到最好的理解。
付費5元查看完整內容
北京阿比特科技有限公司