裝備有成像傳感器的衛星是情報、監視和偵察(ISR)任務的關鍵資產。然而,從這些資產的任務中可能獲得的巨大數據量很快就會讓人類無法完整地人工考慮。正是由于這個原因,分析衛星圖像的自動化系統對于幫助人類分析員從衛星圖像中提取可操作的信息至關重要。
最有前途的自動化工具之一是機器學習(ML)。在一些收集背景下,如醫學成像[17]和自主車輛的視覺[21],ML在從圖像中做出準確推斷方面已經顯示出巨大的成功。因此,有理由認為,在其他采集環境中獲得成功的機器學習模型和方法也可以用于從高空拍攝的圖像。事實上,在使用機器學習對衛星圖像進行準確推斷方面,已經有了許多公開的成功案例。從人道主義和救災[57]到農業規劃[13]等問題領域都受益于基于ML的計算機視覺系統。
在衛星圖像上使用機器學習的效用促使了系統的發展,該系統將機器學習模型作為分析員工作流程的核心組成部分。本文的目標是為開發此類模型提供一小部分必要的實踐指導。調查目前關于這個主題的知識并將其提煉成實用的指導是一項艱巨的任務。為了提供一個更有針對性的指導,我們以多種方式確定這項工作的范圍。我們專注于目標檢測--在圖像中定位目標的位置,以及它們屬于哪一類目標的抽象任務。我們選擇這個問題的原因有很多。首先,許多ISR任務可以被設定為目標檢測任務。例如,從衛星圖像中檢測特定的陸地車輛、海船、設備和人都可以被設定為目標檢測任務。即使ISR任務要求對目標進行更復雜的推理,許多目標探測的原則也適用。其次,目標檢測是現代機器學習在圖像領域中比較成熟的領域之一。因此,為了建立準確的目標檢測模型,有大量的前期工作可以借鑒。
我們還將這項工作的重點放在目標檢測模型(或目標檢測器)的評估上。也就是說,我們的重點是:1)評估目標檢測器的重要特征樣本;2)評估目標檢測器的常用指標樣本;3)如何識別和定義重要用例的評估標準;以及4)如何將目標檢測器的特征和用例映射到指標上,以便以具體、可衡量的方式評估目標檢測器。因為評估自然發生在數據收集和探測器學習之后,所以我們也必須觸及與這兩個主題相關的細節。我們的目標不是要對這些主題進行全面的處理。相反,我們的目標是提供基本信息,作為了解設計、學習和評估目標檢測器時的一些獨特考慮因素的手段,并輔以參考文獻,讓讀者有途徑進行更深入的探索。
本指南的其余部分將按以下方式進行。在第2章中,我們定義了目標檢測問題,討論了學習目標檢測模型的現代方法,并提供了一些對衛星圖像的的實際見解。在第3章中,我們討論了評估目標檢測器的做法,包括方法、指標,以及如何將其映射到檢測器性能的有意義的概念。在第4章中,我們通過展示對航空圖像的目標檢測模型的評估結果,展示了這些主題的一些實踐。最后,在第5章中,我們總結了文件中所探討的實際見解,并對目標檢測中的開放課題進行了簡要調查。
圖 2.2:圖像示例,標注有邊界框(圖片來源:RarePlanes Data Set [61])。例如,右上角的目標被標記為“軍事戰斗機/攔截器/攻擊”類的成員。目標的位置由邊界框的左上角 (x1, y1) 和右下角 (x2, y2) 坐標定義。
圖 4.2:來自 RarePlanes 數據集的示例。頂部圖像 = 標記為邊界框的地面實況。中間圖像 = RetinaNet 的輸出。底部圖像 = Faster R-CNN 的輸出。
計算機視覺中的一項挑戰性任務是尋找技術來提高用于處理移動空中平臺所獲圖像的機器學習(ML)模型的目標檢測和分類能力。目標的檢測和分類通常是通過應用有監督的ML技術完成的,這需要標記的訓練數據集。為這些訓練數據集收集圖像是昂貴而低效的。由于一般不可能從所有可能的仰角、太陽角、距離等方面收集圖像,這就導致了具有最小圖像多樣性的小型訓練數據集。為了提高在這些數據集上訓練的監督性ML模型的準確性,可以采用各種數據增強技術來增加其規模和多樣性。傳統的數據增強技術,如圖像的旋轉和變暗,在修改后的數據集中沒有提供新的實例或多樣性。生成對抗網絡(GAN)是一種ML數據增強技術,它可以從數據集中學習樣本的分布,并產生合成的復制,被稱為 "深度偽造"。這項研究探討了GAN增強的無人駕駛飛行器(UAV)訓練集是否能提高在所述數據上訓練的檢測模型的可推廣性。為了回答這個問題,我們用描述農村環境的航空圖像訓練集來訓練"你只看一次"(YOLOv4-Tiny)目標檢測模型。使用各種GAN架構重新創建幀中的突出目標,并將其放回原始幀中,然后將增強的幀附加到原始訓練集上。對航空圖像訓練集的GAN增強導致YOLOv4-微小目標檢測模型的平均平均精度(mAP)平均增加6.75%,最佳情況下增加15.76%。同樣,在交叉聯合(IoU)率方面,平均增加了4.13%,最佳情況下增加了9.60%。最后,產生了100.00%的真陽性(TP)、4.70%的假陽性(FP)和零的假陰性(FN)檢測率,為支持目標檢測模型訓練集的GAN增強提供了進一步證據。
對從移動平臺上獲得的數據進行圖像和視頻分類技術的調查,目前是計算機視覺領域中一個越來越受關注的領域。由空中飛行器收集的圖像對于收集信息和獲得對環境的洞察力非常重要,否則在地面上的評估是無法實現的。對于訓練目標檢測模型來說,用于創建這些模型的訓練集的一個重要特征是這些訓練集必須在其圖像中包含廣泛的細節多樣性。過去的數據增強技術,例如旋轉、添加噪音和翻轉圖像,被用來增加訓練集的多樣性,但由于它們無法向數據集添加任何新的圖像,所以是弱的方法。研究新的圖像增強和分類方法,其中包括機器學習(ML)技術,有助于提高用于航空圖像分類的模型的性能。
最近,使用ML算法對圖像進行分類或預測的情況越來越多。雖然ML已經被使用了幾十年,但在圖像上,我們看到合理的進展是在過去的20年里。隨著信息收集和存儲的技術進步及其可及性的擴大,可用于分析的數據量正以指數級的速度增長。計算機的隨機存取存儲器(RAM)和硬件存儲的增加迎合了擁有巨大的數據集來訓練、測試和驗證ML模型以實現較低的偏差和變異的需要。技術上的其他進步來自于計算機圖形處理單元(GPU)的改進,它允許以更快的速度處理大量的數據,這是實時圖像處理的兩個重要能力[2]。
人工神經網絡(ANNs)是ML的一個子集,其靈感來自于大腦中神經元的生物結構,旨在解決復雜的分類和回歸問題[3]。深度學習是ANNs的一個子集,它創建了多個相互連接的層,以努力提供更多的計算優勢[3]。卷積神經網絡(CNN)是ANN的一個子集,它允許自動提取特征并進行統一分類。一般來說,CNN和ANN需要有代表性的數據,以滿足操作上的需要,因此,由于現實世界中的變化,它們往往需要大量的數據。雖然在過去的十年中收集了大量的數據,但微不足道和不平衡的訓練數據集的問題仍然阻礙著ML模型的訓練,導致糟糕的、有偏見的分類和分析。相對較小的數據集導致了ML模型訓練中的過擬合或欠擬合。過度擬合的模型在訓練數據上顯示出良好的性能,但在模型訓練完成后,卻無法推廣到相關的真實世界數據。通過提供更大、更多樣化的訓練數據集,以及降低模型的復雜性和引入正則化,可以避免模型過擬合[4]。
過度擬合的模型不能學習訓練集的特征和模式,并對類似的真實世界數據做出不準確的預測。增加模型的復雜性可以減少欠擬合的影響。另一個克服模型欠擬合的方法是減少施加在模型上的約束數量[4]。有很多原因可以說明為什么大型、多樣的圖像集對訓練模型以檢測視頻幀中捕獲的目標很有用。當視頻取自移動平臺,如無人機或汽車時,存在Bang等人[5]所描述的進一步問題。首先,一天中拍攝圖像的時間以及天氣狀況都會影響亮度和陰影。其次,移動平臺收集的圖像有時會模糊和失真,這是因為所使用的相機類型以及它如何被移動平臺的推進系統投射的物理振動所影響。移動平臺的高度、太陽角度、觀察角度、云層和距離,以及目標的顏色/形狀等,都會進一步導致相機采集的樣本出現扭曲的影響。研究人員忽視這些參數的傾向性會導致模型在面對不同的操作數據時容易崩潰。這些因素使得我們有必要收集大量包含各種特征、圖像不規則性和扭曲的視頻幀,以復制在真實世界的圖像收集中發現的那些特征,從而訓練一個強大的目標檢測和分類模型。
為了增加圖像的多樣性,希望提高在數據上訓練的分類模型的結果準確性,可以使用數據增強技術來扭曲由無人駕駛飛行器(UAV)收集的圖像。目前的一些數據增強技術包括翻轉、旋轉或扭曲圖像的顏色。雖然這些增強技術可以在數據集中引入更多的多樣性,但它們無法為模型的訓練提供全新的框架實例。
生成性對抗網絡(GAN)是一種ML技術,它從數據集的概率分布和特征中學習,以生成數據集的新的合成實例,稱為 "深度假象"。GAN的實現是一種更強大的數據增強技術,因為它為訓練集增加了新的、從未見過的實例,這些實例仍然是可信的,并能代表原生群體。為ML模型提供這種新的訓練實例,可以使模型在實際操作環境中用于檢測時更加強大。
圖像采集面臨的一個普遍問題是沒有收集足夠大和多樣化的訓練和測試數據集來產生高效的ML模型。這些微不足道的訓練集所顯示的多樣性的缺乏,使模型在用于實時檢測時表現很差。找到增加這些數據集的方法,無論是通過額外的數據收集還是其他方法,對于創建一個強大的、可歸納的模型都很重要。
計算機視覺中的第二個問題是傳統的數據增強技術所產生的圖像多樣性增加不足。通過旋轉、翻轉或調暗每一個收集到的視頻幀來增強數據集,不能為訓練集增加任何額外的實例,這與上面提到的第一個問題相矛盾。需要找到一種新的數據增強技術,在不需要收集更多數據的情況下提供新的實例,這對于快速訓練檢測模型以便在快速變化的操作環境中部署非常重要。
本研究試圖回答以下問題:
1.由移動平臺獲取的包含GAN生成的合成圖像的增強圖像訓練數據集是否會提高卷積神經網絡(CNN)目標檢測模型的分類精度和可推廣性?
2.由移動平臺獲取的包含GAN生成的合成圖像的增強圖像訓練數據集是否會提高CNN目標檢測模型的定位和通用性?
3.從未增強的數據集和增強的數據集中可以得出什么推論,顯示它們的相似性和不相似性?
提供支持第一和第二個問題的證據可以改變數據科學家進行數據收集的方式,并將他們的努力轉向使用GAN的增強技術來創建用于ML研究的數據集。該模型不僅要能夠對目標進行分類,而且要訓練一個強大的目標檢測模型,使其能夠在圖像中找到感興趣的目標,并具有較高的交叉聯合(IoU)值,這就驗證了該模型能夠找到移動的目標,這些目標在捕獲的幀中的位置各不相同。一個模型的泛化是指該模型對網絡從未見過的輸入進行準確預測和分類的能力[6]。增強的數據集必須在質量和數量上與原始數據集相似,以證明模型泛化能力增強的斷言。
對最后一個問題的回答提供了理由,即來自GAN的增強對象在性質上是否與原始樣本相似,并且是對現實世界環境中發現的東西的合理復制。同類目標之間的高相似率可能會使GAN增強變得脆弱,需要進一步研究以用于實際應用。
本研究的最大限制之一是能否獲得適當的硬件和軟件來實現不同的ML算法。雖然ML模型可以在中央處理器(CPU)上執行,但本論文中的模型在單個CPU上運行需要幾天,甚至幾周的時間。在運行深度學習模型時,GPU的效率要高得多,尤其是那些為圖像探索設計的模型。在整個研究過程中,GPU的使用非常有限,這給CNN和GAN模型的復雜性增加了限制,也增加了每個模型完成訓練迭代的時間。模型不可能同時運行,大大增加了本論文的完成時間。
另一個限制是本研究過程中可用的內存和硬盤內存的數量。內存不足進一步導致了模型復雜性的下降,以及模型在研究的訓練和測試過程中某一時刻可以利用的數據量的下降。這兩個模型組成部分的減少會導致次優模型。在這項研究中,我們采取了一些措施來減輕這些影響,包括選擇參數較少但性能與較復雜的模型相同的高水平的模型。此外,在訓練和測試過程中,將數據集劃分為多個批次,有助于緩解RAM和硬盤內存問題。
本章討論了本論文將集中研究的ML的一般領域,以及概述了ML研究中出現的好處和限制。第2章提供了一個文獻回顧,研究了CNNs和GANs的理論。此外,它還提供了使用CNNs、GANs和從無人機收集的圖像幀進行的相關研究。第3章詳細介紹了數據集增強前后的CNN檢測模型的訓練過程。第4章提供了用于增強訓練集的合成目標的細節。第5章介紹了在原始和增強的訓練集上訓練的最佳模型的評估結果。第6章概述了在原始測試集訓練結束后進行的三個不同實驗的方法。第7章回顧了這三個不同實驗的結果。最后,第8章討論了從結果中得出的結論,以及對使用生成性對抗網絡(GANs)對移動平臺獲取的圖像進行數據增強領域的未來研究建議。
在美國國防部,人工智能(AI)/機器學習(ML)的整合目前是以現有項目的升級或新項目的收購形式進行的。怎么知道這些AI/ML支持的系統會按照預期的方式運行?為了做出這個判斷,與其他傳統的軟件開發/采購項目相比,AI/ML產品開發/采購需要一個獨特的評估過程。作為回應,美海軍軍械安全和保障活動(NOSSA)資助了以下研究,以調查獨特的政策、指導方針、工具和技術,以評估AI/ML關鍵功能中的安全問題。在這項工作中,開發了14項關鍵的嚴謹度(LOR)任務,并在五個階段中應用:(1)需求,(2)架構,(3)算法設計,(4)算法代碼,以及(5)測試和評估(T&E)。14項LOR任務涉及最佳實踐討論、定義、測量、論證文件和AI/ML系統特有的危險分析格式。這14項LOR任務還明確了為什么AI/ML軟件開發需要采購界的特別考慮。此外,這項研究有可能影響采購界如何定義需求、創建架構、產生AI/ML算法設計、開發AI/ML算法代碼以及執行T&E。在開發 "采購沙盒"的過程中,跨越五個發展階段的14項LOR任務的需求變得很明顯,該沙盒研究了部署AI/ML自主系統的路線規劃者,以及讓這些系統交付軟件包,重點是評估關鍵功能行為的安全性。該沙盒是使用國防部架構框架(DoDAF)和統一建模語言(UML)圖設計的,其中包含了各種AI/ML技術。當面臨這種程度的復雜性和/或不確定性時,14項LOR任務代表了一組有凝聚力的問題/考慮因素,為應對當前海軍AI/ML的采購問題提供了重點。這些指南還為涉及安全的組織,如NOSSA和適航性,以及包括項目經理和系統工程師在內的采購專業人員提供了一個分步驟的 "如何 "評估方法,以確保創造高質量的人工智能嵌入式產品。
該報告為包含人工智能功能的系統的采購和開發提供了詳細的指導方針。該準則允許用戶在作戰部署的挑戰中對人工智能功能的行為建立不同程度的信心。信心的程度決定了14個LOR任務中的哪一個在五個階段中被應用。每個LOR任務提供了問題和/或考慮因素,使開發人員能夠客觀地評估人工智能/ML功能的安全性和可靠性。當審查每個LOR任務時,LOR任務編號(和相關階段)后面的 "參考編號 "是指用于開發問題和/或考慮因素的文件中的相應標識(ID)。這四份文件的標題分別是:(1)操作視圖(OV),(2)系統視圖(SV),(3)數據集設計,和(4)算法設計。LOR任務 "參考ID "命名法的例子是Ops1、Sys1、Alg1和Dat1。在這些例子中,每個ID與四個文件中的一個有關,其中數字 "1 "表示文件中描述的第一個LOR任務。在每個文件中使用 "Ref ID "支持對研究的可追溯性,包括數學。
機器學習正在成為現代世界運行中不可或缺的一部分。隨著數字技術的進步,數據的收集量呈指數級增長,機器學習的力量也在不斷發展。機器學習模型從這些現在可用的巨大數據庫中學習和改進。模型變得越來越強大,在許多情況下,它們執行任務的效率和效率比人類同行更高。隨著越來越多的組織和企業采用機器學習技術,可解釋性變得越來越重要。
模型被用于自動化任務和發現數據中的新趨勢和模式。這些算法直接從數據中學習,而不是由人類開發人員創建。這意味著系統將在沒有直接人類互動的情況下進化和發展。因此,理解模型為什么會做出決策在最初可能是不清楚的,特別是對于沒有數據科學經驗的涉眾來說。對于深度學習等更復雜的機器學習技術來說,這可能尤其困難。深度學習模型的多層神經結構使得決策的透明度變得更加復雜。
與組織中的任何決策工具一樣,一定程度的問責制是必要的。機器學習模型已經被用于自動化資源密集型的管理工作和做出復雜的業務決策。在決策將受到審查的領域,解釋機器學習模型做出決策的原因的能力至關重要。例如,機器學習在金融領域的應用方式多種多樣。算法可以用來自動化和簡化貸款決策,甚至可以根據市場波動自動化股票訓練。在這兩個例子中,可解釋性都是整個過程的組成部分。
本指南探討了機器學習中的可解釋性主題,包括它是什么,為什么它是重要的,以及實現模型可解釋性的不同技術。
機器學習(ML),從廣義上講,是一類自動優化參數以處理給定輸入并產生所需輸出的計算機算法。ML的一個經典例子是線性回歸,據此找到一條最適合(通過)一組點的線。最近的一個例子是分類任務,如用 "貓 "這樣的單字來標記一張百萬像素的圖像。
對于許多應用,ML完成了人類可以做得同樣好的任務。然而,ML在兩種情況下大放異彩:1)任務的數量巨大,例如數百萬;2)問題的維度超出了人類思維的理解。一個簡單的例子是同時實時監控成千上萬的安全攝像頭,尋找可疑的行為。也許一個ML方法可以發現異常事件,并只與人類觀察者分享這些視頻片段。更好的是,異常圖像可以被暫時貼上諸如 "1號入口處的蒙面入侵者 "之類的標簽,以幫助保安人員只關注相關的信息。
除了減少人類的負擔外,ML還可以將人類可能無法識別的復雜的相互聯系拼湊起來。例如,一個ML算法可以發現,在一百萬個銀行賬戶中,有五個賬戶的交易似乎是同步的,盡管它們沒有相互發送或接收資金,也沒有向共同的第三方發送或接收資金。
鑒于手持和固定設備的計算資源不斷增加,我們有必要想象一下,ML可以在哪些方面改變戰爭的打法。當然,ML已經對美國陸軍的科學研究產生了影響,但我們也可以很容易地想象到自主車輛和改進的監視等作戰應用。
本文件的主要目標是激勵美國陸軍和美國防部的人員思考ML可能帶來的結果,以及為實現這些結果,哪些研究投資可能是有成效的。
在ARL的許多研究項目中,機器學習目前正在被使用,或者可以被使用。我們列出了一些使用ML或可能從ML中受益的研究項目。我們列出的與ML相關的ARL研究工作絕非完整。
雖然從技術上講,機器學習自19世紀初高斯發明線性回歸以來就一直存在,但我們相信,ML的最新進展將以我們目前無法想象的方式影響軍隊。在本節中,我們概述了我們認為將得到加強的軍隊行動的許多領域,以及可能采用的ML方法的種類。
軍事情報包括信息收集和分析,因為它涉及到指揮官做出最佳決策所需的信息。由于收集的數據量越來越大,處理必須自動化。需要考慮的主要問題是數據的數量、速度、真實性和多樣性。大量的數據(又稱大數據)需要在許多計算節點上對數據進行智能分配。速度要求快速計算和網絡連接到數據流。真實性是對信息來源和異常檢測的信任問題。多樣性相當于使用許多不同的ML算法的不同訓練模型的應用。我們在本小節中概述了不同類型的數據和分析要求。
讓計算機從從各種媒體來源收集到的大型文本數據庫中提煉出重要的概念和文本部分,有很大的好處。最近報道的另一個ML突破是不同語言之間的精確文本翻譯。 軍隊的一個獨特挑戰是翻譯不常見的語言,因此專業翻譯人員較少。在人工通用智能(AGI)領域,一些團體聲稱,自然語言處理將是類似人類認知的基礎。
鑒于人類、傳感器和代理產生的數據的激增,一個很大的問題是,除了證明其收集的直接用途之外,這些數據還包含什么剩余價值。數據挖掘可以是統計學和機器學習的努力,以發現數據中的模式,否則人類操作者就會錯過。
傳統上,異常檢測是通過首先識別已知數據的群組和描述數據的分布來進行的。然后,當新的輸入被處理時,它們被識別為屬于或不屬于原始分布。如果它們在已知分布之外,就被認為是異常的。以下許多類型的異常檢測系統可能對軍隊有用。
網絡入侵檢測:超出常規的網絡流量。McPAD和PAYL是目前使用的軟件中的2個這樣的例子,它們使用了異常檢測。
生活模式異常:人們的視覺和生物統計學上的行為方式與常人不同,表明他們可能正在進行一些對抗性行動。
基于條件的維護:在當前生命周期中,材料/系統在其年齡段不典型的信號。
士兵異常:有理由相信士兵的生物識別技術不正常。
異物檢測:在已知物資數據庫中無法識別的物體的視覺效果。
自動目標識別(ATR)是一個非常成熟的領域,已經使用機器學習幾十年了。
1)目前深度學習的進展將在多大程度上增強ATR?
2)更復雜的算法是否需要更復雜/更耗電的機載計算?
ML是否能對目標的各種欺騙性的混淆行為具有魯棒性?
強化學習在多大程度上可以用來進行實時軌跡調整?
機器學習在機器人學中的應用也是一個巨大的領域。ML應用領域包括傳感、導航、運動和決策。目前,傳感將從計算機視覺的所有進展中受益。導航,除了使用標準的GPS之外,還可以從自我運動中受益,也就是基于自身感知的運動估計。運動可以被學習,而不是規劃,這不僅會導致更快的開發時間,而且還能在新的環境或受損的模式下重新適應(例如,失去四條腿中的一條)。最后,隨著機器人的數量超過人類操作員的數量,機器人將有必要自行決定如何執行其規定的任務。它將不得不做出這樣的決定:"由于電池電量不足,我是否要回到大本營?"或者 "我是否繼續前進一點,然后自我毀滅?"
除了機器人技術,人們最終希望任何系統在損壞或不能滿負荷工作時能夠自我糾正。這需要在某種程度上的智能,以自主診斷缺陷和問題,并利用其可用的資源糾正這些問題。
在通過機器學習來學習自主權的情況下,問題將是:"自主系統將如何應對X情況?" 這里的問題是,對于一個擁有潛在致命武力的系統,我們怎么能確定它只會正確合法地使用武力?我們推測,在機器學習的算法擁有使用致命武力的實際能力之前,必須對其進行廣泛的測試,即使它與人類的環形決策相聯系。
近年來,大量的研究都在研究使用機器學習來自主地玩各種視頻游戲。在某些情況下,報告的算法現在已經超過了人類玩游戲的水平。在其他情況下,仍然存在著處理長期記憶的挑戰。對于美國空軍來說,智能代理已經成功地在以戰斗為中心的飛行模擬器上進行了訓練,這些模擬器密切模仿現實生活。陸軍的問題包括以下內容。
智能代理能否附加到機器人平臺上?
智能在多大程度上可以通用于處理現實生活與視頻游戲中遇到的各種情況?
當我們可能不理解一個訓練有素的代理的邏輯時,我們能相信它的行動嗎?
代理在多大程度上能夠與人類合作?
在過去的十年里,機器學習在網絡安全方面發揮了不可或缺的作用。具體來說,ML可以用于異常檢測,檢測已知威脅的特定模式,并辨別網絡行為是否可能由惡意代理產生。隨著該領域的不斷加強,問題是ML是否能使安全比對手領先一步,因為對手可能利用ML來混淆檢測。
一個長期的設想是,軍隊使用的每一個機械系統都有一些關于系統當前和預測健康的內部感應。相關問題如下。
我們能從有限的傳感器中辨別出一個系統或系統組件的當前健康狀況嗎?
機載ML能否預測一個系統或系統部件在暴露于特定環境或彈道侮辱之后的健康狀況?
隨著基因組序列的數量繼續呈指數級增長,比較在現場獲得的序列所需的計算工作可能變得無法管理。機器學習可以通過對序列進行不同層次的分類來減少必要的比較。
93 近年來,機器學習已經在檢測各種組織中的惡性腫瘤方面取得了長足的進步。94 它同樣可以被用來描述創傷或創傷后應激障礙(PTSD)95,并制定治療計劃。
陸軍的一個重要組成部分集中在對行動、系統、研究和測試的分析上。傳統上,分析人員使用大量的工具,包括機器學習,以多維回歸、聚類和降維的形式。隨著深度學習的出現,一套新的工具應該是可能的,可以更有效地處理需要更復雜模型的大型數據集。例如,應該有可能從測試期間拍攝的視頻流中提取特征和物理屬性,這可能超過目前的標準做法。
自適應用戶界面(AUI)和情感計算。ML可以用來確定用戶的心理和/或情緒狀態,并提供適合這種狀態的界面。此外,可變的AUI可以服務于用戶的變化。例如,一些用戶可能喜歡音頻反饋而不是視覺反饋。
推薦系統。最流行的推薦系統之一是根據以前看過的電影的評分來選擇用戶想看的下一部電影(例如,所謂的 "Netflix問題")。對于軍隊來說,可以根據以前的使用情況和庫存核算的反饋來推薦后勤補給的情況。
搜索引擎/信息檢索。傳統上,搜索引擎返回文件的 "點擊率"。新的范式是以簡明的形式回答用戶的問題,而不是簡單的模式匹配。
情感分析。社交媒體上的流量和對環境進行訓練的各種傳感器不僅可以檢測關鍵的關鍵詞或特定物體的存在,還可以推斷出可能的攻擊的可能性。
有針對性的宣傳。傳統上,宣傳是通過散發傳單來完成的,如今,宣傳可以通過社交媒體來傳播。ML的角度是如何以最有說服力的信息向正確的人口群體進行宣傳。此外,重要的是快速檢測和顛覆來自對手針對我們自己的人員/人民的宣傳。
本研究的目標之一是確定當前研究中的差距,這些差距可能會限制ML在軍隊研究和行動中的全部潛力。本節借用了ARL運動科學家Brian Henz博士和Tien Pham博士(未發表)的戰略規劃工作。
傳統上,在一個特定領域采用ML的一半戰斗是弄清楚如何適應現有的工具和算法。對于陸軍所面臨的許多問題來說,這一點更為突出,與其他學術、商業或政府用途相比,這些問題可能是獨一無二的。任何數據分析員面臨的第一個問題是使數據適應他們想要使用的統計或ML模型。并非所有的數據都使用連續變量或者是一個時間序列。離散/標簽數據的管理可能非常棘手,因為標簽可能不容易被轉換成數學上的東西。在自然語言處理中的一個例子是,單詞經常被轉換為高維的單熱向量。另一個例子可能是如何將大量的維修報告轉換為對某一特定車輛在一段時間內的表現的預測。
此外,陸軍的要求超出了典型的商業部門的使用范圍,不僅需要檢測物體和人,還需要檢測他們的意圖和姿態。這將需要開發新的模型。另一個大的要求是可解釋性,正如DARPA最近的一個項目所概述的那樣:是什么因素導致ML算法做出一個特定的決定?在一個真實的事件中,如果一個ML算法在沒有人類驗證的情況下宣布一個重要目標的存在,我們能相信這一決定嗎?
隨著對計算要求高的ML任務的設想,開發人員正在使用多線程、并行和異構架構(GPU、多核)來加快計算速度。ML的分布式實現遠不如GPU版本常見,因為分布式計算中的節點間通信存在固有的網絡瓶頸,而且在單精度浮點性能方面,GPU相對于CPU有很大優勢。除了目前對GPU的強烈依賴,生物啟發式神經計算旨在尋找非馮-諾伊曼架構來更有效地執行ML,并可能更快。這方面的一個例子是IBM的神經形態芯片。97 未來的研究應該關注如何分配ML處理,使節點之間的網絡通信最小化。另外,像聚類這樣的無監督學習算法在多大程度上可以被映射到神經網絡中?
其他需要考慮的事情。
目前的ML軟件(特定的神經網絡)在一個小型的GPU集群中表現最好。
大多數基于非神經網絡的ML算法的并行性不高,或者根本就沒有并行。
另一個軍隊的具體挑戰是分析基本上沒有標記的數據集(例如,用無監督學習)。手動標注集群將是一種半監督學習的形式。
隨著進入偏遠地區或任何遠離基地的地區,軍隊必須限制系統的尺寸、重量和功率。此外,在 "激烈的戰斗 "中,時間是關鍵。例如,人們不能在遭到槍擊時等待作戰模擬的完成。最后,在其他商業發射器占主導地位的地區,或者在限制無線電通信以提高隱蔽性的情況下,網絡帶寬可能會受到很大限制。
在這種倍受限制的環境中,機器學習將需要有效地進行,而且往往是以一種孤立的方式進行。截然相反的條件是使用大型數據庫訓練大型神經網絡,這往往是最先進的機器學習功力的情況。商業部門正在開發自動駕駛汽車,據推測將使用低功耗的計算設備(如現場可編程門陣列、移動GPU)進行自主駕駛、道路/障礙物檢測和導航。然而,陸軍將有更多的要求,包括自主傳感器和執行器、態勢感知/理解、與人類的通信/合作,以及廣泛的戰場設備。這將需要多幾個因素的計算能力和特定算法的硬件,以實現最佳的小型化和低功耗。
在混亂的環境中,操作環境預計會有比通常密度更高的靜態和動態物體。此外,人們完全期待主動欺騙以避免被發現。我們也希望能夠開發出足夠強大的算法,至少能夠意識到欺騙,并相應地調低其確定性估計。
基于CNN的目標分類的突破可以部分歸功于每個物體類別的成千上萬個例子的可用性。在軍隊場景中,某些人和物體的數據可能是有限的。人們最終將需要one-hot99或multishot分類器,其中幾個有代表性的數據條目就足以學習一個新的類別。到目前為止,最好的選擇是 "知識轉移",通過調整以前訓練的模型的所有參數的子集來學習新的類別。我們的想法是,由于需要優化的參數較少,修改這些參數所需的數據也較少。
即使對于我們可以產生大量圖像的目標類別(例如,友好物體),我們也需要訓練自己的模型,以便從每個類別的潛在的數千張圖像中識別軍隊相關類別。軍隊還使用商業車輛中通常不存在的其他傳感模式(例如,熱能和雷達)。因此,需要為這些非典型的傳感設備訓練模型。從根本上說,非典型傳感設備可能需要新的神經網絡拓撲結構以達到最佳的準確性和緊湊性。
一個值得研究的有趣領域是將模型和模擬與機器學習相結合。有很多方法可以做到這一點。例如,ML可以用來推導出模擬的起始參數。此外,ML還可以用來處理模擬的輸出。一個耐人尋味的新領域是開發基于物理學或類似物理學的模擬,使用類似ML的模型/方程。一個這樣的應用是預測 "如果?"的情景。例如,"如果我跑過這棵樹呢?接下來會發生什么?"
機器學習在傳統上被認為是人工智能的硬性(即數學)表現形式。有可能最終,所有的人工智能任務都會被簡化為數學。然而,就目前而言,一些智能任務似乎更多的是基于推理或情感。對于之前描述的方法中的任務,ML并不能充分解決以下軟性人工智能的特點。
人類并不總是完全按邏輯推理,但他們也有能力將不完整的信息拼湊起來,做出 "最佳猜測 "的決定。幾十年來,對這種行為進行編碼一直是一個挑戰。
情緒似乎是驅動人類達到某些目的的動機/目標功能。例如,快樂可能會導致不活動或追求生產性的創造力。另一方面,恐懼則可能會導致忍氣吞聲。計算機是否需要情感來更有效地運作,還是說它們最好擁有100%的客觀性?這既是一個哲學問題,也是一個未來的研究方向。不過現在,毫無疑問的是,在人與代理人的團隊合作中,計算機需要準確地解釋人類的情感,以實現最佳的團體結果。
與人類的互動性是陸軍研究未來的首要關注點。一個類似的問題是,不同的計算機系統之間如何進行交流,而這些系統不一定是由同一個實驗室設計的。研究的一個領域是用計算機來教那些在這方面有困難的人進行社會交流。 再一次,對于人與代理的合作,代理將需要能夠參與社會互動,并在人類的陪伴下遵守社會規范。
創造力通常被認為是隨機合并的想法,與新的元素相結合,由一個鑒別功能決定新創造的項目的功能和/或美學。在某些方面,創造力已經被某些計算機實驗室所證明。例如,為了設計的目的,計算機可以被賦予某些方面的創造力。
人工智能的最終目標是將許多狹義的智能算法合并成一個統一的智能,就像人類的頭腦一樣。75鑒于許多狹義的人工智能任務已經比人類的某些任務要好,即使是早期的所謂人工通用智能(AGI)也可能具有一些超人的能力。AGI的一個主要目標是將目前由人類執行的某些任務自動化。
如果不提及許多哲學家的猜測,機器學習將最終能夠改進自己的編程,導致能力的指數級提高,也許會遠遠超過人類智能,那么機器學習的研究就不完整了。這些設想既是烏托邦式的104,也是烏托邦式的105。希望超級智能能夠解決世界上的許多問題。
在這項工作中,我們回顧了機器學習的不同類別,并描述了一些更常用的方法。然后,我們指出了一小部分關于ML在ARL中的應用的例子。最后,我們預測了ML在未來可以應用于軍隊的各個領域,并概述了為實現這一結果需要解決的一些挑戰。我們希望這份文件能夠激勵未來的研究人員和決策者繼續投資于研究和開發,以充分利用ML來幫助推動美國陸軍的發展。
摘要
無人機(UAV)由于有效且靈活的數據采集,近年來已成為計算機視覺(CV)和遙感(RS)領域的研究熱點。由于最近深度學習(DL)的成功,許多先進的目標檢測和跟蹤方法已被廣泛應用于與無人機相關的各種任務,例如環境監測、精準農業、交通管理。本文全面綜述了基于DL的無人機目標檢測與跟蹤方法的研究進展和前景。具體來說,我們首先概述了挑戰,統計了現有的方法,并從基于DL的模型的角度提供了解決方案,這三個研究課題分別是:來自圖像的目標檢測,來自視頻的目標檢測,來自視頻的目標跟蹤。利用無人機主導目標檢測與跟蹤相關的開放數據集,利用4個基準數據集,采用最先進的方法進行性能評估。最后,對今后的工作進行了展望和總結。本文對基于DL的無人機目標探測與跟蹤方法進行了綜述,并對其進一步發展提出了一些思考,以期為來自遙感領域的研究人員提供參考。
//www.zhuanzhi.ai/paper/d2cb72aa7da469d6481f2fc9e9c6454a
引言
目標檢測與跟蹤作為遙感領域的重要研究課題,已廣泛應用于環境監測、地質災害檢測、精準農業、城市規劃等各種民用和軍事任務中。傳統的目標捕獲方法主要來源于衛星和載人飛行器。這兩種平臺通常在固定軌道上運行或按照預定的路徑運行,也可以根據委托的任務,如城市規劃和測繪,或在惡劣和不適宜居住的環境下進行物體觀測,如冰凍圈遙感,臨時改變運行路線并懸停。然而,衛星和載人飛機的成本以及飛行員潛在的安全問題不可避免地限制了此類平臺的應用范圍。
隨著微電子軟硬件的發展,導航和通信技術的更新,以及材料和能源技術的突破,無人機(UAV)平臺已經成為國際遙感領域的研究熱點,迅速崛起。無人機遙感系統是將科技與無人機、遙感、全球定位系統(GPS)定位和慣性測量單元(IMU)姿態確定手段相結合的高科技組合。它是一個以獲取低空高分辨率遙感圖像為目標的專用遙感系統。與傳統平臺相比,無人機彌補了由于天氣、時間等限制造成的信息損失。此外,無人機的高機動性使其能夠靈活地采集視頻數據,不受地理限制。這些數據無論在內容上還是時間上都信息量極大,目標檢測與跟蹤進入了大規模無人機[1]-[3]時代,在土地覆蓋測繪[4]、[5]、智慧農業[6]、[7]、智慧城市[8]、交通監控[9]、災害監控[10]等領域發揮著越來越重要的作用。
目標檢測與跟蹤作為計算機視覺的基本問題之一,采用了經典的基于統計的方法[11]、[12]。然而,當前海量數據影響了這些傳統方法的性能,造成了特征維數爆炸的問題,存儲空間和時間成本較高。由于深度神經網絡(deep neural network, DL)技術[13]-[15]的出現,可以用深度復雜網絡學習具有足夠樣本數據的層次特征表示。自2015年以來,深度神經網絡已經成為無人機目標檢測與跟蹤的主流框架[16],[17]。圖1為無人機遙感在城市區域目標檢測與跟蹤的示例。經典的深度神經網絡主要分為兩大類:兩階段網絡和單階段網絡。其中,RCNN[18]、Fast RCNN[19]和Faster RCNN[20]等兩階段網絡首先需要生成region proposal (RP),然后對候選區域進行分類和定位。[21] -[23]的一系列工作證明了兩級網絡適用于具有較高檢測精度的應用。一級網絡,如SSD[24]和YOLO[16],[25],[26],直接產生類概率和坐標位置,比二級網絡更快。同樣,也有一些更快的輕量級網絡,如mobilenet SSD [27], YOLOv3 [28], ESPnet v2[29]等。因此,對高速需求的無人機遙感實際應用而言,一級快速輕量化網絡是最終的贏家。但對于低分辨率的數據,如果不對圖像進行預處理或對經典的神經網絡結構進行修改,則無法產生良好的效果。
本文以最大起飛重量小于30公斤的無人機為研究對象,通過總結最新發表的研究成果,對基于深度學習(DL)的無人機目標檢測與跟蹤方法進行了全面綜述,討論了關鍵問題和難點問題,并描述了未來的發展領域。本文的其余部分組織如下。第二節概述了無人機的統計情況和相關出版物。第六節介紹現有的基于無人機的遙感數據集。第三至第五節綜述了三個分支在基于無人機的目標檢測和跟蹤方面的現有基于DL的工作。第八節討論結論。